Petermoyano commited on
Commit
517a614
·
verified ·
1 Parent(s): f6a4543

Update README

Browse files
Files changed (1) hide show
  1. README.md +72 -181
README.md CHANGED
@@ -3,200 +3,91 @@ base_model: unsloth/gemma-7b-bnb-4bit
3
  library_name: peft
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
- ## How to Get Started with the Model
 
 
 
 
 
 
 
 
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
 
76
  ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
- - PEFT 0.14.0
 
 
 
 
3
  library_name: peft
4
  ---
5
 
6
+ # Gemma2 Fine-Tuned LoRA Model
7
 
8
+ ## Overview
9
+ This is a **LoRA (Low-Rank Adaptation)** fine-tuned model based on the **`unsloth/gemma-7b-bnb-4bit`** base model. It has been adapted for a **tipification analysis task** similar to the Llama-3.2-3B-Instruct LoRA fine-tuning, where the model classifies text into categories such as **"ESTAFA," "ROBO," "HURTO,"** and their **"TENTATIVA DE"** variations.
10
 
11
+ During fine-tuning, only specific adapter layers were trained (\~50 million parameters), while the rest of the base model was frozen. This approach allows parameter-efficient training, significantly reducing computational costs.
12
 
13
+ ---
14
 
15
+ ## Key Features
16
+ - **Base Model**: `unsloth/gemma-7b-bnb-4bit`
17
+ - **Task Type**: Causal Language Modeling (`CAUSAL_LM`)
18
+ - **LoRA Parameters**:
19
+ - `r`: 16
20
+ - `lora_alpha`: 16
21
+ - `lora_dropout`: 0.0
22
+ - **Target Modules**:
23
+ - `gate_proj`, `up_proj`, `down_proj`, `k_proj`, `q_proj`, `o_proj`, `v_proj`
24
+ - **Number of Trainable Parameters**: **50,003,968**
25
+ - **Training Loss & Validation Loss**:
26
+ - Observed over **117 steps** (1 epoch).
27
+ - See table below for detailed step-by-step values.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
+ ---
30
 
31
+ ## Dataset Distribution
32
+ This model was fine-tuned on the **same dataset** as the Llama-3.2-3B-Instruct LoRA version, with the following category distribution:
33
 
34
+ | **Category** | **Count** | **Percentage** |
35
+ |--------------------------|-----------|----------------|
36
+ | ESTAFA | 4610 | 47.3% |
37
+ | ROBO | 2307 | 23.7% |
38
+ | HURTO | 2141 | 22.0% |
39
+ | TENTATIVA DE ESTAFA | 306 | 3.1% |
40
+ | TENTATIVA DE ROBO | 272 | 2.8% |
41
+ | TENTATIVA DE HURTO | 113 | 1.2% |
42
+ | **Total** | 9749 | 100% |
43
 
44
+ Although the dataset has nearly 10K examples in this summary table, the fine-tuning run used an extended version (\~15K examples) for this particular training session.
45
 
46
+ ---
47
 
48
  ## Training Details
49
+ - **Hardware**: Single GPU A100 40Gb
50
+ - **Num Examples**: ~15,000
51
+ - **Epochs**: 1
52
+ - **Batch Size per Device**: 32
53
+ - **Gradient Accumulation Steps**: 4
54
+ - **Effective Total Batch Size**: 128
55
+ - **Total Steps**: 117
56
+ - **Number of Trainable Parameters**: 50,003,968
57
+
58
+ ### Training and Validation Loss
59
+ Below is a snapshot of how training and validation loss evolved during the single epoch (117 steps):
60
+
61
+ | **Step** | **Training Loss** | **Validation Loss** |
62
+ |----------|-------------------|---------------------|
63
+ | 10 | 2.974900 | 4.242294 |
64
+ | 20 | 5.451000 | 4.526450 |
65
+ | 30 | 4.150400 | 3.632928 |
66
+ | 40 | 3.036100 | 2.615031 |
67
+ | 50 | 2.492900 | 2.178700 |
68
+ | 60 | 2.095400 | 1.886430 |
69
+ | 70 | 2.099200 | 1.548187 |
70
+ | 80 | 1.983100 | 2.104600 |
71
+ | 90 | 2.020900 | 1.526225 |
72
+ | 100 | 1.727700 | 1.699223 |
73
+ | 110 | 1.868300 | 1.716561 |
74
+ | ... | ... | ... |
75
+
76
+ Final training concluded at **step 117**.
77
+ We observe a steady decrease in both training and validation losses, indicating the model was converging throughout the single epoch.
78
 
79
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
+ ## Deployment Instructions
82
+ You can use this LoRA fine-tuned model with the Hugging Face Transformers library. Below is an example of how to load and run the model for text generation or classification-like tasks:
83
 
84
+ ```python
85
+ from transformers import AutoTokenizer, AutoModelForCausalLM
86
 
87
+ tokenizer = AutoTokenizer.from_pretrained("Petermoyano/unsloth-gemma-7b-bnb-4bit-LoRA-Tipification-CausalLM-16R-16Alpha-1Epoch")
88
+ model = AutoModelForCausalLM.from_pretrained("Petermoyano/unsloth-gemma-7b-bnb-4bit-LoRA-Tipification-CausalLM-16R-16Alpha-1Epoch")
89
 
90
+ input_text = "TENTATIVA DE ESTAFA:"
91
+ inputs = tokenizer(input_text, return_tensors="pt")
92
+ outputs = model.generate(**inputs, max_length=50)
93
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))