mrloh commited on
Commit
3a7ac93
·
verified ·
1 Parent(s): ec93103

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,199 +1,2788 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
 
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
 
 
 
 
 
45
 
46
- ### Downstream Use [optional]
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
 
 
 
 
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
- ## How to Get Started with the Model
 
 
 
71
 
72
- Use the code below to get started with the model.
 
 
 
 
 
 
 
73
 
74
- [More Information Needed]
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
 
 
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
 
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - sentence-transformers
5
+ - gte
6
+ - mteb
7
+ - transformers.js
8
+ - sentence-similarity
9
+ license: apache-2.0
10
+ language:
11
+ - en
12
+ model-index:
13
+ - name: gte-base-en-v1.5
14
+ results:
15
+ - task:
16
+ type: Classification
17
+ dataset:
18
+ type: mteb/amazon_counterfactual
19
+ name: MTEB AmazonCounterfactualClassification (en)
20
+ config: en
21
+ split: test
22
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
23
+ metrics:
24
+ - type: accuracy
25
+ value: 74.7910447761194
26
+ - type: ap
27
+ value: 37.053785713650626
28
+ - type: f1
29
+ value: 68.51101510998551
30
+ - task:
31
+ type: Classification
32
+ dataset:
33
+ type: mteb/amazon_polarity
34
+ name: MTEB AmazonPolarityClassification
35
+ config: default
36
+ split: test
37
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
38
+ metrics:
39
+ - type: accuracy
40
+ value: 93.016875
41
+ - type: ap
42
+ value: 89.17750268426342
43
+ - type: f1
44
+ value: 92.9970977240524
45
+ - task:
46
+ type: Classification
47
+ dataset:
48
+ type: mteb/amazon_reviews_multi
49
+ name: MTEB AmazonReviewsClassification (en)
50
+ config: en
51
+ split: test
52
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
53
+ metrics:
54
+ - type: accuracy
55
+ value: 53.312000000000005
56
+ - type: f1
57
+ value: 52.98175784163017
58
+ - task:
59
+ type: Retrieval
60
+ dataset:
61
+ type: mteb/arguana
62
+ name: MTEB ArguAna
63
+ config: default
64
+ split: test
65
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
66
+ metrics:
67
+ - type: map_at_1
68
+ value: 38.193
69
+ - type: map_at_10
70
+ value: 54.848
71
+ - type: map_at_100
72
+ value: 55.388000000000005
73
+ - type: map_at_1000
74
+ value: 55.388999999999996
75
+ - type: map_at_3
76
+ value: 50.427
77
+ - type: map_at_5
78
+ value: 53.105000000000004
79
+ - type: mrr_at_1
80
+ value: 39.047
81
+ - type: mrr_at_10
82
+ value: 55.153
83
+ - type: mrr_at_100
84
+ value: 55.686
85
+ - type: mrr_at_1000
86
+ value: 55.688
87
+ - type: mrr_at_3
88
+ value: 50.676
89
+ - type: mrr_at_5
90
+ value: 53.417
91
+ - type: ndcg_at_1
92
+ value: 38.193
93
+ - type: ndcg_at_10
94
+ value: 63.486
95
+ - type: ndcg_at_100
96
+ value: 65.58
97
+ - type: ndcg_at_1000
98
+ value: 65.61
99
+ - type: ndcg_at_3
100
+ value: 54.494
101
+ - type: ndcg_at_5
102
+ value: 59.339
103
+ - type: precision_at_1
104
+ value: 38.193
105
+ - type: precision_at_10
106
+ value: 9.075
107
+ - type: precision_at_100
108
+ value: 0.9939999999999999
109
+ - type: precision_at_1000
110
+ value: 0.1
111
+ - type: precision_at_3
112
+ value: 22.096
113
+ - type: precision_at_5
114
+ value: 15.619
115
+ - type: recall_at_1
116
+ value: 38.193
117
+ - type: recall_at_10
118
+ value: 90.754
119
+ - type: recall_at_100
120
+ value: 99.431
121
+ - type: recall_at_1000
122
+ value: 99.644
123
+ - type: recall_at_3
124
+ value: 66.28699999999999
125
+ - type: recall_at_5
126
+ value: 78.094
127
+ - task:
128
+ type: Clustering
129
+ dataset:
130
+ type: mteb/arxiv-clustering-p2p
131
+ name: MTEB ArxivClusteringP2P
132
+ config: default
133
+ split: test
134
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
135
+ metrics:
136
+ - type: v_measure
137
+ value: 47.508221208908964
138
+ - task:
139
+ type: Clustering
140
+ dataset:
141
+ type: mteb/arxiv-clustering-s2s
142
+ name: MTEB ArxivClusteringS2S
143
+ config: default
144
+ split: test
145
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
146
+ metrics:
147
+ - type: v_measure
148
+ value: 42.04668382560096
149
+ - task:
150
+ type: Reranking
151
+ dataset:
152
+ type: mteb/askubuntudupquestions-reranking
153
+ name: MTEB AskUbuntuDupQuestions
154
+ config: default
155
+ split: test
156
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
157
+ metrics:
158
+ - type: map
159
+ value: 61.828759903716815
160
+ - type: mrr
161
+ value: 74.37343358395991
162
+ - task:
163
+ type: STS
164
+ dataset:
165
+ type: mteb/biosses-sts
166
+ name: MTEB BIOSSES
167
+ config: default
168
+ split: test
169
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
170
+ metrics:
171
+ - type: cos_sim_pearson
172
+ value: 85.03673698773017
173
+ - type: cos_sim_spearman
174
+ value: 83.6470866785058
175
+ - type: euclidean_pearson
176
+ value: 82.64048673096565
177
+ - type: euclidean_spearman
178
+ value: 83.63142367101115
179
+ - type: manhattan_pearson
180
+ value: 82.71493099760228
181
+ - type: manhattan_spearman
182
+ value: 83.60491704294326
183
+ - task:
184
+ type: Classification
185
+ dataset:
186
+ type: mteb/banking77
187
+ name: MTEB Banking77Classification
188
+ config: default
189
+ split: test
190
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
191
+ metrics:
192
+ - type: accuracy
193
+ value: 86.73376623376623
194
+ - type: f1
195
+ value: 86.70294049278262
196
+ - task:
197
+ type: Clustering
198
+ dataset:
199
+ type: mteb/biorxiv-clustering-p2p
200
+ name: MTEB BiorxivClusteringP2P
201
+ config: default
202
+ split: test
203
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
204
+ metrics:
205
+ - type: v_measure
206
+ value: 40.31923804167062
207
+ - task:
208
+ type: Clustering
209
+ dataset:
210
+ type: mteb/biorxiv-clustering-s2s
211
+ name: MTEB BiorxivClusteringS2S
212
+ config: default
213
+ split: test
214
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
215
+ metrics:
216
+ - type: v_measure
217
+ value: 37.552547125348454
218
+ - task:
219
+ type: Retrieval
220
+ dataset:
221
+ type: mteb/cqadupstack-android
222
+ name: MTEB CQADupstackAndroidRetrieval
223
+ config: default
224
+ split: test
225
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
226
+ metrics:
227
+ - type: map_at_1
228
+ value: 30.567
229
+ - type: map_at_10
230
+ value: 41.269
231
+ - type: map_at_100
232
+ value: 42.689
233
+ - type: map_at_1000
234
+ value: 42.84
235
+ - type: map_at_3
236
+ value: 37.567
237
+ - type: map_at_5
238
+ value: 39.706
239
+ - type: mrr_at_1
240
+ value: 37.053000000000004
241
+ - type: mrr_at_10
242
+ value: 46.900999999999996
243
+ - type: mrr_at_100
244
+ value: 47.662
245
+ - type: mrr_at_1000
246
+ value: 47.713
247
+ - type: mrr_at_3
248
+ value: 43.801
249
+ - type: mrr_at_5
250
+ value: 45.689
251
+ - type: ndcg_at_1
252
+ value: 37.053000000000004
253
+ - type: ndcg_at_10
254
+ value: 47.73
255
+ - type: ndcg_at_100
256
+ value: 53.128
257
+ - type: ndcg_at_1000
258
+ value: 55.300000000000004
259
+ - type: ndcg_at_3
260
+ value: 42.046
261
+ - type: ndcg_at_5
262
+ value: 44.782
263
+ - type: precision_at_1
264
+ value: 37.053000000000004
265
+ - type: precision_at_10
266
+ value: 9.142
267
+ - type: precision_at_100
268
+ value: 1.485
269
+ - type: precision_at_1000
270
+ value: 0.197
271
+ - type: precision_at_3
272
+ value: 20.076
273
+ - type: precision_at_5
274
+ value: 14.535
275
+ - type: recall_at_1
276
+ value: 30.567
277
+ - type: recall_at_10
278
+ value: 60.602999999999994
279
+ - type: recall_at_100
280
+ value: 83.22800000000001
281
+ - type: recall_at_1000
282
+ value: 96.696
283
+ - type: recall_at_3
284
+ value: 44.336999999999996
285
+ - type: recall_at_5
286
+ value: 51.949
287
+ - task:
288
+ type: Retrieval
289
+ dataset:
290
+ type: mteb/cqadupstack-english
291
+ name: MTEB CQADupstackEnglishRetrieval
292
+ config: default
293
+ split: test
294
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
295
+ metrics:
296
+ - type: map_at_1
297
+ value: 28.538000000000004
298
+ - type: map_at_10
299
+ value: 38.757999999999996
300
+ - type: map_at_100
301
+ value: 40.129
302
+ - type: map_at_1000
303
+ value: 40.262
304
+ - type: map_at_3
305
+ value: 35.866
306
+ - type: map_at_5
307
+ value: 37.417
308
+ - type: mrr_at_1
309
+ value: 36.051
310
+ - type: mrr_at_10
311
+ value: 44.868
312
+ - type: mrr_at_100
313
+ value: 45.568999999999996
314
+ - type: mrr_at_1000
315
+ value: 45.615
316
+ - type: mrr_at_3
317
+ value: 42.558
318
+ - type: mrr_at_5
319
+ value: 43.883
320
+ - type: ndcg_at_1
321
+ value: 36.051
322
+ - type: ndcg_at_10
323
+ value: 44.584
324
+ - type: ndcg_at_100
325
+ value: 49.356
326
+ - type: ndcg_at_1000
327
+ value: 51.39
328
+ - type: ndcg_at_3
329
+ value: 40.389
330
+ - type: ndcg_at_5
331
+ value: 42.14
332
+ - type: precision_at_1
333
+ value: 36.051
334
+ - type: precision_at_10
335
+ value: 8.446
336
+ - type: precision_at_100
337
+ value: 1.411
338
+ - type: precision_at_1000
339
+ value: 0.19
340
+ - type: precision_at_3
341
+ value: 19.639
342
+ - type: precision_at_5
343
+ value: 13.796
344
+ - type: recall_at_1
345
+ value: 28.538000000000004
346
+ - type: recall_at_10
347
+ value: 54.99000000000001
348
+ - type: recall_at_100
349
+ value: 75.098
350
+ - type: recall_at_1000
351
+ value: 87.848
352
+ - type: recall_at_3
353
+ value: 42.236000000000004
354
+ - type: recall_at_5
355
+ value: 47.377
356
+ - task:
357
+ type: Retrieval
358
+ dataset:
359
+ type: mteb/cqadupstack-gaming
360
+ name: MTEB CQADupstackGamingRetrieval
361
+ config: default
362
+ split: test
363
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
364
+ metrics:
365
+ - type: map_at_1
366
+ value: 37.188
367
+ - type: map_at_10
368
+ value: 50.861000000000004
369
+ - type: map_at_100
370
+ value: 51.917
371
+ - type: map_at_1000
372
+ value: 51.964999999999996
373
+ - type: map_at_3
374
+ value: 47.144000000000005
375
+ - type: map_at_5
376
+ value: 49.417
377
+ - type: mrr_at_1
378
+ value: 42.571
379
+ - type: mrr_at_10
380
+ value: 54.086999999999996
381
+ - type: mrr_at_100
382
+ value: 54.739000000000004
383
+ - type: mrr_at_1000
384
+ value: 54.762
385
+ - type: mrr_at_3
386
+ value: 51.285000000000004
387
+ - type: mrr_at_5
388
+ value: 53.0
389
+ - type: ndcg_at_1
390
+ value: 42.571
391
+ - type: ndcg_at_10
392
+ value: 57.282
393
+ - type: ndcg_at_100
394
+ value: 61.477000000000004
395
+ - type: ndcg_at_1000
396
+ value: 62.426
397
+ - type: ndcg_at_3
398
+ value: 51.0
399
+ - type: ndcg_at_5
400
+ value: 54.346000000000004
401
+ - type: precision_at_1
402
+ value: 42.571
403
+ - type: precision_at_10
404
+ value: 9.467
405
+ - type: precision_at_100
406
+ value: 1.2550000000000001
407
+ - type: precision_at_1000
408
+ value: 0.13799999999999998
409
+ - type: precision_at_3
410
+ value: 23.114
411
+ - type: precision_at_5
412
+ value: 16.250999999999998
413
+ - type: recall_at_1
414
+ value: 37.188
415
+ - type: recall_at_10
416
+ value: 73.068
417
+ - type: recall_at_100
418
+ value: 91.203
419
+ - type: recall_at_1000
420
+ value: 97.916
421
+ - type: recall_at_3
422
+ value: 56.552
423
+ - type: recall_at_5
424
+ value: 64.567
425
+ - task:
426
+ type: Retrieval
427
+ dataset:
428
+ type: mteb/cqadupstack-gis
429
+ name: MTEB CQADupstackGisRetrieval
430
+ config: default
431
+ split: test
432
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
433
+ metrics:
434
+ - type: map_at_1
435
+ value: 25.041000000000004
436
+ - type: map_at_10
437
+ value: 33.86
438
+ - type: map_at_100
439
+ value: 34.988
440
+ - type: map_at_1000
441
+ value: 35.064
442
+ - type: map_at_3
443
+ value: 31.049
444
+ - type: map_at_5
445
+ value: 32.845
446
+ - type: mrr_at_1
447
+ value: 26.893
448
+ - type: mrr_at_10
449
+ value: 35.594
450
+ - type: mrr_at_100
451
+ value: 36.617
452
+ - type: mrr_at_1000
453
+ value: 36.671
454
+ - type: mrr_at_3
455
+ value: 33.051
456
+ - type: mrr_at_5
457
+ value: 34.61
458
+ - type: ndcg_at_1
459
+ value: 26.893
460
+ - type: ndcg_at_10
461
+ value: 38.674
462
+ - type: ndcg_at_100
463
+ value: 44.178
464
+ - type: ndcg_at_1000
465
+ value: 46.089999999999996
466
+ - type: ndcg_at_3
467
+ value: 33.485
468
+ - type: ndcg_at_5
469
+ value: 36.402
470
+ - type: precision_at_1
471
+ value: 26.893
472
+ - type: precision_at_10
473
+ value: 5.989
474
+ - type: precision_at_100
475
+ value: 0.918
476
+ - type: precision_at_1000
477
+ value: 0.11100000000000002
478
+ - type: precision_at_3
479
+ value: 14.2
480
+ - type: precision_at_5
481
+ value: 10.26
482
+ - type: recall_at_1
483
+ value: 25.041000000000004
484
+ - type: recall_at_10
485
+ value: 51.666000000000004
486
+ - type: recall_at_100
487
+ value: 76.896
488
+ - type: recall_at_1000
489
+ value: 91.243
490
+ - type: recall_at_3
491
+ value: 38.035999999999994
492
+ - type: recall_at_5
493
+ value: 44.999
494
+ - task:
495
+ type: Retrieval
496
+ dataset:
497
+ type: mteb/cqadupstack-mathematica
498
+ name: MTEB CQADupstackMathematicaRetrieval
499
+ config: default
500
+ split: test
501
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
502
+ metrics:
503
+ - type: map_at_1
504
+ value: 15.909999999999998
505
+ - type: map_at_10
506
+ value: 23.901
507
+ - type: map_at_100
508
+ value: 25.165
509
+ - type: map_at_1000
510
+ value: 25.291000000000004
511
+ - type: map_at_3
512
+ value: 21.356
513
+ - type: map_at_5
514
+ value: 22.816
515
+ - type: mrr_at_1
516
+ value: 20.025000000000002
517
+ - type: mrr_at_10
518
+ value: 28.382
519
+ - type: mrr_at_100
520
+ value: 29.465000000000003
521
+ - type: mrr_at_1000
522
+ value: 29.535
523
+ - type: mrr_at_3
524
+ value: 25.933
525
+ - type: mrr_at_5
526
+ value: 27.332
527
+ - type: ndcg_at_1
528
+ value: 20.025000000000002
529
+ - type: ndcg_at_10
530
+ value: 29.099000000000004
531
+ - type: ndcg_at_100
532
+ value: 35.127
533
+ - type: ndcg_at_1000
534
+ value: 38.096000000000004
535
+ - type: ndcg_at_3
536
+ value: 24.464
537
+ - type: ndcg_at_5
538
+ value: 26.709
539
+ - type: precision_at_1
540
+ value: 20.025000000000002
541
+ - type: precision_at_10
542
+ value: 5.398
543
+ - type: precision_at_100
544
+ value: 0.9690000000000001
545
+ - type: precision_at_1000
546
+ value: 0.13699999999999998
547
+ - type: precision_at_3
548
+ value: 11.774
549
+ - type: precision_at_5
550
+ value: 8.632
551
+ - type: recall_at_1
552
+ value: 15.909999999999998
553
+ - type: recall_at_10
554
+ value: 40.672000000000004
555
+ - type: recall_at_100
556
+ value: 66.855
557
+ - type: recall_at_1000
558
+ value: 87.922
559
+ - type: recall_at_3
560
+ value: 28.069
561
+ - type: recall_at_5
562
+ value: 33.812
563
+ - task:
564
+ type: Retrieval
565
+ dataset:
566
+ type: mteb/cqadupstack-physics
567
+ name: MTEB CQADupstackPhysicsRetrieval
568
+ config: default
569
+ split: test
570
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
571
+ metrics:
572
+ - type: map_at_1
573
+ value: 30.175
574
+ - type: map_at_10
575
+ value: 41.36
576
+ - type: map_at_100
577
+ value: 42.701
578
+ - type: map_at_1000
579
+ value: 42.817
580
+ - type: map_at_3
581
+ value: 37.931
582
+ - type: map_at_5
583
+ value: 39.943
584
+ - type: mrr_at_1
585
+ value: 35.611
586
+ - type: mrr_at_10
587
+ value: 46.346
588
+ - type: mrr_at_100
589
+ value: 47.160000000000004
590
+ - type: mrr_at_1000
591
+ value: 47.203
592
+ - type: mrr_at_3
593
+ value: 43.712
594
+ - type: mrr_at_5
595
+ value: 45.367000000000004
596
+ - type: ndcg_at_1
597
+ value: 35.611
598
+ - type: ndcg_at_10
599
+ value: 47.532000000000004
600
+ - type: ndcg_at_100
601
+ value: 53.003
602
+ - type: ndcg_at_1000
603
+ value: 55.007
604
+ - type: ndcg_at_3
605
+ value: 42.043
606
+ - type: ndcg_at_5
607
+ value: 44.86
608
+ - type: precision_at_1
609
+ value: 35.611
610
+ - type: precision_at_10
611
+ value: 8.624
612
+ - type: precision_at_100
613
+ value: 1.332
614
+ - type: precision_at_1000
615
+ value: 0.169
616
+ - type: precision_at_3
617
+ value: 20.083000000000002
618
+ - type: precision_at_5
619
+ value: 14.437
620
+ - type: recall_at_1
621
+ value: 30.175
622
+ - type: recall_at_10
623
+ value: 60.5
624
+ - type: recall_at_100
625
+ value: 83.399
626
+ - type: recall_at_1000
627
+ value: 96.255
628
+ - type: recall_at_3
629
+ value: 45.448
630
+ - type: recall_at_5
631
+ value: 52.432
632
+ - task:
633
+ type: Retrieval
634
+ dataset:
635
+ type: mteb/cqadupstack-programmers
636
+ name: MTEB CQADupstackProgrammersRetrieval
637
+ config: default
638
+ split: test
639
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
640
+ metrics:
641
+ - type: map_at_1
642
+ value: 22.467000000000002
643
+ - type: map_at_10
644
+ value: 33.812999999999995
645
+ - type: map_at_100
646
+ value: 35.248000000000005
647
+ - type: map_at_1000
648
+ value: 35.359
649
+ - type: map_at_3
650
+ value: 30.316
651
+ - type: map_at_5
652
+ value: 32.233000000000004
653
+ - type: mrr_at_1
654
+ value: 28.310999999999996
655
+ - type: mrr_at_10
656
+ value: 38.979
657
+ - type: mrr_at_100
658
+ value: 39.937
659
+ - type: mrr_at_1000
660
+ value: 39.989999999999995
661
+ - type: mrr_at_3
662
+ value: 36.244
663
+ - type: mrr_at_5
664
+ value: 37.871
665
+ - type: ndcg_at_1
666
+ value: 28.310999999999996
667
+ - type: ndcg_at_10
668
+ value: 40.282000000000004
669
+ - type: ndcg_at_100
670
+ value: 46.22
671
+ - type: ndcg_at_1000
672
+ value: 48.507
673
+ - type: ndcg_at_3
674
+ value: 34.596
675
+ - type: ndcg_at_5
676
+ value: 37.267
677
+ - type: precision_at_1
678
+ value: 28.310999999999996
679
+ - type: precision_at_10
680
+ value: 7.831
681
+ - type: precision_at_100
682
+ value: 1.257
683
+ - type: precision_at_1000
684
+ value: 0.164
685
+ - type: precision_at_3
686
+ value: 17.275
687
+ - type: precision_at_5
688
+ value: 12.556999999999999
689
+ - type: recall_at_1
690
+ value: 22.467000000000002
691
+ - type: recall_at_10
692
+ value: 54.14099999999999
693
+ - type: recall_at_100
694
+ value: 79.593
695
+ - type: recall_at_1000
696
+ value: 95.063
697
+ - type: recall_at_3
698
+ value: 38.539
699
+ - type: recall_at_5
700
+ value: 45.403
701
+ - task:
702
+ type: Retrieval
703
+ dataset:
704
+ type: mteb/cqadupstack
705
+ name: MTEB CQADupstackRetrieval
706
+ config: default
707
+ split: test
708
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
709
+ metrics:
710
+ - type: map_at_1
711
+ value: 24.18591666666667
712
+ - type: map_at_10
713
+ value: 33.84258333333333
714
+ - type: map_at_100
715
+ value: 35.11391666666666
716
+ - type: map_at_1000
717
+ value: 35.23258333333333
718
+ - type: map_at_3
719
+ value: 30.764249999999997
720
+ - type: map_at_5
721
+ value: 32.52333333333334
722
+ - type: mrr_at_1
723
+ value: 28.54733333333333
724
+ - type: mrr_at_10
725
+ value: 37.81725
726
+ - type: mrr_at_100
727
+ value: 38.716499999999996
728
+ - type: mrr_at_1000
729
+ value: 38.77458333333333
730
+ - type: mrr_at_3
731
+ value: 35.157833333333336
732
+ - type: mrr_at_5
733
+ value: 36.69816666666667
734
+ - type: ndcg_at_1
735
+ value: 28.54733333333333
736
+ - type: ndcg_at_10
737
+ value: 39.51508333333334
738
+ - type: ndcg_at_100
739
+ value: 44.95316666666666
740
+ - type: ndcg_at_1000
741
+ value: 47.257083333333334
742
+ - type: ndcg_at_3
743
+ value: 34.205833333333324
744
+ - type: ndcg_at_5
745
+ value: 36.78266666666667
746
+ - type: precision_at_1
747
+ value: 28.54733333333333
748
+ - type: precision_at_10
749
+ value: 7.082583333333334
750
+ - type: precision_at_100
751
+ value: 1.1590833333333332
752
+ - type: precision_at_1000
753
+ value: 0.15516666666666662
754
+ - type: precision_at_3
755
+ value: 15.908750000000001
756
+ - type: precision_at_5
757
+ value: 11.505416666666669
758
+ - type: recall_at_1
759
+ value: 24.18591666666667
760
+ - type: recall_at_10
761
+ value: 52.38758333333333
762
+ - type: recall_at_100
763
+ value: 76.13666666666667
764
+ - type: recall_at_1000
765
+ value: 91.99066666666667
766
+ - type: recall_at_3
767
+ value: 37.78333333333334
768
+ - type: recall_at_5
769
+ value: 44.30141666666666
770
+ - task:
771
+ type: Retrieval
772
+ dataset:
773
+ type: mteb/cqadupstack-stats
774
+ name: MTEB CQADupstackStatsRetrieval
775
+ config: default
776
+ split: test
777
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
778
+ metrics:
779
+ - type: map_at_1
780
+ value: 21.975
781
+ - type: map_at_10
782
+ value: 29.781000000000002
783
+ - type: map_at_100
784
+ value: 30.847
785
+ - type: map_at_1000
786
+ value: 30.94
787
+ - type: map_at_3
788
+ value: 27.167
789
+ - type: map_at_5
790
+ value: 28.633999999999997
791
+ - type: mrr_at_1
792
+ value: 24.387
793
+ - type: mrr_at_10
794
+ value: 32.476
795
+ - type: mrr_at_100
796
+ value: 33.337
797
+ - type: mrr_at_1000
798
+ value: 33.403
799
+ - type: mrr_at_3
800
+ value: 29.881999999999998
801
+ - type: mrr_at_5
802
+ value: 31.339
803
+ - type: ndcg_at_1
804
+ value: 24.387
805
+ - type: ndcg_at_10
806
+ value: 34.596
807
+ - type: ndcg_at_100
808
+ value: 39.635
809
+ - type: ndcg_at_1000
810
+ value: 42.079
811
+ - type: ndcg_at_3
812
+ value: 29.516
813
+ - type: ndcg_at_5
814
+ value: 31.959
815
+ - type: precision_at_1
816
+ value: 24.387
817
+ - type: precision_at_10
818
+ value: 5.6129999999999995
819
+ - type: precision_at_100
820
+ value: 0.8909999999999999
821
+ - type: precision_at_1000
822
+ value: 0.117
823
+ - type: precision_at_3
824
+ value: 12.73
825
+ - type: precision_at_5
826
+ value: 9.171999999999999
827
+ - type: recall_at_1
828
+ value: 21.975
829
+ - type: recall_at_10
830
+ value: 46.826
831
+ - type: recall_at_100
832
+ value: 69.554
833
+ - type: recall_at_1000
834
+ value: 87.749
835
+ - type: recall_at_3
836
+ value: 33.016
837
+ - type: recall_at_5
838
+ value: 38.97
839
+ - task:
840
+ type: Retrieval
841
+ dataset:
842
+ type: mteb/cqadupstack-tex
843
+ name: MTEB CQADupstackTexRetrieval
844
+ config: default
845
+ split: test
846
+ revision: 46989137a86843e03a6195de44b09deda022eec7
847
+ metrics:
848
+ - type: map_at_1
849
+ value: 15.614
850
+ - type: map_at_10
851
+ value: 22.927
852
+ - type: map_at_100
853
+ value: 24.185000000000002
854
+ - type: map_at_1000
855
+ value: 24.319
856
+ - type: map_at_3
857
+ value: 20.596
858
+ - type: map_at_5
859
+ value: 21.854000000000003
860
+ - type: mrr_at_1
861
+ value: 18.858
862
+ - type: mrr_at_10
863
+ value: 26.535999999999998
864
+ - type: mrr_at_100
865
+ value: 27.582
866
+ - type: mrr_at_1000
867
+ value: 27.665
868
+ - type: mrr_at_3
869
+ value: 24.295
870
+ - type: mrr_at_5
871
+ value: 25.532
872
+ - type: ndcg_at_1
873
+ value: 18.858
874
+ - type: ndcg_at_10
875
+ value: 27.583000000000002
876
+ - type: ndcg_at_100
877
+ value: 33.635
878
+ - type: ndcg_at_1000
879
+ value: 36.647
880
+ - type: ndcg_at_3
881
+ value: 23.348
882
+ - type: ndcg_at_5
883
+ value: 25.257
884
+ - type: precision_at_1
885
+ value: 18.858
886
+ - type: precision_at_10
887
+ value: 5.158
888
+ - type: precision_at_100
889
+ value: 0.964
890
+ - type: precision_at_1000
891
+ value: 0.13999999999999999
892
+ - type: precision_at_3
893
+ value: 11.092
894
+ - type: precision_at_5
895
+ value: 8.1
896
+ - type: recall_at_1
897
+ value: 15.614
898
+ - type: recall_at_10
899
+ value: 37.916
900
+ - type: recall_at_100
901
+ value: 65.205
902
+ - type: recall_at_1000
903
+ value: 86.453
904
+ - type: recall_at_3
905
+ value: 26.137
906
+ - type: recall_at_5
907
+ value: 31.087999999999997
908
+ - task:
909
+ type: Retrieval
910
+ dataset:
911
+ type: mteb/cqadupstack-unix
912
+ name: MTEB CQADupstackUnixRetrieval
913
+ config: default
914
+ split: test
915
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
916
+ metrics:
917
+ - type: map_at_1
918
+ value: 23.078000000000003
919
+ - type: map_at_10
920
+ value: 31.941999999999997
921
+ - type: map_at_100
922
+ value: 33.196999999999996
923
+ - type: map_at_1000
924
+ value: 33.303
925
+ - type: map_at_3
926
+ value: 28.927000000000003
927
+ - type: map_at_5
928
+ value: 30.707
929
+ - type: mrr_at_1
930
+ value: 26.866
931
+ - type: mrr_at_10
932
+ value: 35.557
933
+ - type: mrr_at_100
934
+ value: 36.569
935
+ - type: mrr_at_1000
936
+ value: 36.632
937
+ - type: mrr_at_3
938
+ value: 32.897999999999996
939
+ - type: mrr_at_5
940
+ value: 34.437
941
+ - type: ndcg_at_1
942
+ value: 26.866
943
+ - type: ndcg_at_10
944
+ value: 37.372
945
+ - type: ndcg_at_100
946
+ value: 43.248
947
+ - type: ndcg_at_1000
948
+ value: 45.632
949
+ - type: ndcg_at_3
950
+ value: 31.852999999999998
951
+ - type: ndcg_at_5
952
+ value: 34.582
953
+ - type: precision_at_1
954
+ value: 26.866
955
+ - type: precision_at_10
956
+ value: 6.511
957
+ - type: precision_at_100
958
+ value: 1.078
959
+ - type: precision_at_1000
960
+ value: 0.13899999999999998
961
+ - type: precision_at_3
962
+ value: 14.582999999999998
963
+ - type: precision_at_5
964
+ value: 10.634
965
+ - type: recall_at_1
966
+ value: 23.078000000000003
967
+ - type: recall_at_10
968
+ value: 50.334
969
+ - type: recall_at_100
970
+ value: 75.787
971
+ - type: recall_at_1000
972
+ value: 92.485
973
+ - type: recall_at_3
974
+ value: 35.386
975
+ - type: recall_at_5
976
+ value: 42.225
977
+ - task:
978
+ type: Retrieval
979
+ dataset:
980
+ type: mteb/cqadupstack-webmasters
981
+ name: MTEB CQADupstackWebmastersRetrieval
982
+ config: default
983
+ split: test
984
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
985
+ metrics:
986
+ - type: map_at_1
987
+ value: 22.203999999999997
988
+ - type: map_at_10
989
+ value: 31.276
990
+ - type: map_at_100
991
+ value: 32.844
992
+ - type: map_at_1000
993
+ value: 33.062999999999995
994
+ - type: map_at_3
995
+ value: 27.733999999999998
996
+ - type: map_at_5
997
+ value: 29.64
998
+ - type: mrr_at_1
999
+ value: 27.272999999999996
1000
+ - type: mrr_at_10
1001
+ value: 36.083
1002
+ - type: mrr_at_100
1003
+ value: 37.008
1004
+ - type: mrr_at_1000
1005
+ value: 37.076
1006
+ - type: mrr_at_3
1007
+ value: 33.004
1008
+ - type: mrr_at_5
1009
+ value: 34.664
1010
+ - type: ndcg_at_1
1011
+ value: 27.272999999999996
1012
+ - type: ndcg_at_10
1013
+ value: 37.763000000000005
1014
+ - type: ndcg_at_100
1015
+ value: 43.566
1016
+ - type: ndcg_at_1000
1017
+ value: 46.356
1018
+ - type: ndcg_at_3
1019
+ value: 31.673000000000002
1020
+ - type: ndcg_at_5
1021
+ value: 34.501
1022
+ - type: precision_at_1
1023
+ value: 27.272999999999996
1024
+ - type: precision_at_10
1025
+ value: 7.470000000000001
1026
+ - type: precision_at_100
1027
+ value: 1.502
1028
+ - type: precision_at_1000
1029
+ value: 0.24
1030
+ - type: precision_at_3
1031
+ value: 14.756
1032
+ - type: precision_at_5
1033
+ value: 11.225
1034
+ - type: recall_at_1
1035
+ value: 22.203999999999997
1036
+ - type: recall_at_10
1037
+ value: 51.437999999999995
1038
+ - type: recall_at_100
1039
+ value: 76.845
1040
+ - type: recall_at_1000
1041
+ value: 94.38600000000001
1042
+ - type: recall_at_3
1043
+ value: 34.258
1044
+ - type: recall_at_5
1045
+ value: 41.512
1046
+ - task:
1047
+ type: Retrieval
1048
+ dataset:
1049
+ type: mteb/cqadupstack-wordpress
1050
+ name: MTEB CQADupstackWordpressRetrieval
1051
+ config: default
1052
+ split: test
1053
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1054
+ metrics:
1055
+ - type: map_at_1
1056
+ value: 17.474
1057
+ - type: map_at_10
1058
+ value: 26.362999999999996
1059
+ - type: map_at_100
1060
+ value: 27.456999999999997
1061
+ - type: map_at_1000
1062
+ value: 27.567999999999998
1063
+ - type: map_at_3
1064
+ value: 23.518
1065
+ - type: map_at_5
1066
+ value: 25.068
1067
+ - type: mrr_at_1
1068
+ value: 18.669
1069
+ - type: mrr_at_10
1070
+ value: 27.998
1071
+ - type: mrr_at_100
1072
+ value: 28.953
1073
+ - type: mrr_at_1000
1074
+ value: 29.03
1075
+ - type: mrr_at_3
1076
+ value: 25.230999999999998
1077
+ - type: mrr_at_5
1078
+ value: 26.654
1079
+ - type: ndcg_at_1
1080
+ value: 18.669
1081
+ - type: ndcg_at_10
1082
+ value: 31.684
1083
+ - type: ndcg_at_100
1084
+ value: 36.864999999999995
1085
+ - type: ndcg_at_1000
1086
+ value: 39.555
1087
+ - type: ndcg_at_3
1088
+ value: 26.057000000000002
1089
+ - type: ndcg_at_5
1090
+ value: 28.587
1091
+ - type: precision_at_1
1092
+ value: 18.669
1093
+ - type: precision_at_10
1094
+ value: 5.3420000000000005
1095
+ - type: precision_at_100
1096
+ value: 0.847
1097
+ - type: precision_at_1000
1098
+ value: 0.12
1099
+ - type: precision_at_3
1100
+ value: 11.583
1101
+ - type: precision_at_5
1102
+ value: 8.466
1103
+ - type: recall_at_1
1104
+ value: 17.474
1105
+ - type: recall_at_10
1106
+ value: 46.497
1107
+ - type: recall_at_100
1108
+ value: 69.977
1109
+ - type: recall_at_1000
1110
+ value: 89.872
1111
+ - type: recall_at_3
1112
+ value: 31.385999999999996
1113
+ - type: recall_at_5
1114
+ value: 37.283
1115
+ - task:
1116
+ type: Retrieval
1117
+ dataset:
1118
+ type: mteb/climate-fever
1119
+ name: MTEB ClimateFEVER
1120
+ config: default
1121
+ split: test
1122
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1123
+ metrics:
1124
+ - type: map_at_1
1125
+ value: 17.173
1126
+ - type: map_at_10
1127
+ value: 30.407
1128
+ - type: map_at_100
1129
+ value: 32.528
1130
+ - type: map_at_1000
1131
+ value: 32.698
1132
+ - type: map_at_3
1133
+ value: 25.523
1134
+ - type: map_at_5
1135
+ value: 28.038
1136
+ - type: mrr_at_1
1137
+ value: 38.958
1138
+ - type: mrr_at_10
1139
+ value: 51.515
1140
+ - type: mrr_at_100
1141
+ value: 52.214000000000006
1142
+ - type: mrr_at_1000
1143
+ value: 52.237
1144
+ - type: mrr_at_3
1145
+ value: 48.502
1146
+ - type: mrr_at_5
1147
+ value: 50.251000000000005
1148
+ - type: ndcg_at_1
1149
+ value: 38.958
1150
+ - type: ndcg_at_10
1151
+ value: 40.355000000000004
1152
+ - type: ndcg_at_100
1153
+ value: 47.68
1154
+ - type: ndcg_at_1000
1155
+ value: 50.370000000000005
1156
+ - type: ndcg_at_3
1157
+ value: 33.946
1158
+ - type: ndcg_at_5
1159
+ value: 36.057
1160
+ - type: precision_at_1
1161
+ value: 38.958
1162
+ - type: precision_at_10
1163
+ value: 12.508
1164
+ - type: precision_at_100
1165
+ value: 2.054
1166
+ - type: precision_at_1000
1167
+ value: 0.256
1168
+ - type: precision_at_3
1169
+ value: 25.581
1170
+ - type: precision_at_5
1171
+ value: 19.256999999999998
1172
+ - type: recall_at_1
1173
+ value: 17.173
1174
+ - type: recall_at_10
1175
+ value: 46.967
1176
+ - type: recall_at_100
1177
+ value: 71.47200000000001
1178
+ - type: recall_at_1000
1179
+ value: 86.238
1180
+ - type: recall_at_3
1181
+ value: 30.961
1182
+ - type: recall_at_5
1183
+ value: 37.539
1184
+ - task:
1185
+ type: Retrieval
1186
+ dataset:
1187
+ type: mteb/dbpedia
1188
+ name: MTEB DBPedia
1189
+ config: default
1190
+ split: test
1191
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1192
+ metrics:
1193
+ - type: map_at_1
1194
+ value: 8.999
1195
+ - type: map_at_10
1196
+ value: 18.989
1197
+ - type: map_at_100
1198
+ value: 26.133
1199
+ - type: map_at_1000
1200
+ value: 27.666
1201
+ - type: map_at_3
1202
+ value: 13.918
1203
+ - type: map_at_5
1204
+ value: 16.473
1205
+ - type: mrr_at_1
1206
+ value: 66.25
1207
+ - type: mrr_at_10
1208
+ value: 74.161
1209
+ - type: mrr_at_100
1210
+ value: 74.516
1211
+ - type: mrr_at_1000
1212
+ value: 74.524
1213
+ - type: mrr_at_3
1214
+ value: 72.875
1215
+ - type: mrr_at_5
1216
+ value: 73.613
1217
+ - type: ndcg_at_1
1218
+ value: 54.37499999999999
1219
+ - type: ndcg_at_10
1220
+ value: 39.902
1221
+ - type: ndcg_at_100
1222
+ value: 44.212
1223
+ - type: ndcg_at_1000
1224
+ value: 51.62
1225
+ - type: ndcg_at_3
1226
+ value: 45.193
1227
+ - type: ndcg_at_5
1228
+ value: 42.541000000000004
1229
+ - type: precision_at_1
1230
+ value: 66.25
1231
+ - type: precision_at_10
1232
+ value: 30.425
1233
+ - type: precision_at_100
1234
+ value: 9.754999999999999
1235
+ - type: precision_at_1000
1236
+ value: 2.043
1237
+ - type: precision_at_3
1238
+ value: 48.25
1239
+ - type: precision_at_5
1240
+ value: 40.65
1241
+ - type: recall_at_1
1242
+ value: 8.999
1243
+ - type: recall_at_10
1244
+ value: 24.133
1245
+ - type: recall_at_100
1246
+ value: 49.138999999999996
1247
+ - type: recall_at_1000
1248
+ value: 72.639
1249
+ - type: recall_at_3
1250
+ value: 15.287999999999998
1251
+ - type: recall_at_5
1252
+ value: 19.415
1253
+ - task:
1254
+ type: Classification
1255
+ dataset:
1256
+ type: mteb/emotion
1257
+ name: MTEB EmotionClassification
1258
+ config: default
1259
+ split: test
1260
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1261
+ metrics:
1262
+ - type: accuracy
1263
+ value: 46.38999999999999
1264
+ - type: f1
1265
+ value: 41.444205512055234
1266
+ - task:
1267
+ type: Retrieval
1268
+ dataset:
1269
+ type: mteb/fever
1270
+ name: MTEB FEVER
1271
+ config: default
1272
+ split: test
1273
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1274
+ metrics:
1275
+ - type: map_at_1
1276
+ value: 87.35000000000001
1277
+ - type: map_at_10
1278
+ value: 92.837
1279
+ - type: map_at_100
1280
+ value: 92.996
1281
+ - type: map_at_1000
1282
+ value: 93.006
1283
+ - type: map_at_3
1284
+ value: 92.187
1285
+ - type: map_at_5
1286
+ value: 92.595
1287
+ - type: mrr_at_1
1288
+ value: 93.864
1289
+ - type: mrr_at_10
1290
+ value: 96.723
1291
+ - type: mrr_at_100
1292
+ value: 96.72500000000001
1293
+ - type: mrr_at_1000
1294
+ value: 96.72500000000001
1295
+ - type: mrr_at_3
1296
+ value: 96.64
1297
+ - type: mrr_at_5
1298
+ value: 96.71499999999999
1299
+ - type: ndcg_at_1
1300
+ value: 93.864
1301
+ - type: ndcg_at_10
1302
+ value: 94.813
1303
+ - type: ndcg_at_100
1304
+ value: 95.243
1305
+ - type: ndcg_at_1000
1306
+ value: 95.38600000000001
1307
+ - type: ndcg_at_3
1308
+ value: 94.196
1309
+ - type: ndcg_at_5
1310
+ value: 94.521
1311
+ - type: precision_at_1
1312
+ value: 93.864
1313
+ - type: precision_at_10
1314
+ value: 10.951
1315
+ - type: precision_at_100
1316
+ value: 1.1400000000000001
1317
+ - type: precision_at_1000
1318
+ value: 0.117
1319
+ - type: precision_at_3
1320
+ value: 35.114000000000004
1321
+ - type: precision_at_5
1322
+ value: 21.476
1323
+ - type: recall_at_1
1324
+ value: 87.35000000000001
1325
+ - type: recall_at_10
1326
+ value: 96.941
1327
+ - type: recall_at_100
1328
+ value: 98.397
1329
+ - type: recall_at_1000
1330
+ value: 99.21600000000001
1331
+ - type: recall_at_3
1332
+ value: 95.149
1333
+ - type: recall_at_5
1334
+ value: 96.131
1335
+ - task:
1336
+ type: Retrieval
1337
+ dataset:
1338
+ type: mteb/fiqa
1339
+ name: MTEB FiQA2018
1340
+ config: default
1341
+ split: test
1342
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1343
+ metrics:
1344
+ - type: map_at_1
1345
+ value: 24.476
1346
+ - type: map_at_10
1347
+ value: 40.11
1348
+ - type: map_at_100
1349
+ value: 42.229
1350
+ - type: map_at_1000
1351
+ value: 42.378
1352
+ - type: map_at_3
1353
+ value: 34.512
1354
+ - type: map_at_5
1355
+ value: 38.037
1356
+ - type: mrr_at_1
1357
+ value: 47.839999999999996
1358
+ - type: mrr_at_10
1359
+ value: 57.053
1360
+ - type: mrr_at_100
1361
+ value: 57.772
1362
+ - type: mrr_at_1000
1363
+ value: 57.799
1364
+ - type: mrr_at_3
1365
+ value: 54.552
1366
+ - type: mrr_at_5
1367
+ value: 56.011
1368
+ - type: ndcg_at_1
1369
+ value: 47.839999999999996
1370
+ - type: ndcg_at_10
1371
+ value: 48.650999999999996
1372
+ - type: ndcg_at_100
1373
+ value: 55.681000000000004
1374
+ - type: ndcg_at_1000
1375
+ value: 57.979
1376
+ - type: ndcg_at_3
1377
+ value: 43.923
1378
+ - type: ndcg_at_5
1379
+ value: 46.037
1380
+ - type: precision_at_1
1381
+ value: 47.839999999999996
1382
+ - type: precision_at_10
1383
+ value: 13.395000000000001
1384
+ - type: precision_at_100
1385
+ value: 2.0660000000000003
1386
+ - type: precision_at_1000
1387
+ value: 0.248
1388
+ - type: precision_at_3
1389
+ value: 29.064
1390
+ - type: precision_at_5
1391
+ value: 22.006
1392
+ - type: recall_at_1
1393
+ value: 24.476
1394
+ - type: recall_at_10
1395
+ value: 56.216
1396
+ - type: recall_at_100
1397
+ value: 81.798
1398
+ - type: recall_at_1000
1399
+ value: 95.48299999999999
1400
+ - type: recall_at_3
1401
+ value: 39.357
1402
+ - type: recall_at_5
1403
+ value: 47.802
1404
+ - task:
1405
+ type: Retrieval
1406
+ dataset:
1407
+ type: mteb/hotpotqa
1408
+ name: MTEB HotpotQA
1409
+ config: default
1410
+ split: test
1411
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1412
+ metrics:
1413
+ - type: map_at_1
1414
+ value: 42.728
1415
+ - type: map_at_10
1416
+ value: 57.737
1417
+ - type: map_at_100
1418
+ value: 58.531
1419
+ - type: map_at_1000
1420
+ value: 58.594
1421
+ - type: map_at_3
1422
+ value: 54.869
1423
+ - type: map_at_5
1424
+ value: 56.55
1425
+ - type: mrr_at_1
1426
+ value: 85.456
1427
+ - type: mrr_at_10
1428
+ value: 90.062
1429
+ - type: mrr_at_100
1430
+ value: 90.159
1431
+ - type: mrr_at_1000
1432
+ value: 90.16
1433
+ - type: mrr_at_3
1434
+ value: 89.37899999999999
1435
+ - type: mrr_at_5
1436
+ value: 89.81
1437
+ - type: ndcg_at_1
1438
+ value: 85.456
1439
+ - type: ndcg_at_10
1440
+ value: 67.755
1441
+ - type: ndcg_at_100
1442
+ value: 70.341
1443
+ - type: ndcg_at_1000
1444
+ value: 71.538
1445
+ - type: ndcg_at_3
1446
+ value: 63.735
1447
+ - type: ndcg_at_5
1448
+ value: 65.823
1449
+ - type: precision_at_1
1450
+ value: 85.456
1451
+ - type: precision_at_10
1452
+ value: 13.450000000000001
1453
+ - type: precision_at_100
1454
+ value: 1.545
1455
+ - type: precision_at_1000
1456
+ value: 0.16999999999999998
1457
+ - type: precision_at_3
1458
+ value: 38.861000000000004
1459
+ - type: precision_at_5
1460
+ value: 24.964
1461
+ - type: recall_at_1
1462
+ value: 42.728
1463
+ - type: recall_at_10
1464
+ value: 67.252
1465
+ - type: recall_at_100
1466
+ value: 77.265
1467
+ - type: recall_at_1000
1468
+ value: 85.246
1469
+ - type: recall_at_3
1470
+ value: 58.292
1471
+ - type: recall_at_5
1472
+ value: 62.41100000000001
1473
+ - task:
1474
+ type: Classification
1475
+ dataset:
1476
+ type: mteb/imdb
1477
+ name: MTEB ImdbClassification
1478
+ config: default
1479
+ split: test
1480
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1481
+ metrics:
1482
+ - type: accuracy
1483
+ value: 87.4836
1484
+ - type: ap
1485
+ value: 82.29552224030336
1486
+ - type: f1
1487
+ value: 87.42791432227448
1488
+ - task:
1489
+ type: Retrieval
1490
+ dataset:
1491
+ type: mteb/msmarco
1492
+ name: MTEB MSMARCO
1493
+ config: default
1494
+ split: dev
1495
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1496
+ metrics:
1497
+ - type: map_at_1
1498
+ value: 23.015
1499
+ - type: map_at_10
1500
+ value: 35.621
1501
+ - type: map_at_100
1502
+ value: 36.809
1503
+ - type: map_at_1000
1504
+ value: 36.853
1505
+ - type: map_at_3
1506
+ value: 31.832
1507
+ - type: map_at_5
1508
+ value: 34.006
1509
+ - type: mrr_at_1
1510
+ value: 23.738999999999997
1511
+ - type: mrr_at_10
1512
+ value: 36.309999999999995
1513
+ - type: mrr_at_100
1514
+ value: 37.422
1515
+ - type: mrr_at_1000
1516
+ value: 37.461
1517
+ - type: mrr_at_3
1518
+ value: 32.592999999999996
1519
+ - type: mrr_at_5
1520
+ value: 34.736
1521
+ - type: ndcg_at_1
1522
+ value: 23.724999999999998
1523
+ - type: ndcg_at_10
1524
+ value: 42.617
1525
+ - type: ndcg_at_100
1526
+ value: 48.217999999999996
1527
+ - type: ndcg_at_1000
1528
+ value: 49.309
1529
+ - type: ndcg_at_3
1530
+ value: 34.905
1531
+ - type: ndcg_at_5
1532
+ value: 38.769
1533
+ - type: precision_at_1
1534
+ value: 23.724999999999998
1535
+ - type: precision_at_10
1536
+ value: 6.689
1537
+ - type: precision_at_100
1538
+ value: 0.9480000000000001
1539
+ - type: precision_at_1000
1540
+ value: 0.104
1541
+ - type: precision_at_3
1542
+ value: 14.89
1543
+ - type: precision_at_5
1544
+ value: 10.897
1545
+ - type: recall_at_1
1546
+ value: 23.015
1547
+ - type: recall_at_10
1548
+ value: 64.041
1549
+ - type: recall_at_100
1550
+ value: 89.724
1551
+ - type: recall_at_1000
1552
+ value: 98.00999999999999
1553
+ - type: recall_at_3
1554
+ value: 43.064
1555
+ - type: recall_at_5
1556
+ value: 52.31099999999999
1557
+ - task:
1558
+ type: Classification
1559
+ dataset:
1560
+ type: mteb/mtop_domain
1561
+ name: MTEB MTOPDomainClassification (en)
1562
+ config: en
1563
+ split: test
1564
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1565
+ metrics:
1566
+ - type: accuracy
1567
+ value: 96.49794801641588
1568
+ - type: f1
1569
+ value: 96.28931114498003
1570
+ - task:
1571
+ type: Classification
1572
+ dataset:
1573
+ type: mteb/mtop_intent
1574
+ name: MTEB MTOPIntentClassification (en)
1575
+ config: en
1576
+ split: test
1577
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1578
+ metrics:
1579
+ - type: accuracy
1580
+ value: 82.81121751025992
1581
+ - type: f1
1582
+ value: 63.18740125901853
1583
+ - task:
1584
+ type: Classification
1585
+ dataset:
1586
+ type: mteb/amazon_massive_intent
1587
+ name: MTEB MassiveIntentClassification (en)
1588
+ config: en
1589
+ split: test
1590
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1591
+ metrics:
1592
+ - type: accuracy
1593
+ value: 77.66644250168123
1594
+ - type: f1
1595
+ value: 74.93211186867839
1596
+ - task:
1597
+ type: Classification
1598
+ dataset:
1599
+ type: mteb/amazon_massive_scenario
1600
+ name: MTEB MassiveScenarioClassification (en)
1601
+ config: en
1602
+ split: test
1603
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1604
+ metrics:
1605
+ - type: accuracy
1606
+ value: 81.77202420981843
1607
+ - type: f1
1608
+ value: 81.63681969283554
1609
+ - task:
1610
+ type: Clustering
1611
+ dataset:
1612
+ type: mteb/medrxiv-clustering-p2p
1613
+ name: MTEB MedrxivClusteringP2P
1614
+ config: default
1615
+ split: test
1616
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1617
+ metrics:
1618
+ - type: v_measure
1619
+ value: 34.596687684870645
1620
+ - task:
1621
+ type: Clustering
1622
+ dataset:
1623
+ type: mteb/medrxiv-clustering-s2s
1624
+ name: MTEB MedrxivClusteringS2S
1625
+ config: default
1626
+ split: test
1627
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1628
+ metrics:
1629
+ - type: v_measure
1630
+ value: 32.26965660101405
1631
+ - task:
1632
+ type: Reranking
1633
+ dataset:
1634
+ type: mteb/mind_small
1635
+ name: MTEB MindSmallReranking
1636
+ config: default
1637
+ split: test
1638
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1639
+ metrics:
1640
+ - type: map
1641
+ value: 31.33619694846802
1642
+ - type: mrr
1643
+ value: 32.53719657720334
1644
+ - task:
1645
+ type: Retrieval
1646
+ dataset:
1647
+ type: mteb/nfcorpus
1648
+ name: MTEB NFCorpus
1649
+ config: default
1650
+ split: test
1651
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1652
+ metrics:
1653
+ - type: map_at_1
1654
+ value: 6.0729999999999995
1655
+ - type: map_at_10
1656
+ value: 13.245999999999999
1657
+ - type: map_at_100
1658
+ value: 16.747999999999998
1659
+ - type: map_at_1000
1660
+ value: 18.163
1661
+ - type: map_at_3
1662
+ value: 10.064
1663
+ - type: map_at_5
1664
+ value: 11.513
1665
+ - type: mrr_at_1
1666
+ value: 49.536
1667
+ - type: mrr_at_10
1668
+ value: 58.092
1669
+ - type: mrr_at_100
1670
+ value: 58.752
1671
+ - type: mrr_at_1000
1672
+ value: 58.78
1673
+ - type: mrr_at_3
1674
+ value: 56.398
1675
+ - type: mrr_at_5
1676
+ value: 57.389
1677
+ - type: ndcg_at_1
1678
+ value: 47.059
1679
+ - type: ndcg_at_10
1680
+ value: 35.881
1681
+ - type: ndcg_at_100
1682
+ value: 32.751999999999995
1683
+ - type: ndcg_at_1000
1684
+ value: 41.498000000000005
1685
+ - type: ndcg_at_3
1686
+ value: 42.518
1687
+ - type: ndcg_at_5
1688
+ value: 39.550999999999995
1689
+ - type: precision_at_1
1690
+ value: 49.536
1691
+ - type: precision_at_10
1692
+ value: 26.316
1693
+ - type: precision_at_100
1694
+ value: 8.084
1695
+ - type: precision_at_1000
1696
+ value: 2.081
1697
+ - type: precision_at_3
1698
+ value: 39.938
1699
+ - type: precision_at_5
1700
+ value: 34.056
1701
+ - type: recall_at_1
1702
+ value: 6.0729999999999995
1703
+ - type: recall_at_10
1704
+ value: 16.593
1705
+ - type: recall_at_100
1706
+ value: 32.883
1707
+ - type: recall_at_1000
1708
+ value: 64.654
1709
+ - type: recall_at_3
1710
+ value: 11.174000000000001
1711
+ - type: recall_at_5
1712
+ value: 13.528
1713
+ - task:
1714
+ type: Retrieval
1715
+ dataset:
1716
+ type: mteb/nq
1717
+ name: MTEB NQ
1718
+ config: default
1719
+ split: test
1720
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1721
+ metrics:
1722
+ - type: map_at_1
1723
+ value: 30.043
1724
+ - type: map_at_10
1725
+ value: 45.318999999999996
1726
+ - type: map_at_100
1727
+ value: 46.381
1728
+ - type: map_at_1000
1729
+ value: 46.412
1730
+ - type: map_at_3
1731
+ value: 40.941
1732
+ - type: map_at_5
1733
+ value: 43.662
1734
+ - type: mrr_at_1
1735
+ value: 33.98
1736
+ - type: mrr_at_10
1737
+ value: 47.870000000000005
1738
+ - type: mrr_at_100
1739
+ value: 48.681999999999995
1740
+ - type: mrr_at_1000
1741
+ value: 48.703
1742
+ - type: mrr_at_3
1743
+ value: 44.341
1744
+ - type: mrr_at_5
1745
+ value: 46.547
1746
+ - type: ndcg_at_1
1747
+ value: 33.98
1748
+ - type: ndcg_at_10
1749
+ value: 52.957
1750
+ - type: ndcg_at_100
1751
+ value: 57.434
1752
+ - type: ndcg_at_1000
1753
+ value: 58.103
1754
+ - type: ndcg_at_3
1755
+ value: 44.896
1756
+ - type: ndcg_at_5
1757
+ value: 49.353
1758
+ - type: precision_at_1
1759
+ value: 33.98
1760
+ - type: precision_at_10
1761
+ value: 8.786
1762
+ - type: precision_at_100
1763
+ value: 1.1280000000000001
1764
+ - type: precision_at_1000
1765
+ value: 0.11900000000000001
1766
+ - type: precision_at_3
1767
+ value: 20.577
1768
+ - type: precision_at_5
1769
+ value: 14.942
1770
+ - type: recall_at_1
1771
+ value: 30.043
1772
+ - type: recall_at_10
1773
+ value: 73.593
1774
+ - type: recall_at_100
1775
+ value: 93.026
1776
+ - type: recall_at_1000
1777
+ value: 97.943
1778
+ - type: recall_at_3
1779
+ value: 52.955
1780
+ - type: recall_at_5
1781
+ value: 63.132
1782
+ - task:
1783
+ type: Retrieval
1784
+ dataset:
1785
+ type: mteb/quora
1786
+ name: MTEB QuoraRetrieval
1787
+ config: default
1788
+ split: test
1789
+ revision: None
1790
+ metrics:
1791
+ - type: map_at_1
1792
+ value: 70.808
1793
+ - type: map_at_10
1794
+ value: 84.675
1795
+ - type: map_at_100
1796
+ value: 85.322
1797
+ - type: map_at_1000
1798
+ value: 85.33800000000001
1799
+ - type: map_at_3
1800
+ value: 81.68900000000001
1801
+ - type: map_at_5
1802
+ value: 83.543
1803
+ - type: mrr_at_1
1804
+ value: 81.5
1805
+ - type: mrr_at_10
1806
+ value: 87.59700000000001
1807
+ - type: mrr_at_100
1808
+ value: 87.705
1809
+ - type: mrr_at_1000
1810
+ value: 87.70599999999999
1811
+ - type: mrr_at_3
1812
+ value: 86.607
1813
+ - type: mrr_at_5
1814
+ value: 87.289
1815
+ - type: ndcg_at_1
1816
+ value: 81.51
1817
+ - type: ndcg_at_10
1818
+ value: 88.41799999999999
1819
+ - type: ndcg_at_100
1820
+ value: 89.644
1821
+ - type: ndcg_at_1000
1822
+ value: 89.725
1823
+ - type: ndcg_at_3
1824
+ value: 85.49900000000001
1825
+ - type: ndcg_at_5
1826
+ value: 87.078
1827
+ - type: precision_at_1
1828
+ value: 81.51
1829
+ - type: precision_at_10
1830
+ value: 13.438
1831
+ - type: precision_at_100
1832
+ value: 1.532
1833
+ - type: precision_at_1000
1834
+ value: 0.157
1835
+ - type: precision_at_3
1836
+ value: 37.363
1837
+ - type: precision_at_5
1838
+ value: 24.57
1839
+ - type: recall_at_1
1840
+ value: 70.808
1841
+ - type: recall_at_10
1842
+ value: 95.575
1843
+ - type: recall_at_100
1844
+ value: 99.667
1845
+ - type: recall_at_1000
1846
+ value: 99.98899999999999
1847
+ - type: recall_at_3
1848
+ value: 87.223
1849
+ - type: recall_at_5
1850
+ value: 91.682
1851
+ - task:
1852
+ type: Clustering
1853
+ dataset:
1854
+ type: mteb/reddit-clustering
1855
+ name: MTEB RedditClustering
1856
+ config: default
1857
+ split: test
1858
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1859
+ metrics:
1860
+ - type: v_measure
1861
+ value: 58.614831329137715
1862
+ - task:
1863
+ type: Clustering
1864
+ dataset:
1865
+ type: mteb/reddit-clustering-p2p
1866
+ name: MTEB RedditClusteringP2P
1867
+ config: default
1868
+ split: test
1869
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1870
+ metrics:
1871
+ - type: v_measure
1872
+ value: 66.86580408560826
1873
+ - task:
1874
+ type: Retrieval
1875
+ dataset:
1876
+ type: mteb/scidocs
1877
+ name: MTEB SCIDOCS
1878
+ config: default
1879
+ split: test
1880
+ revision: None
1881
+ metrics:
1882
+ - type: map_at_1
1883
+ value: 5.093
1884
+ - type: map_at_10
1885
+ value: 13.014000000000001
1886
+ - type: map_at_100
1887
+ value: 15.412999999999998
1888
+ - type: map_at_1000
1889
+ value: 15.756999999999998
1890
+ - type: map_at_3
1891
+ value: 9.216000000000001
1892
+ - type: map_at_5
1893
+ value: 11.036999999999999
1894
+ - type: mrr_at_1
1895
+ value: 25.1
1896
+ - type: mrr_at_10
1897
+ value: 37.133
1898
+ - type: mrr_at_100
1899
+ value: 38.165
1900
+ - type: mrr_at_1000
1901
+ value: 38.198
1902
+ - type: mrr_at_3
1903
+ value: 33.217
1904
+ - type: mrr_at_5
1905
+ value: 35.732
1906
+ - type: ndcg_at_1
1907
+ value: 25.1
1908
+ - type: ndcg_at_10
1909
+ value: 21.918000000000003
1910
+ - type: ndcg_at_100
1911
+ value: 30.983
1912
+ - type: ndcg_at_1000
1913
+ value: 36.629
1914
+ - type: ndcg_at_3
1915
+ value: 20.544999999999998
1916
+ - type: ndcg_at_5
1917
+ value: 18.192
1918
+ - type: precision_at_1
1919
+ value: 25.1
1920
+ - type: precision_at_10
1921
+ value: 11.44
1922
+ - type: precision_at_100
1923
+ value: 2.459
1924
+ - type: precision_at_1000
1925
+ value: 0.381
1926
+ - type: precision_at_3
1927
+ value: 19.267
1928
+ - type: precision_at_5
1929
+ value: 16.16
1930
+ - type: recall_at_1
1931
+ value: 5.093
1932
+ - type: recall_at_10
1933
+ value: 23.215
1934
+ - type: recall_at_100
1935
+ value: 49.902
1936
+ - type: recall_at_1000
1937
+ value: 77.403
1938
+ - type: recall_at_3
1939
+ value: 11.733
1940
+ - type: recall_at_5
1941
+ value: 16.372999999999998
1942
+ - task:
1943
+ type: STS
1944
+ dataset:
1945
+ type: mteb/sickr-sts
1946
+ name: MTEB SICK-R
1947
+ config: default
1948
+ split: test
1949
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1950
+ metrics:
1951
+ - type: cos_sim_pearson
1952
+ value: 82.9365442977452
1953
+ - type: cos_sim_spearman
1954
+ value: 79.36960687383745
1955
+ - type: euclidean_pearson
1956
+ value: 79.6045204840714
1957
+ - type: euclidean_spearman
1958
+ value: 79.26382712751337
1959
+ - type: manhattan_pearson
1960
+ value: 79.4805084789529
1961
+ - type: manhattan_spearman
1962
+ value: 79.21847863209523
1963
+ - task:
1964
+ type: STS
1965
+ dataset:
1966
+ type: mteb/sts12-sts
1967
+ name: MTEB STS12
1968
+ config: default
1969
+ split: test
1970
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1971
+ metrics:
1972
+ - type: cos_sim_pearson
1973
+ value: 83.27906192961453
1974
+ - type: cos_sim_spearman
1975
+ value: 74.38364712099211
1976
+ - type: euclidean_pearson
1977
+ value: 78.54358927241223
1978
+ - type: euclidean_spearman
1979
+ value: 74.22185560806376
1980
+ - type: manhattan_pearson
1981
+ value: 78.50904327377751
1982
+ - type: manhattan_spearman
1983
+ value: 74.2627500781748
1984
+ - task:
1985
+ type: STS
1986
+ dataset:
1987
+ type: mteb/sts13-sts
1988
+ name: MTEB STS13
1989
+ config: default
1990
+ split: test
1991
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1992
+ metrics:
1993
+ - type: cos_sim_pearson
1994
+ value: 84.66863742649639
1995
+ - type: cos_sim_spearman
1996
+ value: 84.70630905216271
1997
+ - type: euclidean_pearson
1998
+ value: 84.64498334705334
1999
+ - type: euclidean_spearman
2000
+ value: 84.87204770690148
2001
+ - type: manhattan_pearson
2002
+ value: 84.65774227976077
2003
+ - type: manhattan_spearman
2004
+ value: 84.91251851797985
2005
+ - task:
2006
+ type: STS
2007
+ dataset:
2008
+ type: mteb/sts14-sts
2009
+ name: MTEB STS14
2010
+ config: default
2011
+ split: test
2012
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2013
+ metrics:
2014
+ - type: cos_sim_pearson
2015
+ value: 83.1577763924467
2016
+ - type: cos_sim_spearman
2017
+ value: 80.10314039230198
2018
+ - type: euclidean_pearson
2019
+ value: 81.51346991046043
2020
+ - type: euclidean_spearman
2021
+ value: 80.08678485109435
2022
+ - type: manhattan_pearson
2023
+ value: 81.57058914661894
2024
+ - type: manhattan_spearman
2025
+ value: 80.1516230725106
2026
+ - task:
2027
+ type: STS
2028
+ dataset:
2029
+ type: mteb/sts15-sts
2030
+ name: MTEB STS15
2031
+ config: default
2032
+ split: test
2033
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2034
+ metrics:
2035
+ - type: cos_sim_pearson
2036
+ value: 86.40310839662533
2037
+ - type: cos_sim_spearman
2038
+ value: 87.16293477217867
2039
+ - type: euclidean_pearson
2040
+ value: 86.50688711184775
2041
+ - type: euclidean_spearman
2042
+ value: 87.08651444923031
2043
+ - type: manhattan_pearson
2044
+ value: 86.54674677557857
2045
+ - type: manhattan_spearman
2046
+ value: 87.15079017870971
2047
+ - task:
2048
+ type: STS
2049
+ dataset:
2050
+ type: mteb/sts16-sts
2051
+ name: MTEB STS16
2052
+ config: default
2053
+ split: test
2054
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2055
+ metrics:
2056
+ - type: cos_sim_pearson
2057
+ value: 84.32886275207817
2058
+ - type: cos_sim_spearman
2059
+ value: 85.0190460590732
2060
+ - type: euclidean_pearson
2061
+ value: 84.42553652784679
2062
+ - type: euclidean_spearman
2063
+ value: 85.20027364279328
2064
+ - type: manhattan_pearson
2065
+ value: 84.42926246281078
2066
+ - type: manhattan_spearman
2067
+ value: 85.20187419804306
2068
+ - task:
2069
+ type: STS
2070
+ dataset:
2071
+ type: mteb/sts17-crosslingual-sts
2072
+ name: MTEB STS17 (en-en)
2073
+ config: en-en
2074
+ split: test
2075
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2076
+ metrics:
2077
+ - type: cos_sim_pearson
2078
+ value: 90.76732216967812
2079
+ - type: cos_sim_spearman
2080
+ value: 90.63701653633909
2081
+ - type: euclidean_pearson
2082
+ value: 90.26678186114682
2083
+ - type: euclidean_spearman
2084
+ value: 90.67288073455427
2085
+ - type: manhattan_pearson
2086
+ value: 90.20772020584582
2087
+ - type: manhattan_spearman
2088
+ value: 90.60764863983702
2089
+ - task:
2090
+ type: STS
2091
+ dataset:
2092
+ type: mteb/sts22-crosslingual-sts
2093
+ name: MTEB STS22 (en)
2094
+ config: en
2095
+ split: test
2096
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2097
+ metrics:
2098
+ - type: cos_sim_pearson
2099
+ value: 69.09280387698125
2100
+ - type: cos_sim_spearman
2101
+ value: 68.62743151172162
2102
+ - type: euclidean_pearson
2103
+ value: 69.89386398104689
2104
+ - type: euclidean_spearman
2105
+ value: 68.71191066733556
2106
+ - type: manhattan_pearson
2107
+ value: 69.92516500604872
2108
+ - type: manhattan_spearman
2109
+ value: 68.80452846992576
2110
+ - task:
2111
+ type: STS
2112
+ dataset:
2113
+ type: mteb/stsbenchmark-sts
2114
+ name: MTEB STSBenchmark
2115
+ config: default
2116
+ split: test
2117
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2118
+ metrics:
2119
+ - type: cos_sim_pearson
2120
+ value: 86.13178592019887
2121
+ - type: cos_sim_spearman
2122
+ value: 86.03947178806887
2123
+ - type: euclidean_pearson
2124
+ value: 85.87029414285313
2125
+ - type: euclidean_spearman
2126
+ value: 86.04960843306998
2127
+ - type: manhattan_pearson
2128
+ value: 85.92946858580146
2129
+ - type: manhattan_spearman
2130
+ value: 86.12575341860442
2131
+ - task:
2132
+ type: Reranking
2133
+ dataset:
2134
+ type: mteb/scidocs-reranking
2135
+ name: MTEB SciDocsRR
2136
+ config: default
2137
+ split: test
2138
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2139
+ metrics:
2140
+ - type: map
2141
+ value: 85.16657063002837
2142
+ - type: mrr
2143
+ value: 95.73671063867141
2144
+ - task:
2145
+ type: Retrieval
2146
+ dataset:
2147
+ type: mteb/scifact
2148
+ name: MTEB SciFact
2149
+ config: default
2150
+ split: test
2151
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2152
+ metrics:
2153
+ - type: map_at_1
2154
+ value: 63.510999999999996
2155
+ - type: map_at_10
2156
+ value: 72.76899999999999
2157
+ - type: map_at_100
2158
+ value: 73.303
2159
+ - type: map_at_1000
2160
+ value: 73.32499999999999
2161
+ - type: map_at_3
2162
+ value: 70.514
2163
+ - type: map_at_5
2164
+ value: 71.929
2165
+ - type: mrr_at_1
2166
+ value: 66.333
2167
+ - type: mrr_at_10
2168
+ value: 73.75
2169
+ - type: mrr_at_100
2170
+ value: 74.119
2171
+ - type: mrr_at_1000
2172
+ value: 74.138
2173
+ - type: mrr_at_3
2174
+ value: 72.222
2175
+ - type: mrr_at_5
2176
+ value: 73.122
2177
+ - type: ndcg_at_1
2178
+ value: 66.333
2179
+ - type: ndcg_at_10
2180
+ value: 76.774
2181
+ - type: ndcg_at_100
2182
+ value: 78.78500000000001
2183
+ - type: ndcg_at_1000
2184
+ value: 79.254
2185
+ - type: ndcg_at_3
2186
+ value: 73.088
2187
+ - type: ndcg_at_5
2188
+ value: 75.002
2189
+ - type: precision_at_1
2190
+ value: 66.333
2191
+ - type: precision_at_10
2192
+ value: 9.833
2193
+ - type: precision_at_100
2194
+ value: 1.093
2195
+ - type: precision_at_1000
2196
+ value: 0.11299999999999999
2197
+ - type: precision_at_3
2198
+ value: 28.222
2199
+ - type: precision_at_5
2200
+ value: 18.333
2201
+ - type: recall_at_1
2202
+ value: 63.510999999999996
2203
+ - type: recall_at_10
2204
+ value: 87.98899999999999
2205
+ - type: recall_at_100
2206
+ value: 96.5
2207
+ - type: recall_at_1000
2208
+ value: 100.0
2209
+ - type: recall_at_3
2210
+ value: 77.86699999999999
2211
+ - type: recall_at_5
2212
+ value: 82.73899999999999
2213
+ - task:
2214
+ type: PairClassification
2215
+ dataset:
2216
+ type: mteb/sprintduplicatequestions-pairclassification
2217
+ name: MTEB SprintDuplicateQuestions
2218
+ config: default
2219
+ split: test
2220
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2221
+ metrics:
2222
+ - type: cos_sim_accuracy
2223
+ value: 99.78514851485149
2224
+ - type: cos_sim_ap
2225
+ value: 94.94214383862038
2226
+ - type: cos_sim_f1
2227
+ value: 89.02255639097744
2228
+ - type: cos_sim_precision
2229
+ value: 89.2462311557789
2230
+ - type: cos_sim_recall
2231
+ value: 88.8
2232
+ - type: dot_accuracy
2233
+ value: 99.78217821782178
2234
+ - type: dot_ap
2235
+ value: 94.69965247836805
2236
+ - type: dot_f1
2237
+ value: 88.78695208970439
2238
+ - type: dot_precision
2239
+ value: 90.54054054054053
2240
+ - type: dot_recall
2241
+ value: 87.1
2242
+ - type: euclidean_accuracy
2243
+ value: 99.78118811881188
2244
+ - type: euclidean_ap
2245
+ value: 94.9865187695411
2246
+ - type: euclidean_f1
2247
+ value: 88.99950223992036
2248
+ - type: euclidean_precision
2249
+ value: 88.60257680872151
2250
+ - type: euclidean_recall
2251
+ value: 89.4
2252
+ - type: manhattan_accuracy
2253
+ value: 99.78811881188119
2254
+ - type: manhattan_ap
2255
+ value: 95.0021236766459
2256
+ - type: manhattan_f1
2257
+ value: 89.12071535022356
2258
+ - type: manhattan_precision
2259
+ value: 88.54886475814413
2260
+ - type: manhattan_recall
2261
+ value: 89.7
2262
+ - type: max_accuracy
2263
+ value: 99.78811881188119
2264
+ - type: max_ap
2265
+ value: 95.0021236766459
2266
+ - type: max_f1
2267
+ value: 89.12071535022356
2268
+ - task:
2269
+ type: Clustering
2270
+ dataset:
2271
+ type: mteb/stackexchange-clustering
2272
+ name: MTEB StackExchangeClustering
2273
+ config: default
2274
+ split: test
2275
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2276
+ metrics:
2277
+ - type: v_measure
2278
+ value: 68.93190546593995
2279
+ - task:
2280
+ type: Clustering
2281
+ dataset:
2282
+ type: mteb/stackexchange-clustering-p2p
2283
+ name: MTEB StackExchangeClusteringP2P
2284
+ config: default
2285
+ split: test
2286
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2287
+ metrics:
2288
+ - type: v_measure
2289
+ value: 37.602808534760655
2290
+ - task:
2291
+ type: Reranking
2292
+ dataset:
2293
+ type: mteb/stackoverflowdupquestions-reranking
2294
+ name: MTEB StackOverflowDupQuestions
2295
+ config: default
2296
+ split: test
2297
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2298
+ metrics:
2299
+ - type: map
2300
+ value: 52.29214480978073
2301
+ - type: mrr
2302
+ value: 53.123169722434426
2303
+ - task:
2304
+ type: Summarization
2305
+ dataset:
2306
+ type: mteb/summeval
2307
+ name: MTEB SummEval
2308
+ config: default
2309
+ split: test
2310
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2311
+ metrics:
2312
+ - type: cos_sim_pearson
2313
+ value: 30.967800769650022
2314
+ - type: cos_sim_spearman
2315
+ value: 31.168490040206926
2316
+ - type: dot_pearson
2317
+ value: 30.888603021128553
2318
+ - type: dot_spearman
2319
+ value: 31.028241262520385
2320
+ - task:
2321
+ type: Retrieval
2322
+ dataset:
2323
+ type: mteb/trec-covid
2324
+ name: MTEB TRECCOVID
2325
+ config: default
2326
+ split: test
2327
+ revision: None
2328
+ metrics:
2329
+ - type: map_at_1
2330
+ value: 0.22300000000000003
2331
+ - type: map_at_10
2332
+ value: 1.781
2333
+ - type: map_at_100
2334
+ value: 9.905999999999999
2335
+ - type: map_at_1000
2336
+ value: 23.455000000000002
2337
+ - type: map_at_3
2338
+ value: 0.569
2339
+ - type: map_at_5
2340
+ value: 0.918
2341
+ - type: mrr_at_1
2342
+ value: 84.0
2343
+ - type: mrr_at_10
2344
+ value: 91.067
2345
+ - type: mrr_at_100
2346
+ value: 91.067
2347
+ - type: mrr_at_1000
2348
+ value: 91.067
2349
+ - type: mrr_at_3
2350
+ value: 90.667
2351
+ - type: mrr_at_5
2352
+ value: 91.067
2353
+ - type: ndcg_at_1
2354
+ value: 78.0
2355
+ - type: ndcg_at_10
2356
+ value: 73.13499999999999
2357
+ - type: ndcg_at_100
2358
+ value: 55.32
2359
+ - type: ndcg_at_1000
2360
+ value: 49.532
2361
+ - type: ndcg_at_3
2362
+ value: 73.715
2363
+ - type: ndcg_at_5
2364
+ value: 72.74199999999999
2365
+ - type: precision_at_1
2366
+ value: 84.0
2367
+ - type: precision_at_10
2368
+ value: 78.8
2369
+ - type: precision_at_100
2370
+ value: 56.32
2371
+ - type: precision_at_1000
2372
+ value: 21.504
2373
+ - type: precision_at_3
2374
+ value: 77.333
2375
+ - type: precision_at_5
2376
+ value: 78.0
2377
+ - type: recall_at_1
2378
+ value: 0.22300000000000003
2379
+ - type: recall_at_10
2380
+ value: 2.049
2381
+ - type: recall_at_100
2382
+ value: 13.553
2383
+ - type: recall_at_1000
2384
+ value: 46.367999999999995
2385
+ - type: recall_at_3
2386
+ value: 0.604
2387
+ - type: recall_at_5
2388
+ value: 1.015
2389
+ - task:
2390
+ type: Retrieval
2391
+ dataset:
2392
+ type: mteb/touche2020
2393
+ name: MTEB Touche2020
2394
+ config: default
2395
+ split: test
2396
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2397
+ metrics:
2398
+ - type: map_at_1
2399
+ value: 3.0380000000000003
2400
+ - type: map_at_10
2401
+ value: 10.188
2402
+ - type: map_at_100
2403
+ value: 16.395
2404
+ - type: map_at_1000
2405
+ value: 18.024
2406
+ - type: map_at_3
2407
+ value: 6.236
2408
+ - type: map_at_5
2409
+ value: 7.276000000000001
2410
+ - type: mrr_at_1
2411
+ value: 34.694
2412
+ - type: mrr_at_10
2413
+ value: 46.292
2414
+ - type: mrr_at_100
2415
+ value: 47.446
2416
+ - type: mrr_at_1000
2417
+ value: 47.446
2418
+ - type: mrr_at_3
2419
+ value: 41.156
2420
+ - type: mrr_at_5
2421
+ value: 44.32
2422
+ - type: ndcg_at_1
2423
+ value: 32.653
2424
+ - type: ndcg_at_10
2425
+ value: 25.219
2426
+ - type: ndcg_at_100
2427
+ value: 37.802
2428
+ - type: ndcg_at_1000
2429
+ value: 49.274
2430
+ - type: ndcg_at_3
2431
+ value: 28.605999999999998
2432
+ - type: ndcg_at_5
2433
+ value: 26.21
2434
+ - type: precision_at_1
2435
+ value: 34.694
2436
+ - type: precision_at_10
2437
+ value: 21.837
2438
+ - type: precision_at_100
2439
+ value: 7.776
2440
+ - type: precision_at_1000
2441
+ value: 1.522
2442
+ - type: precision_at_3
2443
+ value: 28.571
2444
+ - type: precision_at_5
2445
+ value: 25.306
2446
+ - type: recall_at_1
2447
+ value: 3.0380000000000003
2448
+ - type: recall_at_10
2449
+ value: 16.298000000000002
2450
+ - type: recall_at_100
2451
+ value: 48.712
2452
+ - type: recall_at_1000
2453
+ value: 83.16799999999999
2454
+ - type: recall_at_3
2455
+ value: 7.265000000000001
2456
+ - type: recall_at_5
2457
+ value: 9.551
2458
+ - task:
2459
+ type: Classification
2460
+ dataset:
2461
+ type: mteb/toxic_conversations_50k
2462
+ name: MTEB ToxicConversationsClassification
2463
+ config: default
2464
+ split: test
2465
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2466
+ metrics:
2467
+ - type: accuracy
2468
+ value: 83.978
2469
+ - type: ap
2470
+ value: 24.751887949330015
2471
+ - type: f1
2472
+ value: 66.8685134049279
2473
+ - task:
2474
+ type: Classification
2475
+ dataset:
2476
+ type: mteb/tweet_sentiment_extraction
2477
+ name: MTEB TweetSentimentExtractionClassification
2478
+ config: default
2479
+ split: test
2480
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2481
+ metrics:
2482
+ - type: accuracy
2483
+ value: 61.573288058856825
2484
+ - type: f1
2485
+ value: 61.973261751726604
2486
+ - task:
2487
+ type: Clustering
2488
+ dataset:
2489
+ type: mteb/twentynewsgroups-clustering
2490
+ name: MTEB TwentyNewsgroupsClustering
2491
+ config: default
2492
+ split: test
2493
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2494
+ metrics:
2495
+ - type: v_measure
2496
+ value: 48.75483298792469
2497
+ - task:
2498
+ type: PairClassification
2499
+ dataset:
2500
+ type: mteb/twittersemeval2015-pairclassification
2501
+ name: MTEB TwitterSemEval2015
2502
+ config: default
2503
+ split: test
2504
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2505
+ metrics:
2506
+ - type: cos_sim_accuracy
2507
+ value: 86.36824223639506
2508
+ - type: cos_sim_ap
2509
+ value: 75.53126388573047
2510
+ - type: cos_sim_f1
2511
+ value: 67.9912831688245
2512
+ - type: cos_sim_precision
2513
+ value: 66.11817501869858
2514
+ - type: cos_sim_recall
2515
+ value: 69.9736147757256
2516
+ - type: dot_accuracy
2517
+ value: 86.39804494248078
2518
+ - type: dot_ap
2519
+ value: 75.27598891718046
2520
+ - type: dot_f1
2521
+ value: 67.91146284159763
2522
+ - type: dot_precision
2523
+ value: 63.90505003490807
2524
+ - type: dot_recall
2525
+ value: 72.45382585751979
2526
+ - type: euclidean_accuracy
2527
+ value: 86.36228169517793
2528
+ - type: euclidean_ap
2529
+ value: 75.51438087434647
2530
+ - type: euclidean_f1
2531
+ value: 68.02370523061066
2532
+ - type: euclidean_precision
2533
+ value: 66.46525679758308
2534
+ - type: euclidean_recall
2535
+ value: 69.65699208443272
2536
+ - type: manhattan_accuracy
2537
+ value: 86.46361089586935
2538
+ - type: manhattan_ap
2539
+ value: 75.50800785730111
2540
+ - type: manhattan_f1
2541
+ value: 67.9220437187253
2542
+ - type: manhattan_precision
2543
+ value: 67.79705573080967
2544
+ - type: manhattan_recall
2545
+ value: 68.04749340369392
2546
+ - type: max_accuracy
2547
+ value: 86.46361089586935
2548
+ - type: max_ap
2549
+ value: 75.53126388573047
2550
+ - type: max_f1
2551
+ value: 68.02370523061066
2552
+ - task:
2553
+ type: PairClassification
2554
+ dataset:
2555
+ type: mteb/twitterurlcorpus-pairclassification
2556
+ name: MTEB TwitterURLCorpus
2557
+ config: default
2558
+ split: test
2559
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2560
+ metrics:
2561
+ - type: cos_sim_accuracy
2562
+ value: 88.80350836341057
2563
+ - type: cos_sim_ap
2564
+ value: 85.51101933260743
2565
+ - type: cos_sim_f1
2566
+ value: 77.9152271629704
2567
+ - type: cos_sim_precision
2568
+ value: 75.27815662910056
2569
+ - type: cos_sim_recall
2570
+ value: 80.74376347397599
2571
+ - type: dot_accuracy
2572
+ value: 88.84425815966158
2573
+ - type: dot_ap
2574
+ value: 85.49726945962519
2575
+ - type: dot_f1
2576
+ value: 77.94445269567801
2577
+ - type: dot_precision
2578
+ value: 75.27251864601261
2579
+ - type: dot_recall
2580
+ value: 80.81305820757623
2581
+ - type: euclidean_accuracy
2582
+ value: 88.80350836341057
2583
+ - type: euclidean_ap
2584
+ value: 85.4882880790211
2585
+ - type: euclidean_f1
2586
+ value: 77.87063284615103
2587
+ - type: euclidean_precision
2588
+ value: 74.61022927689595
2589
+ - type: euclidean_recall
2590
+ value: 81.42901139513397
2591
+ - type: manhattan_accuracy
2592
+ value: 88.7161873714441
2593
+ - type: manhattan_ap
2594
+ value: 85.45753871906821
2595
+ - type: manhattan_f1
2596
+ value: 77.8686401480111
2597
+ - type: manhattan_precision
2598
+ value: 74.95903683123174
2599
+ - type: manhattan_recall
2600
+ value: 81.01324299353249
2601
+ - type: max_accuracy
2602
+ value: 88.84425815966158
2603
+ - type: max_ap
2604
+ value: 85.51101933260743
2605
+ - type: max_f1
2606
+ value: 77.94445269567801
2607
  ---
2608
+
2609
+ <!-- **English** | [中文](./README_zh.md) -->
2610
 
2611
+ # gte-base-en-v1.5
2612
 
2613
+ We introduce `gte-v1.5` series, upgraded `gte` embeddings that support the context length of up to **8192**, while further enhancing model performance.
2614
+ The models are built upon the `transformer++` encoder [backbone](https://huggingface.co/Alibaba-NLP/new-impl) (BERT + RoPE + GLU).
2615
 
2616
+ The `gte-v1.5` series achieve state-of-the-art scores on the MTEB benchmark within the same model size category and prodvide competitive on the LoCo long-context retrieval tests (refer to [Evaluation](#evaluation)).
2617
 
2618
+ We also present the [`gte-Qwen1.5-7B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct),
2619
+ a SOTA instruction-tuned multi-lingual embedding model that ranked 2nd in MTEB and 1st in C-MTEB.
 
 
2620
 
2621
  <!-- Provide a longer summary of what this model is. -->
2622
 
2623
+ - **Developed by:** Institute for Intelligent Computing, Alibaba Group
2624
+ - **Model type:** Text Embeddings
2625
+ - **Paper:** [mGTE: Generalized Long-Context Text Representation and Reranking
2626
+ Models for Multilingual Text Retrieval](https://arxiv.org/pdf/2407.19669)
2627
 
2628
+ <!-- - **Demo [optional]:** [More Information Needed] -->
 
 
 
 
 
 
2629
 
2630
+ ### Model list
2631
 
2632
+ | Models | Language | Model Size | Max Seq. Length | Dimension | MTEB-en | LoCo |
2633
+ |:-----: | :-----: |:-----: |:-----: |:-----: | :-----: | :-----: |
2634
+ |[`gte-Qwen1.5-7B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct)| Multiple | 7720 | 32768 | 4096 | 67.34 | 87.57 |
2635
+ |[`gte-large-en-v1.5`](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | English | 434 | 8192 | 1024 | 65.39 | 86.71 |
2636
+ |[`gte-base-en-v1.5`](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | English | 137 | 8192 | 768 | 64.11 | 87.44 |
2637
 
 
 
 
2638
 
2639
+ ## How to Get Started with the Model
2640
 
2641
+ Use the code below to get started with the model.
2642
 
2643
+ ```python
2644
+ # Requires transformers>=4.36.0
2645
 
2646
+ import torch.nn.functional as F
2647
+ from transformers import AutoModel, AutoTokenizer
2648
 
2649
+ input_texts = [
2650
+ "what is the capital of China?",
2651
+ "how to implement quick sort in python?",
2652
+ "Beijing",
2653
+ "sorting algorithms"
2654
+ ]
2655
 
2656
+ model_path = 'Alibaba-NLP/gte-base-en-v1.5'
2657
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
2658
+ model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
2659
 
2660
+ # Tokenize the input texts
2661
+ batch_dict = tokenizer(input_texts, max_length=8192, padding=True, truncation=True, return_tensors='pt')
2662
 
2663
+ outputs = model(**batch_dict)
2664
+ embeddings = outputs.last_hidden_state[:, 0]
2665
+
2666
+ # (Optionally) normalize embeddings
2667
+ embeddings = F.normalize(embeddings, p=2, dim=1)
2668
+ scores = (embeddings[:1] @ embeddings[1:].T) * 100
2669
+ print(scores.tolist())
2670
+ ```
2671
 
2672
+ **It is recommended to install xformers and enable unpadding for acceleration, refer to [enable-unpadding-and-xformers](https://huggingface.co/Alibaba-NLP/new-impl#recommendation-enable-unpadding-and-acceleration-with-xformers).**
2673
 
 
2674
 
2675
+ Use with `sentence-transformers`:
2676
 
2677
+ ```python
2678
+ # Requires sentence_transformers>=2.7.0
2679
 
2680
+ from sentence_transformers import SentenceTransformer
2681
+ from sentence_transformers.util import cos_sim
2682
 
2683
+ sentences = ['That is a happy person', 'That is a very happy person']
2684
 
2685
+ model = SentenceTransformer('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True)
2686
+ embeddings = model.encode(sentences)
2687
+ print(cos_sim(embeddings[0], embeddings[1]))
2688
+ ```
2689
 
2690
+ Use with `transformers.js`:
2691
 
2692
+ ```js
2693
+ // npm i @xenova/transformers
2694
+ import { pipeline, dot } from '@xenova/transformers';
2695
 
2696
+ // Create feature extraction pipeline
2697
+ const extractor = await pipeline('feature-extraction', 'Alibaba-NLP/gte-base-en-v1.5', {
2698
+ quantized: false, // Comment out this line to use the quantized version
2699
+ });
2700
 
2701
+ // Generate sentence embeddings
2702
+ const sentences = [
2703
+ "what is the capital of China?",
2704
+ "how to implement quick sort in python?",
2705
+ "Beijing",
2706
+ "sorting algorithms"
2707
+ ]
2708
+ const output = await extractor(sentences, { normalize: true, pooling: 'cls' });
2709
 
2710
+ // Compute similarity scores
2711
+ const [source_embeddings, ...document_embeddings ] = output.tolist();
2712
+ const similarities = document_embeddings.map(x => 100 * dot(source_embeddings, x));
2713
+ console.log(similarities); // [34.504930869007296, 64.03973265120138, 19.520042686034362]
2714
+ ```
2715
 
2716
  ## Training Details
2717
 
2718
  ### Training Data
2719
 
2720
+ - Masked language modeling (MLM): `c4-en`
2721
+ - Weak-supervised contrastive pre-training (CPT): [GTE](https://arxiv.org/pdf/2308.03281.pdf) pre-training data
2722
+ - Supervised contrastive fine-tuning: [GTE](https://arxiv.org/pdf/2308.03281.pdf) fine-tuning data
2723
 
2724
  ### Training Procedure
2725
 
2726
+ To enable the backbone model to support a context length of 8192, we adopted a multi-stage training strategy.
2727
+ The model first undergoes preliminary MLM pre-training on shorter lengths.
2728
+ And then, we resample the data, reducing the proportion of short texts, and continue the MLM pre-training.
 
 
 
 
 
 
 
2729
 
2730
+ The entire training process is as follows:
2731
+ - MLM-2048: lr 5e-4, mlm_probability 0.3, batch_size 4096, num_steps 70000, rope_base 10000
2732
+ - [MLM-8192](https://huggingface.co/Alibaba-NLP/gte-en-mlm-base): lr 5e-5, mlm_probability 0.3, batch_size 1024, num_steps 20000, rope_base 500000
2733
+ - CPT: max_len 512, lr 2e-4, batch_size 32768, num_steps 100000
2734
+ - Fine-tuning: TODO
2735
 
 
 
 
2736
 
2737
  ## Evaluation
2738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2739
 
2740
+ ### MTEB
2741
 
2742
+ The results of other models are retrieved from [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard).
2743
 
2744
+ The gte evaluation setting: `mteb==1.2.0, fp16 auto mix precision, max_length=8192`, and set ntk scaling factor to 2 (equivalent to rope_base * 2).
2745
 
2746
+ | Model Name | Param Size (M) | Dimension | Sequence Length | Average (56) | Class. (12) | Clust. (11) | Pair Class. (3) | Reran. (4) | Retr. (15) | STS (10) | Summ. (1) |
2747
+ |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
2748
+ | [**gte-large-en-v1.5**](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 434 | 1024 | 8192 | **65.39** | 77.75 | 47.95 | 84.63 | 58.50 | 57.91 | 81.43 | 30.91 |
2749
+ | [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 335 | 1024 | 512 | 64.68 | 75.64 | 46.71 | 87.2 | 60.11 | 54.39 | 85 | 32.71 |
2750
+ | [multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) | 560 | 1024 | 514 | 64.41 | 77.56 | 47.1 | 86.19 | 58.58 | 52.47 | 84.78 | 30.39 |
2751
+ | [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5)| 335 | 1024 | 512 | 64.23 | 75.97 | 46.08 | 87.12 | 60.03 | 54.29 | 83.11 | 31.61 |
2752
+ | [**gte-base-en-v1.5**](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | 137 | 768 | 8192 | **64.11** | 77.17 | 46.82 | 85.33 | 57.66 | 54.09 | 81.97 | 31.17 |
2753
+ | [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)| 109 | 768 | 512 | 63.55 | 75.53 | 45.77 | 86.55 | 58.86 | 53.25 | 82.4 | 31.07 |
2754
 
 
2755
 
2756
+ ### LoCo
2757
 
2758
+ | Model Name | Dimension | Sequence Length | Average (5) | QsmsumRetrieval | SummScreenRetrieval | QasperAbastractRetrieval | QasperTitleRetrieval | GovReportRetrieval |
2759
+ |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
2760
+ | [gte-qwen1.5-7b](https://huggingface.co/Alibaba-NLP/gte-qwen1.5-7b) | 4096 | 32768 | 87.57 | 49.37 | 93.10 | 99.67 | 97.54 | 98.21 |
2761
+ | [gte-large-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-v1.5) |1024 | 8192 | 86.71 | 44.55 | 92.61 | 99.82 | 97.81 | 98.74 |
2762
+ | [gte-base-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-v1.5) | 768 | 8192 | 87.44 | 49.91 | 91.78 | 99.82 | 97.13 | 98.58 |
2763
 
 
2764
 
 
2765
 
2766
+ ## Citation
2767
+ If you find our paper or models helpful, please consider citing them as follows:
2768
 
2769
+ ```
2770
+ @misc{zhang2024mgte,
2771
+ title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
2772
+ author={Xin Zhang and Yanzhao Zhang and Dingkun Long and Wen Xie and Ziqi Dai and Jialong Tang and Huan Lin and Baosong Yang and Pengjun Xie and Fei Huang and Meishan Zhang and Wenjie Li and Min Zhang},
2773
+ year={2024},
2774
+ eprint={2407.19669},
2775
+ archivePrefix={arXiv},
2776
+ primaryClass={cs.CL},
2777
+ url={https://arxiv.org/abs/2407.19669},
2778
+ }
2779
+ @misc{li2023gte,
2780
+ title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
2781
+ author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang},
2782
+ year={2023},
2783
+ eprint={2308.03281},
2784
+ archivePrefix={arXiv},
2785
+ primaryClass={cs.CL},
2786
+ url={https://arxiv.org/abs/2308.03281},
2787
+ }
2788
+ ```
config.json CHANGED
@@ -5,7 +5,7 @@
5
  ],
6
  "attention_probs_dropout_prob": 0.0,
7
  "auto_map": {
8
- "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
9
  "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
10
  "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
11
  "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
 
5
  ],
6
  "attention_probs_dropout_prob": 0.0,
7
  "auto_map": {
8
+ "AutoConfig": "configuration.NewConfig",
9
  "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
10
  "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
11
  "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.46.0",
5
+ "pytorch": "2.5.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
configuration.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The GTE Team Authors and Alibaba Group.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ NEW model configuration"""
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+
23
+ class NewConfig(PretrainedConfig):
24
+ r"""
25
+ This is the configuration class to store the configuration of a [`NewModel`] or a [`TFNewModel`]. It is used to
26
+ instantiate a NEW model according to the specified arguments, defining the model architecture. Instantiating a
27
+ configuration with the defaults will yield a similar configuration to that of the NEW
28
+ [izhx/new-base-en](https://huggingface.co/izhx/new-base-en) architecture.
29
+
30
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
31
+ documentation from [`PretrainedConfig`] for more information.
32
+
33
+
34
+ Args:
35
+ vocab_size (`int`, *optional*, defaults to 30522):
36
+ Vocabulary size of the NEW model. Defines the number of different tokens that can be represented by the
37
+ `inputs_ids` passed when calling [`NewModel`] or [`TFNewModel`].
38
+ hidden_size (`int`, *optional*, defaults to 768):
39
+ Dimensionality of the encoder layers and the pooler layer.
40
+ num_hidden_layers (`int`, *optional*, defaults to 12):
41
+ Number of hidden layers in the Transformer encoder.
42
+ num_attention_heads (`int`, *optional*, defaults to 12):
43
+ Number of attention heads for each attention layer in the Transformer encoder.
44
+ intermediate_size (`int`, *optional*, defaults to 3072):
45
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
46
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
47
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
48
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
49
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
52
+ The dropout ratio for the attention probabilities.
53
+ max_position_embeddings (`int`, *optional*, defaults to 512):
54
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
55
+ just in case (e.g., 512 or 1024 or 2048).
56
+ type_vocab_size (`int`, *optional*, defaults to 2):
57
+ The vocabulary size of the `token_type_ids` passed when calling [`NewModel`] or [`TFNewModel`].
58
+ initializer_range (`float`, *optional*, defaults to 0.02):
59
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
60
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
61
+ The epsilon used by the layer normalization layers.
62
+ position_embedding_type (`str`, *optional*, defaults to `"rope"`):
63
+ Type of position embedding. Choose one of `"absolute"`, `"rope"`.
64
+ rope_theta (`float`, *optional*, defaults to 10000.0):
65
+ The base period of the RoPE embeddings.
66
+ rope_scaling (`Dict`, *optional*):
67
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
68
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
69
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
70
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
71
+ these scaling strategies behave:
72
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
73
+ experimental feature, subject to breaking API changes in future versions.
74
+ classifier_dropout (`float`, *optional*):
75
+ The dropout ratio for the classification head.
76
+
77
+ Examples:
78
+
79
+ ```python
80
+ >>> from transformers import NewConfig, NewModel
81
+
82
+ >>> # Initializing a NEW izhx/new-base-en style configuration
83
+ >>> configuration = NewConfig()
84
+
85
+ >>> # Initializing a model (with random weights) from the izhx/new-base-en style configuration
86
+ >>> model = NewModel(configuration)
87
+
88
+ >>> # Accessing the model configuration
89
+ >>> configuration = model.config
90
+ ```"""
91
+
92
+ model_type = "new"
93
+
94
+ def __init__(
95
+ self,
96
+ vocab_size=30528,
97
+ hidden_size=768,
98
+ num_hidden_layers=12,
99
+ num_attention_heads=12,
100
+ intermediate_size=3072,
101
+ hidden_act="gelu",
102
+ hidden_dropout_prob=0.1,
103
+ attention_probs_dropout_prob=0.0,
104
+ max_position_embeddings=2048,
105
+ type_vocab_size=1,
106
+ initializer_range=0.02,
107
+ layer_norm_type='layer_norm',
108
+ layer_norm_eps=1e-12,
109
+ # pad_token_id=0,
110
+ position_embedding_type="rope",
111
+ rope_theta=10000.0,
112
+ rope_scaling=None,
113
+ classifier_dropout=None,
114
+ pack_qkv=True,
115
+ unpad_inputs=False,
116
+ use_memory_efficient_attention=False,
117
+ logn_attention_scale=False,
118
+ logn_attention_clip1=False,
119
+ **kwargs,
120
+ ):
121
+ super().__init__(**kwargs)
122
+
123
+ self.vocab_size = vocab_size
124
+ self.hidden_size = hidden_size
125
+ self.num_hidden_layers = num_hidden_layers
126
+ self.num_attention_heads = num_attention_heads
127
+ self.hidden_act = hidden_act
128
+ self.intermediate_size = intermediate_size
129
+ self.hidden_dropout_prob = hidden_dropout_prob
130
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
131
+ self.max_position_embeddings = max_position_embeddings
132
+ self.type_vocab_size = type_vocab_size
133
+ self.initializer_range = initializer_range
134
+ self.layer_norm_type = layer_norm_type
135
+ self.layer_norm_eps = layer_norm_eps
136
+ self.position_embedding_type = position_embedding_type
137
+ self.rope_theta = rope_theta
138
+ self.rope_scaling = rope_scaling
139
+ self.classifier_dropout = classifier_dropout
140
+
141
+ self.pack_qkv = pack_qkv
142
+ self.unpad_inputs = unpad_inputs
143
+ self.use_memory_efficient_attention = use_memory_efficient_attention
144
+ self.logn_attention_scale = logn_attention_scale
145
+ self.logn_attention_clip1 = logn_attention_clip1
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 8192,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff