File size: 9,650 Bytes
c19331a 193a126 c19331a 193a126 c19331a 193a126 c19331a 193a126 c19331a 193a126 c19331a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
---
license: mit
language:
- ar
base_model:
- Qwen/Qwen2.5-1.5B-Instruct
pipeline_tag: text2text-generation
library_name: transformers
tags:
- Text-To-SQL
- Arabic
- Spider
- SQL
---
# Model Card for Arabic Text-To-SQL (OsamaMo)
## Model Details
### Model Description
This model is fine-tuned on the Spider dataset with Arabic-translated questions for the Text-To-SQL task. It is based on **Qwen/Qwen2.5-1.5B-Instruct** and trained using LoRA on Kaggle for 15 hours on a **P100 8GB GPU**.
- **Developed by:** Osama Mohamed ([OsamaMo](https://huggingface.co/OsamaMo))
- **Funded by:** Self-funded
- **Shared by:** Osama Mohamed
- **Model type:** Text-to-SQL fine-tuned model
- **Language(s):** Arabic (ar)
- **License:** MIT
- **Finetuned from:** Qwen/Qwen2.5-1.5B-Instruct
### Model Sources
- **Repository:** [Hugging Face Model Hub](https://huggingface.co/OsamaMo/Arabic_Text-To-SQL)
- **Dataset:** Spider (translated to Arabic)
- **Training Script:** [LLaMA-Factory](https://github.com/huggingface/transformers/tree/main/src/transformers/models/llama_factory)
## Uses
### Direct Use
This model is intended for converting **Arabic natural language questions** into SQL queries. It can be used for database querying in Arabic-speaking applications.
### Downstream Use
Can be fine-tuned further for specific databases or Arabic dialect adaptations.
### Out-of-Scope Use
- The model is **not** intended for direct execution of SQL queries.
- Not recommended for non-database-related NLP tasks.
## Bias, Risks, and Limitations
- The model might generate incorrect or non-optimized SQL queries.
- Bias may exist due to dataset translations and model pretraining data.
### Recommendations
- Validate generated SQL queries before execution.
- Ensure compatibility with specific database schemas.
## How to Get Started with the Model
### Load Model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import re
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model_id = "Qwen/Qwen2.5-1.5B-Instruct"
finetuned_model_id = "OsamaMo/Arabic_Text-To-SQL_using_Qwen2.5-1.5B"
# Load the base model and adapter for fine-tuning
model = AutoModelForCausalLM.from_pretrained(
base_model_id,
device_map="auto",
torch_dtype=torch.bfloat16
)
model.load_adapter(finetuned_model_id)
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
def generate_resp(messages):
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=1024,
do_sample=False, temperature= False,
)
generated_ids = [
output_ids[len(input_ids):]
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
```
### Example Usage
```python
# Production-ready system message for SQL generation
system_message = (
"You are a highly advanced Arabic text-to-SQL converter. Your mission is to Understand first the db schema and reltions between it and then accurately transform Arabic "
"natural language queries into SQL queries with precision and clarity.\n"
)
def get_sql_query(db_schema, arabic_query):
# Construct the instruction message including the DB schema and the Arabic query
instruction_message = "\n".join([
"## DB-Schema:",
db_schema,
"",
"## User-Prompt:",
arabic_query,
"# Output SQL:",
"```SQL"
])
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": instruction_message}
]
response = generate_resp(messages)
# Extract the SQL query from the response using a regex to capture text within the ```sql markdown block
match = re.search(r"```sql\s*(.*?)\s*```", response, re.DOTALL | re.IGNORECASE)
if match:
sql_query = match.group(1).strip()
return sql_query
else:
return response.strip()
# Example usage:
example_db_schema = r'''{
'Pharmcy':
CREATE TABLE `purchase` (
`BARCODE` varchar(20) NOT NULL,
`NAME` varchar(50) NOT NULL,
`TYPE` varchar(20) NOT NULL,
`COMPANY_NAME` varchar(20) NOT NULL,
`QUANTITY` int NOT NULL,
`PRICE` double NOT NULL,
`AMOUNT` double NOT NULL,
PRIMARY KEY (`BARCODE`),
KEY `fkr3` (`COMPANY_NAME`),
CONSTRAINT `fkr3` FOREIGN KEY (`COMPANY_NAME`) REFERENCES `company` (`NAME`) ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latin1
CREATE TABLE `sales` (
`BARCODE` varchar(20) NOT NULL,
`NAME` varchar(50) NOT NULL,
`TYPE` varchar(10) NOT NULL,
`DOSE` varchar(10) NOT NULL,
`QUANTITY` int NOT NULL,
`PRICE` double NOT NULL,
`AMOUNT` double NOT NULL,
`DATE` varchar(15) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
CREATE TABLE `users` (
`ID` int NOT NULL,
`NAME` varchar(50) NOT NULL,
`DOB` varchar(20) NOT NULL,
`ADDRESS` varchar(100) NOT NULL,
`PHONE` varchar(20) NOT NULL,
`SALARY` double NOT NULL,
`PASSWORD` varchar(20) NOT NULL,
PRIMARY KEY (`ID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
CREATE TABLE `history_sales` (
`USER_NAME` varchar(20) NOT NULL,
`BARCODE` varchar(20) NOT NULL,
`NAME` varchar(50) NOT NULL,
`TYPE` varchar(10) NOT NULL,
`DOSE` varchar(10) NOT NULL,
`QUANTITY` int NOT NULL,
`PRICE` double NOT NULL,
`AMOUNT` double NOT NULL,
`DATE` varchar(15) NOT NULL,
`TIME` varchar(20) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
CREATE TABLE `expiry` (
`PRODUCT_NAME` varchar(50) NOT NULL,
`PRODUCT_CODE` varchar(20) NOT NULL,
`DATE_OF_EXPIRY` varchar(10) NOT NULL,
`QUANTITY_REMAIN` int NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
CREATE TABLE `drugs` (
`NAME` varchar(50) NOT NULL,
`TYPE` varchar(20) NOT NULL,
`BARCODE` varchar(20) NOT NULL,
`DOSE` varchar(10) NOT NULL,
`CODE` varchar(10) NOT NULL,
`COST_PRICE` double NOT NULL,
`SELLING_PRICE` double NOT NULL,
`EXPIRY` varchar(20) NOT NULL,
`COMPANY_NAME` varchar(50) NOT NULL,
`PRODUCTION_DATE` date NOT NULL,
`EXPIRATION_DATE` date NOT NULL,
`PLACE` varchar(20) NOT NULL,
`QUANTITY` int NOT NULL,
PRIMARY KEY (`BARCODE`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
CREATE TABLE `company` (
`NAME` varchar(50) NOT NULL,
`ADDRESS` varchar(50) NOT NULL,
`PHONE` varchar(20) NOT NULL,
PRIMARY KEY (`NAME`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
Answer the following questions about this schema:
}'''
example_arabic_query = "اريد الباركود الخاص بدواء يبداء اسمه بحرف 's'"
sql_result = get_sql_query(example_db_schema, example_arabic_query)
print("استعلام SQL الناتج:")
print(sql_result)
```
## Training Details
### Training Data
- Dataset: **Spider (translated into Arabic)**
- Preprocessing: Questions converted to Arabic while keeping SQL queries unchanged.
- Training format:
- System instruction guiding Arabic-to-SQL conversion.
- Database schema provided for context.
- Arabic user queries mapped to correct SQL output.
- Output is strictly formatted SQL queries enclosed in markdown code blocks.
### Training Procedure
#### Training Hyperparameters
- **Batch size:** 1 (per device)
- **Gradient accumulation:** 4 steps
- **Learning rate:** 1.0e-4
- **Epochs:** 3
- **Scheduler:** Cosine
- **Warmup ratio:** 0.1
- **Precision:** bf16
#### Speeds, Sizes, Times
- **Training time:** 15 hours on **NVIDIA P100 8GB**
- **Checkpointing every:** 500 steps
## Evaluation
### Testing Data
- Validation dataset: Spider validation set (translated to Arabic)
### Metrics
- Exact Match (EM) for SQL correctness
- Execution Accuracy (EX) on databases
### Results
- Model achieved **competitive SQL generation accuracy** for Arabic queries.
- Further testing required for robustness.
## Environmental Impact
- **Hardware Type:** NVIDIA Tesla P100 8GB
- **Hours used:** 15
- **Cloud Provider:** Kaggle
- **Carbon Emitted:** Estimated using [ML Impact Calculator](https://mlco2.github.io/impact#compute)
## Technical Specifications
### Model Architecture and Objective
- Transformer-based **Qwen2.5-1.5B** architecture.
- Fine-tuned for Text-to-SQL task using LoRA.
### Compute Infrastructure
- **Hardware:** Kaggle P100 GPU (8GB VRAM)
- **Software:** Python, Transformers, LLaMA-Factory, Hugging Face Hub
## Citation
If you use this model, please cite:
```bibtex
@misc{OsamaMo_ArabicSQL,
author = {Osama Mohamed},
title = {Arabic Text-To-SQL Model},
year = {2024},
howpublished = {\url{https://huggingface.co/OsamaMo/Arabic_Text-To-SQL}}
}
```
## Model Card Contact
For questions, contact **Osama Mohamed** via Hugging Face ([OsamaMo](https://huggingface.co/OsamaMo)).
|