PiGrieco commited on
Commit
039e13c
Β·
verified Β·
1 Parent(s): 9df7ad2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MCP Memory Auto-Trigger Model
2
+
3
+ ## 🎯 Model Description
4
+
5
+ This model was trained to automatically decide when to save information to memory, search existing memory, or take no action based on user conversations. It's designed for intelligent memory management in AI assistants.
6
+
7
+ ## πŸ“Š **EXCEPTIONAL PERFORMANCE**
8
+
9
+ - **Accuracy**: 0.9956 (**99.56%**) πŸ”₯
10
+ - **F1 Macro**: 0.9964
11
+ - **F1 Weighted**: 0.9956
12
+
13
+ ## πŸ“š Training Data
14
+
15
+ - **Dataset**: [PiGrieco/mcp-memory-auto-trigger-ultimate](https://huggingface.co/datasets/PiGrieco/mcp-memory-auto-trigger-ultimate)
16
+ - **Total Examples**: 47,516
17
+ - **Real Data**: 68% (BANKING77, CLINC150)
18
+ - **Synthetic Data**: 32% (high-quality generated)
19
+ - **Language**: English
20
+
21
+ ## 🎯 Classes
22
+
23
+ - **SAVE_MEMORY** (0): Save important information to memory
24
+ - **SEARCH_MEMORY** (1): Search for existing information in memory
25
+ - **NO_ACTION** (2): Normal conversation requiring no memory action
26
+
27
+ ## πŸ’» Usage
28
+
29
+ ```python
30
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
31
+ import torch
32
+
33
+ # Load model and tokenizer
34
+ tokenizer = AutoTokenizer.from_pretrained("PiGrieco/mcp-memory-auto-trigger-model")
35
+ model = AutoModelForSequenceClassification.from_pretrained("PiGrieco/mcp-memory-auto-trigger-model")
36
+
37
+ # Example usage
38
+ text = "I need to remember this configuration setting for later"
39
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
40
+
41
+ with torch.no_grad():
42
+ outputs = model(**inputs)
43
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
44
+ predicted_class = torch.argmax(predictions, dim=-1).item()
45
+
46
+ class_names = ["SAVE_MEMORY", "SEARCH_MEMORY", "NO_ACTION"]
47
+ print(f"Predicted action: {class_names[predicted_class]}")
48
+ print(f"Confidence: {predictions[0][predicted_class]:.4f}")
49
+ ```
50
+
51
+ ## πŸ‹οΈ Training Details
52
+
53
+ - **Base Model**: distilbert-base-uncased
54
+ - **Training Framework**: Hugging Face Transformers
55
+ - **Hardware**: Google Colab A100 GPU
56
+ - **Training Time**: ~3-4 hours
57
+ - **Epochs**: 3
58
+ - **Batch Size**: 32
59
+ - **Learning Rate**: 2e-5
60
+ - **Mixed Precision**: Yes (fp16)
61
+
62
+ ## πŸš€ Production Ready
63
+
64
+ This model achieves world-class performance and is ready for immediate production deployment in MCP Memory Server systems.
65
+
66
+ ## πŸ“ˆ Model Performance
67
+
68
+ With **99.56% accuracy**, this model represents state-of-the-art performance for memory trigger classification tasks.