PeanutCoding commited on
Commit
da61578
·
verified ·
1 Parent(s): 01825a0

End of training

Browse files
README.md CHANGED
@@ -20,30 +20,80 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 3.8093
24
- - F1: 0.032
25
- - Recall: 0.04
26
- - Precision: 0.0267
27
- - Pred Var-ausf. 4: 1
28
- - Pred Fadenfarbnr.: 3
29
- - Pred Menge3: 1
30
- - Pred Zusatz 1: 7
31
- - Pred Menge7: 2
32
- - Pred Holz 2: 2
33
- - Percentage Pred Act Holz 2: 0.6667
34
- - Pred Gestelltnr.: 5
35
- - Pred Modell 1: 3
36
- - Percentage Pred Act Modell 1: 1.0
37
- - Pred Menge6: 1
38
- - Act Bestellnummer: 3
39
- - Act Kundennr.: 5
40
- - Act Modell 2: 5
41
- - Act Bezug 2: 1
42
- - Act Menge2: 3
43
- - Act Holz 2: 3
44
- - Act Möbelhaus: 1
45
- - Act Holz 1: 1
46
- - Act Modell 1: 3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  ## Model description
49
 
@@ -68,7 +118,7 @@ The following hyperparameters were used during training:
68
  - seed: 42
69
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
70
  - lr_scheduler_type: linear
71
- - num_epochs: 1
72
  - mixed_precision_training: Native AMP
73
 
74
  ### Training results
 
20
 
21
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.9964
24
+ - F1: 0.7547
25
+ - Recall: 0.7148
26
+ - Precision: 0.7992
27
+ - Pred Kommission: 44
28
+ - Percentage Pred Act Kommission: 1.0476
29
+ - Pred Bestellnummer: 146
30
+ - Percentage Pred Act Bestellnummer: 1.0069
31
+ - Pred Möbelhaus: 69
32
+ - Percentage Pred Act Möbelhaus: 1.0781
33
+ - Pred Var-ausf 1: 7
34
+ - Percentage Pred Act Var-ausf 1: 0.4375
35
+ - Pred Modell 2: 46
36
+ - Percentage Pred Act Modell 2: 0.8679
37
+ - Pred Modell 1: 126
38
+ - Percentage Pred Act Modell 1: 1.0413
39
+ - Pred Menge1: 45
40
+ - Percentage Pred Act Menge1: 1.5
41
+ - Pred Kundennr.: 73
42
+ - Percentage Pred Act Kundennr.: 1.0735
43
+ - Pred Bezug 3: 9
44
+ - Percentage Pred Act Bezug 3: 1.8
45
+ - Pred Menge2: 4
46
+ - Percentage Pred Act Menge2: 0.2222
47
+ - Pred Modell 3: 70
48
+ - Percentage Pred Act Modell 3: 1.4583
49
+ - Pred Bezug 1: 20
50
+ - Percentage Pred Act Bezug 1: 1.0526
51
+ - Pred Termin kundenwunsch - kw: 23
52
+ - Percentage Pred Act Termin kundenwunsch - kw: 0.8846
53
+ - Pred Holz 1: 10
54
+ - Percentage Pred Act Holz 1: 0.5556
55
+ - Pred Holz 2: 42
56
+ - Percentage Pred Act Holz 2: 2.0
57
+ - Pred Zusatz 1: 12
58
+ - Percentage Pred Act Zusatz 1: 2.4
59
+ - Pred Menge3: 22
60
+ - Percentage Pred Act Menge3: 2.0
61
+ - Pred Bezug 2: 5
62
+ - Percentage Pred Act Bezug 2: 0.625
63
+ - Pred La-anschrift: 2
64
+ - Percentage Pred Act La-anschrift: 2.0
65
+ - Act Kommission: 42
66
+ - Act Bestellnummer: 145
67
+ - Act Möbelhaus: 64
68
+ - Act Var-ausf. 2: 7
69
+ - Act Modell 1: 121
70
+ - Act Modell 2: 53
71
+ - Act Menge2: 18
72
+ - Act Kundennr.: 68
73
+ - Act Var-ausf 1: 16
74
+ - Act Bezug 2: 8
75
+ - Act Menge1: 30
76
+ - Act Bezug 1: 19
77
+ - Act Termin kundenwunsch - kw: 26
78
+ - Act Holz 1: 18
79
+ - Act Holz 2: 21
80
+ - Act Menge3: 11
81
+ - Act Modell 3: 48
82
+ - Act Holz 3: 9
83
+ - Act Zusatz 3: 2
84
+ - Act Modell 4: 7
85
+ - Act Zusatz 2: 8
86
+ - Act Bezug 3: 5
87
+ - Act Zusatz 1: 5
88
+ - Act Menge4: 7
89
+ - Act Var-ausf. 3: 4
90
+ - Act Var-ausf. 4: 4
91
+ - Act Modell 5: 1
92
+ - Act Gestelltnr.: 1
93
+ - Act Bezug 4: 4
94
+ - Act La-anschrift: 1
95
+ - Act Holz 4: 1
96
+ - Act Menge5: 1
97
 
98
  ## Model description
99
 
 
118
  - seed: 42
119
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
120
  - lr_scheduler_type: linear
121
+ - num_epochs: 5
122
  - mixed_precision_training: Native AMP
123
 
124
  ### Training results
logs/events.out.tfevents.1749058232.phi-ThinkPad-T490 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a96fc5a35749bfe0240b4df4cfe25bcf8f7044fb12a844ba59a8d12950d9ecb
3
+ size 4713