File size: 2,067 Bytes
018ea24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
tags:
- merge
- mergekit
- lazymergekit
- Or4cl3-1/cognitive-agent-xtts-optimized
- Or4cl3-1/multimodal-fusion-optimized
base_model:
- Or4cl3-1/cognitive-agent-xtts-optimized
- Or4cl3-1/multimodal-fusion-optimized
---

# CogniFusion-XTTS-slerp

CogniFusion-XTTS-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Or4cl3-1/cognitive-agent-xtts-optimized](https://huggingface.co/Or4cl3-1/cognitive-agent-xtts-optimized)
* [Or4cl3-1/multimodal-fusion-optimized](https://huggingface.co/Or4cl3-1/multimodal-fusion-optimized)

## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: Or4cl3-1/cognitive-agent-xtts-optimized
        layer_range: [0, 32]  # Specify appropriate layer range for cognitive agent
      - model: Or4cl3-1/multimodal-fusion-optimized
        layer_range: [0, 32]  # Specify appropriate layer range for multimodal fusion
merge_method: slerp
base_model: Or4cl3-1/cognitive-agent-xtts-optimized
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]  # Fine-tune self-attention parameters
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]  # Adjust MLP parameters for optimal fusion
    - value: 0.5  # Set overall fusion parameter value
dtype: bfloat16

# Add ethical considerations and any additional optimization parameters here
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Or4cl3-1/CogniFusion-XTTS-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```