Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,5 +1,14 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
| 4 |
|
| 5 |
# PP-DocBee-2B
|
|
@@ -52,16 +61,19 @@ You can quickly experience the functionality with a single command:
|
|
| 52 |
```bash
|
| 53 |
paddleocr doc_vlm \
|
| 54 |
--model_name PP-DocBee-2B \
|
| 55 |
-
-i "{'image': 'https://
|
| 56 |
```
|
| 57 |
|
| 58 |
-
You can also integrate the model inference of the
|
| 59 |
|
| 60 |
```python
|
| 61 |
from paddleocr import DocVLM
|
| 62 |
model = DocVLM(model_name="PP-DocBee-2B")
|
| 63 |
results = model.predict(
|
| 64 |
-
input={
|
|
|
|
|
|
|
|
|
|
| 65 |
batch_size=1
|
| 66 |
)
|
| 67 |
for res in results:
|
|
@@ -72,29 +84,29 @@ for res in results:
|
|
| 72 |
After running, the obtained result is as follows:
|
| 73 |
|
| 74 |
```bash
|
| 75 |
-
{
|
| 76 |
```
|
| 77 |
|
| 78 |
The visualized result is as follows:
|
| 79 |
|
| 80 |
```bash
|
| 81 |
-
|
|
| 82 |
-
|
| 83 |
-
| 1 |
|
| 84 |
-
| 2 |
|
| 85 |
-
| 3 |
|
| 86 |
-
| 4 |
|
| 87 |
-
| 5 |
|
| 88 |
-
| 6 |
|
| 89 |
-
| 7 |
|
| 90 |
-
| 8 |
|
| 91 |
-
| 9 |
|
| 92 |
-
| 10 |
|
| 93 |
-
| 11 |
|
| 94 |
-
| 12 |
|
| 95 |
-
| 13 |
|
| 96 |
-
| 14 |
|
| 97 |
-
| 15 |
|
| 98 |
```
|
| 99 |
|
| 100 |
For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/doc_vlm.html#iii-quick-start).
|
|
@@ -111,18 +123,18 @@ The document understanding pipeline is an advanced document processing technolog
|
|
| 111 |
Run a single command to quickly experience the OCR pipeline:
|
| 112 |
|
| 113 |
```bash
|
| 114 |
-
paddleocr doc_understanding -i "{'image': 'https://
|
| 115 |
```
|
| 116 |
|
| 117 |
Results are printed to the terminal:
|
| 118 |
|
| 119 |
```bash
|
| 120 |
-
{
|
| 121 |
```
|
| 122 |
|
| 123 |
If save_path is specified, the visualization results will be saved under `save_path`. The visualization output is shown below:
|
| 124 |
|
| 125 |
-

|
| 135 |
output = pipeline.predict(
|
| 136 |
{
|
| 137 |
-
"image": "https://
|
| 138 |
-
"query": "
|
| 139 |
}
|
| 140 |
)
|
| 141 |
for res in output:
|
|
@@ -143,7 +155,7 @@ for res in output:
|
|
| 143 |
res.save_to_json("./output/")
|
| 144 |
```
|
| 145 |
|
| 146 |
-
The default model used in pipeline is `PP-DocBee2-3B`, so
|
| 147 |
|
| 148 |
## Links
|
| 149 |
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
library_name: PaddleOCR
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
- zh
|
| 7 |
+
pipeline_tag: image-to-text
|
| 8 |
+
tags:
|
| 9 |
+
- OCR
|
| 10 |
+
- PaddlePaddle
|
| 11 |
+
- PaddleOCR
|
| 12 |
---
|
| 13 |
|
| 14 |
# PP-DocBee-2B
|
|
|
|
| 61 |
```bash
|
| 62 |
paddleocr doc_vlm \
|
| 63 |
--model_name PP-DocBee-2B \
|
| 64 |
+
-i "{'image': 'https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/l5xpHbfLn75dKInhQZ84I.png', 'query': 'Recognize the content of this table and output it in markdown format.'}"
|
| 65 |
```
|
| 66 |
|
| 67 |
+
You can also integrate the model inference of the document visual-language module into your project. Before running the following code, please download the sample image to your local machine.
|
| 68 |
|
| 69 |
```python
|
| 70 |
from paddleocr import DocVLM
|
| 71 |
model = DocVLM(model_name="PP-DocBee-2B")
|
| 72 |
results = model.predict(
|
| 73 |
+
input={
|
| 74 |
+
"image": "https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/l5xpHbfLn75dKInhQZ84I.png",
|
| 75 |
+
"query": "Recognize the content of this table and output it in markdown format."
|
| 76 |
+
},
|
| 77 |
batch_size=1
|
| 78 |
)
|
| 79 |
for res in results:
|
|
|
|
| 84 |
After running, the obtained result is as follows:
|
| 85 |
|
| 86 |
```bash
|
| 87 |
+
{'res': {'image': 'medal_table_en.png', 'query': 'Recognize the content of this table and output it in markdown format', 'result': '| Rank | Country/Region | Gold | Silver | Bronze | Total Medals |\n|---|---|---|---|---|---|\n| 1 | China (CHN) | 48 | 22 | 30 | 100 |\n| 2 | United States (USA) | 36 | 39 | 37 | 112 |\n| 3 | Russia (RUS) | 24 | 13 | 23 | 60 |\n| 4 | Great Britain (GBR) | 19 | 13 | 19 | 51 |\n| 5 | Germany (GER) | 16 | 11 | 14 | 41 |\n| 6 | Australia (AUS) | 14 | 15 | 17 | 46 |\n| 7 | South Korea (KOR) | 13 | 11 | 8 | 32 |\n| 8 | Japan (JPN) | 9 | 8 | 8 | 25 |\n| 9 | Italy (ITA) | 8 | 9 | 10 | 27 |\n| 10 | France (FRA) | 7 | 16 | 20 | 43 |\n| 11 | Netherlands (NED) | 7 | 5 | 4 | 16 |\n| 12 | Ukraine (UKR) | 7 | 4 | 11 | 22 |\n| 13 | Kenya (KEN) | 6 | 4 | 6 | 16 |\n| 14 | Spain (ESP) | 5 | 11 | 3 | 19 |\n| 15 | Jamaica (JAM) | 5 | 4 | 2 | 11 |\n'}}
|
| 88 |
```
|
| 89 |
|
| 90 |
The visualized result is as follows:
|
| 91 |
|
| 92 |
```bash
|
| 93 |
+
| Rank | Country/Region | Gold | Silver | Bronze | Total Medals |
|
| 94 |
+
|---|---|---|---|---|---|
|
| 95 |
+
| 1 | China (CHN) | 48 | 22 | 30 | 100 |
|
| 96 |
+
| 2 | United States (USA) | 36 | 39 | 37 | 112 |
|
| 97 |
+
| 3 | Russia (RUS) | 24 | 13 | 23 | 60 |
|
| 98 |
+
| 4 | Great Britain (GBR) | 19 | 13 | 19 | 51 |
|
| 99 |
+
| 5 | Germany (GER) | 16 | 11 | 14 | 41 |
|
| 100 |
+
| 6 | Australia (AUS) | 14 | 15 | 17 | 46 |
|
| 101 |
+
| 7 | South Korea (KOR) | 13 | 11 | 8 | 32 |
|
| 102 |
+
| 8 | Japan (JPN) | 9 | 8 | 8 | 25 |
|
| 103 |
+
| 9 | Italy (ITA) | 8 | 9 | 10 | 27 |
|
| 104 |
+
| 10 | France (FRA) | 7 | 16 | 20 | 43 |
|
| 105 |
+
| 11 | Netherlands (NED) | 7 | 5 | 4 | 16 |
|
| 106 |
+
| 12 | Ukraine (UKR) | 7 | 4 | 11 | 22 |
|
| 107 |
+
| 13 | Kenya (KEN) | 6 | 4 | 6 | 16 |
|
| 108 |
+
| 14 | Spain (ESP) | 5 | 11 | 3 | 19 |
|
| 109 |
+
| 15 | Jamaica (JAM) | 5 | 4 | 2 | 11 |
|
| 110 |
```
|
| 111 |
|
| 112 |
For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/doc_vlm.html#iii-quick-start).
|
|
|
|
| 123 |
Run a single command to quickly experience the OCR pipeline:
|
| 124 |
|
| 125 |
```bash
|
| 126 |
+
paddleocr doc_understanding -i "{'image': 'https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/l5xpHbfLn75dKInhQZ84I.png', 'query': 'Recognize the content of this table and output it in markdown format.'}"
|
| 127 |
```
|
| 128 |
|
| 129 |
Results are printed to the terminal:
|
| 130 |
|
| 131 |
```bash
|
| 132 |
+
{'res': {'image': 'medal_table_en.png', 'query': 'Recognize the content of this table and output it in markdown format', 'result': '| Rank | Country/Region | Gold | Silver | Bronze | Total Medals |\n|---|---|---|---|---|---|\n| 1 | China (CHN) | 48 | 22 | 30 | 100 |\n| 2 | United States (USA) | 36 | 39 | 37 | 112 |\n| 3 | Russia (RUS) | 24 | 13 | 23 | 60 |\n| 4 | Great Britain (GBR) | 19 | 13 | 19 | 51 |\n| 5 | Germany (GER) | 16 | 11 | 14 | 41 |\n| 6 | Australia (AUS) | 14 | 15 | 17 | 46 |\n| 7 | South Korea (KOR) | 13 | 11 | 8 | 32 |\n| 8 | Japan (JPN) | 9 | 8 | 8 | 25 |\n| 9 | Italy (ITA) | 8 | 9 | 10 | 27 |\n| 10 | France (FRA) | 7 | 16 | 20 | 43 |\n| 11 | Netherlands (NED) | 7 | 5 | 4 | 16 |\n| 12 | Ukraine (UKR) | 7 | 4 | 11 | 22 |\n| 13 | Kenya (KEN) | 6 | 4 | 6 | 16 |\n| 14 | Spain (ESP) | 5 | 11 | 3 | 19 |\n| 15 | Jamaica (JAM) | 5 | 4 | 2 | 11 |\n'}}
|
| 133 |
```
|
| 134 |
|
| 135 |
If save_path is specified, the visualization results will be saved under `save_path`. The visualization output is shown below:
|
| 136 |
|
| 137 |
+

|
| 138 |
|
| 139 |
The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
|
| 140 |
|
|
|
|
| 146 |
)
|
| 147 |
output = pipeline.predict(
|
| 148 |
{
|
| 149 |
+
"image": "https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/l5xpHbfLn75dKInhQZ84I.png",
|
| 150 |
+
"query": "Recognize the content of this table and output it in markdown format."
|
| 151 |
}
|
| 152 |
)
|
| 153 |
for res in output:
|
|
|
|
| 155 |
res.save_to_json("./output/")
|
| 156 |
```
|
| 157 |
|
| 158 |
+
The default model used in pipeline is `PP-DocBee2-3B`, so you need to specify `doc_understanding_model_name` to `PP-DocBee-2B`. And you can also use the local model file by argument `doc_understanding_model_dir`. For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/doc_understanding.html#2-quick-start).
|
| 159 |
|
| 160 |
## Links
|
| 161 |
|