File size: 16,393 Bytes
6f8f7d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "请点击[此处](https://ai.baidu.com/docs#/AIStudio_Project_Notebook/a38e5576)查看本环境基本用法.  <br>\n",
    "Please click [here ](https://ai.baidu.com/docs#/AIStudio_Project_Notebook/a38e5576) for more detailed instructions. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-10-11T15:15:49.511879Z",
     "iopub.status.busy": "2022-10-11T15:15:49.511286Z",
     "iopub.status.idle": "2022-10-11T15:15:51.568549Z",
     "shell.execute_reply": "2022-10-11T15:15:51.567597Z",
     "shell.execute_reply.started": "2022-10-11T15:15:49.511839Z"
    },
    "jupyter": {
     "outputs_hidden": false
    },
    "scrolled": true,
    "tags": []
   },
   "outputs": [],
   "source": [
    "import os\n",
    "import io\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from PIL import Image\n",
    "import paddle\n",
    "from paddle.nn import functional as F\n",
    "import random\n",
    "from paddle.io import Dataset\n",
    "from visualdl import LogWriter\n",
    "from paddle.vision.transforms import transforms as T\n",
    "import warnings\n",
    "import cv2 as cv\n",
    "from PIL import Image\n",
    "import re\n",
    "warnings.filterwarnings(\"ignore\")\n",
    "os.environ[\"KMP_DUPLICATE_LIB_OK\"]=\"TRUE\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-10-11T15:16:14.415916Z",
     "iopub.status.busy": "2022-10-11T15:16:14.415245Z",
     "iopub.status.idle": "2022-10-11T15:16:14.428584Z",
     "shell.execute_reply": "2022-10-11T15:16:14.427470Z",
     "shell.execute_reply.started": "2022-10-11T15:16:14.415874Z"
    },
    "jupyter": {
     "outputs_hidden": false
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "class SeparableConv2D(paddle.nn.Layer):\n",
    "    def __init__(self,\n",
    "                 in_channels,\n",
    "                 out_channels,\n",
    "                 kernel_size,\n",
    "                 stride=1,\n",
    "                 padding=0,\n",
    "                 dilation=1,\n",
    "                 groups=None,\n",
    "                 weight_attr=None,\n",
    "                 bias_attr=None,\n",
    "                 data_format=\"NCHW\"):\n",
    "        super(SeparableConv2D, self).__init__()\n",
    "\n",
    "        self._padding = padding\n",
    "        self._stride = stride\n",
    "        self._dilation = dilation\n",
    "        self._in_channels = in_channels\n",
    "        self._data_format = data_format\n",
    "\n",
    "        # 第一次卷积参数,没有偏置参数\n",
    "        filter_shape = [in_channels, 1] + self.convert_to_list(kernel_size, 2, 'kernel_size')\n",
    "        self.weight_conv = self.create_parameter(shape=filter_shape, attr=weight_attr)\n",
    "\n",
    "        # 第二次卷积参数\n",
    "        filter_shape = [out_channels, in_channels] + self.convert_to_list(1, 2, 'kernel_size')\n",
    "        self.weight_pointwise = self.create_parameter(shape=filter_shape, attr=weight_attr)\n",
    "        self.bias_pointwise = self.create_parameter(shape=[out_channels],\n",
    "                                                    attr=bias_attr,\n",
    "                                                    is_bias=True)\n",
    "\n",
    "    def convert_to_list(self, value, n, name, dtype=np.int):\n",
    "        if isinstance(value, dtype):\n",
    "            return [value, ] * n\n",
    "        else:\n",
    "            try:\n",
    "                value_list = list(value)\n",
    "            except TypeError:\n",
    "                raise ValueError(\"The \" + name +\n",
    "                                \"'s type must be list or tuple. Received: \" + str(\n",
    "                                    value))\n",
    "            if len(value_list) != n:\n",
    "                raise ValueError(\"The \" + name + \"'s length must be \" + str(n) +\n",
    "                                \". Received: \" + str(value))\n",
    "            for single_value in value_list:\n",
    "                try:\n",
    "                    dtype(single_value)\n",
    "                except (ValueError, TypeError):\n",
    "                    raise ValueError(\n",
    "                        \"The \" + name + \"'s type must be a list or tuple of \" + str(\n",
    "                            n) + \" \" + str(dtype) + \" . Received: \" + str(\n",
    "                                value) + \" \"\n",
    "                        \"including element \" + str(single_value) + \" of type\" + \" \"\n",
    "                        + str(type(single_value)))\n",
    "            return value_list\n",
    "\n",
    "    def forward(self, inputs):\n",
    "        conv_out = F.conv2d(inputs,\n",
    "                            self.weight_conv,\n",
    "                            padding=self._padding,\n",
    "                            stride=self._stride,\n",
    "                            dilation=self._dilation,\n",
    "                            groups=self._in_channels,\n",
    "                            data_format=self._data_format)\n",
    "\n",
    "        out = F.conv2d(conv_out,\n",
    "                       self.weight_pointwise,\n",
    "                       bias=self.bias_pointwise,\n",
    "                       padding=0,\n",
    "                       stride=1,\n",
    "                       dilation=1,\n",
    "                       groups=1,\n",
    "                       data_format=self._data_format)\n",
    "\n",
    "        return out\n",
    "class Encoder(paddle.nn.Layer):\n",
    "    def __init__(self, in_channels, out_channels):\n",
    "        super(Encoder, self).__init__()\n",
    "\n",
    "        self.relus = paddle.nn.LayerList(\n",
    "            [paddle.nn.ReLU() for i in range(2)])\n",
    "        self.separable_conv_01 = SeparableConv2D(in_channels,\n",
    "                                                 out_channels,\n",
    "                                                 kernel_size=3,\n",
    "                                                 padding='same')\n",
    "        self.bns = paddle.nn.LayerList(\n",
    "            [paddle.nn.BatchNorm2D(out_channels) for i in range(2)])\n",
    "\n",
    "        self.separable_conv_02 = SeparableConv2D(out_channels,\n",
    "                                                 out_channels,\n",
    "                                                 kernel_size=3,\n",
    "                                                 padding='same')\n",
    "        self.pool = paddle.nn.MaxPool2D(kernel_size=3, stride=2, padding=1)\n",
    "        self.residual_conv = paddle.nn.Conv2D(in_channels,\n",
    "                                              out_channels,\n",
    "                                              kernel_size=1,\n",
    "                                              stride=2,\n",
    "                                              padding='same')\n",
    "\n",
    "    def forward(self, inputs):\n",
    "        previous_block_activation = inputs\n",
    "\n",
    "        y = self.relus[0](inputs)\n",
    "        y = self.separable_conv_01(y)\n",
    "        y = self.bns[0](y)\n",
    "        y = self.relus[1](y)\n",
    "        y = self.separable_conv_02(y)\n",
    "        y = self.bns[1](y)\n",
    "        y = self.pool(y)\n",
    "\n",
    "        residual = self.residual_conv(previous_block_activation)\n",
    "        y = paddle.add(y, residual)\n",
    "\n",
    "        return y\n",
    "class Decoder(paddle.nn.Layer):\n",
    "    def __init__(self, in_channels, out_channels):\n",
    "        super(Decoder, self).__init__()\n",
    "\n",
    "        self.relus = paddle.nn.LayerList(\n",
    "            [paddle.nn.ReLU() for i in range(2)])\n",
    "        self.conv_transpose_01 = paddle.nn.Conv2DTranspose(in_channels,\n",
    "                                                           out_channels,\n",
    "                                                           kernel_size=3,\n",
    "                                                           padding=1)\n",
    "        self.conv_transpose_02 = paddle.nn.Conv2DTranspose(out_channels,\n",
    "                                                           out_channels,\n",
    "                                                           kernel_size=3,\n",
    "                                                           padding=1)\n",
    "        self.bns = paddle.nn.LayerList(\n",
    "            [paddle.nn.BatchNorm2D(out_channels) for i in range(2)]\n",
    "        )\n",
    "        self.upsamples = paddle.nn.LayerList(\n",
    "            [paddle.nn.Upsample(scale_factor=2.0) for i in range(2)]\n",
    "        )\n",
    "        self.residual_conv = paddle.nn.Conv2D(in_channels,\n",
    "                                              out_channels,\n",
    "                                              kernel_size=1,\n",
    "                                              padding='same')\n",
    "\n",
    "    def forward(self, inputs):\n",
    "        previous_block_activation = inputs\n",
    "\n",
    "        y = self.relus[0](inputs)\n",
    "        y = self.conv_transpose_01(y)\n",
    "        y = self.bns[0](y)\n",
    "        y = self.relus[1](y)\n",
    "        y = self.conv_transpose_02(y)\n",
    "        y = self.bns[1](y)\n",
    "        y = self.upsamples[0](y)\n",
    "\n",
    "        residual = self.upsamples[1](previous_block_activation)\n",
    "        residual = self.residual_conv(residual)\n",
    "\n",
    "        y = paddle.add(y, residual)\n",
    "\n",
    "        return y\n",
    "class PetNet(paddle.nn.Layer):\n",
    "    def __init__(self, num_classes):\n",
    "        super(PetNet, self).__init__()\n",
    "\n",
    "        self.conv_1 = paddle.nn.Conv2D(3, 32,\n",
    "                                       kernel_size=3,\n",
    "                                       stride=2,\n",
    "                                       padding='same')\n",
    "        self.bn = paddle.nn.BatchNorm2D(32)\n",
    "        self.relu = paddle.nn.ReLU()\n",
    "\n",
    "        in_channels = 32\n",
    "        self.encoders = []\n",
    "        self.encoder_list = [64, 128, 256]\n",
    "        self.decoder_list = [256, 128, 64, 32]\n",
    "\n",
    "        for out_channels in self.encoder_list:\n",
    "            block = self.add_sublayer('encoder_{}'.format(out_channels),\n",
    "                                      Encoder(in_channels, out_channels))\n",
    "            self.encoders.append(block)\n",
    "            in_channels = out_channels\n",
    "\n",
    "        self.decoders = []\n",
    "\n",
    "        for out_channels in self.decoder_list:\n",
    "            block = self.add_sublayer('decoder_{}'.format(out_channels),\n",
    "                                      Decoder(in_channels, out_channels))\n",
    "            self.decoders.append(block)\n",
    "            in_channels = out_channels\n",
    "\n",
    "        self.output_conv = paddle.nn.Conv2D(in_channels,\n",
    "                                            num_classes,\n",
    "                                            kernel_size=3,\n",
    "                                            padding='same')\n",
    "\n",
    "    def forward(self, inputs):\n",
    "        y = self.conv_1(inputs)\n",
    "        y = self.bn(y)\n",
    "        y = self.relu(y)\n",
    "\n",
    "        for encoder in self.encoders:\n",
    "            y = encoder(y)\n",
    "\n",
    "        for decoder in self.decoders:\n",
    "            y = decoder(y)\n",
    "\n",
    "        y = self.output_conv(y)\n",
    "        return y\n",
    "IMAGE_SIZE = (512, 512)\n",
    "num_classes = 2\n",
    "network = PetNet(num_classes)\n",
    "model = paddle.Model(network)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-10-11T15:16:14.415916Z",
     "iopub.status.busy": "2022-10-11T15:16:14.415245Z",
     "iopub.status.idle": "2022-10-11T15:16:14.428584Z",
     "shell.execute_reply": "2022-10-11T15:16:14.427470Z",
     "shell.execute_reply.started": "2022-10-11T15:16:14.415874Z"
    },
    "jupyter": {
     "outputs_hidden": false
    },
    "scrolled": true,
    "tags": []
   },
   "outputs": [],
   "source": [
    "#加载训练好的权重\n",
    "optimizer = paddle.optimizer.RMSProp(learning_rate=0.001, parameters=network.parameters())\n",
    "layer_state_dict = paddle.load(\"mymodel.pdparams\")\n",
    "opt_state_dict = paddle.load(\"optimizer.pdopt\")\n",
    "\n",
    "network.set_state_dict(layer_state_dict)\n",
    "optimizer.set_state_dict(opt_state_dict)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-10-11T16:07:50.639995Z",
     "iopub.status.busy": "2022-10-11T16:07:50.639338Z",
     "iopub.status.idle": "2022-10-11T16:07:50.941928Z",
     "shell.execute_reply": "2022-10-11T16:07:50.940805Z",
     "shell.execute_reply.started": "2022-10-11T16:07:50.639949Z"
    },
    "jupyter": {
     "outputs_hidden": false
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "def FinalImage(mask,image):\n",
    "    # 这个函数的作用是把mask高斯模糊之后的遮罩和原始的image叠加起来\n",
    "    #输入 mask [0,255]的这招图\n",
    "    #image 必须无条件转化为512*512 三通道彩图\n",
    "    \n",
    "    th = cv.threshold(mask,140,255,cv.THRESH_BINARY)[1]\n",
    "    blur = cv.GaussianBlur(th,(33,33), 15)\n",
    "    heatmap_img = cv.applyColorMap(blur, cv.COLORMAP_OCEAN)\n",
    "    Blendermap = cv.addWeighted(heatmap_img, 0.5, image, 1, 0)\n",
    "    return Blendermap"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "IMPORTANT: You are using gradio version 3.12.0, however version 3.14.0 is available, please upgrade.\n",
      "--------\n",
      "Running on local URL:  http://127.0.0.1:7864\n",
      "Running on public URL: https://317fc297694e39a2.gradio.app\n",
      "\n",
      "This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"https://317fc297694e39a2.gradio.app\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import gradio as gr\n",
    "def Showsegmentation(image):\n",
    "    mask = paddle.argmax(network(paddle.to_tensor([((image - 127.5) / 127.5).transpose(2, 0, 1)]))[0], axis=0).numpy()\n",
    "    mask=mask.astype('uint8')*255\n",
    "    immask=cv.resize(mask, (512, 512))\n",
    "    image=cv.resize(image,(512,512))\n",
    "    blendmask=FinalImage(immask,image)\n",
    "    return blendmask\n",
    "\n",
    "gr.Interface(fn=Showsegmentation, inputs=\"image\", outputs=\"image\").launch(share=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.5"
  },
  "toc-autonumbering": true,
  "toc-showcode": true,
  "toc-showmarkdowntxt": true
 },
 "nbformat": 4,
 "nbformat_minor": 4
}