Safetensors
Romanian
mistral
Eval Results
mihaimasala commited on
Commit
cc50492
·
verified ·
1 Parent(s): dd5c756

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +747 -3
README.md CHANGED
@@ -1,3 +1,747 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - mistralai/Mistral-7B-v0.1
7
+ datasets:
8
+ - OpenLLM-Ro/ro_dpo_helpsteer
9
+
10
+ model-index:
11
+ - name: OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2024-10-09
12
+ results:
13
+ - task:
14
+ type: text-generation
15
+ dataset:
16
+ name: RoMT-Bench
17
+ type: RoMT-Bench
18
+ metrics:
19
+ - name: Score
20
+ type: Score
21
+ value: 5.88
22
+ - task:
23
+ type: text-generation
24
+ dataset:
25
+ name: RoCulturaBench
26
+ type: RoCulturaBench
27
+ metrics:
28
+ - name: Score
29
+ type: Score
30
+ value: 4.72
31
+ - task:
32
+ type: text-generation
33
+ dataset:
34
+ name: Romanian_Academic_Benchmarks
35
+ type: Romanian_Academic_Benchmarks
36
+ metrics:
37
+ - name: Average accuracy
38
+ type: accuracy
39
+ value: 51.95
40
+ - task:
41
+ type: text-generation
42
+ dataset:
43
+ name: OpenLLM-Ro/ro_arc_challenge
44
+ type: OpenLLM-Ro/ro_arc_challenge
45
+ metrics:
46
+ - name: Average accuracy
47
+ type: accuracy
48
+ value: 50.73
49
+ - task:
50
+ type: text-generation
51
+ dataset:
52
+ name: OpenLLM-Ro/ro_mmlu
53
+ type: OpenLLM-Ro/ro_mmlu
54
+ metrics:
55
+ - name: Average accuracy
56
+ type: accuracy
57
+ value: 47.88
58
+ - task:
59
+ type: text-generation
60
+ dataset:
61
+ name: OpenLLM-Ro/ro_winogrande
62
+ type: OpenLLM-Ro/ro_winogrande
63
+ metrics:
64
+ - name: Average accuracy
65
+ type: accuracy
66
+ value: 68.41
67
+ - task:
68
+ type: text-generation
69
+ dataset:
70
+ name: OpenLLM-Ro/ro_hellaswag
71
+ type: OpenLLM-Ro/ro_hellaswag
72
+ metrics:
73
+ - name: Average accuracy
74
+ type: accuracy
75
+ value: 62.27
76
+ - task:
77
+ type: text-generation
78
+ dataset:
79
+ name: OpenLLM-Ro/ro_gsm8k
80
+ type: OpenLLM-Ro/ro_gsm8k
81
+ metrics:
82
+ - name: Average accuracy
83
+ type: accuracy
84
+ value: 32.27
85
+ - task:
86
+ type: text-generation
87
+ dataset:
88
+ name: OpenLLM-Ro/ro_truthfulqa
89
+ type: OpenLLM-Ro/ro_truthfulqa
90
+ metrics:
91
+ - name: Average accuracy
92
+ type: accuracy
93
+ value: 50.12
94
+ - task:
95
+ type: text-generation
96
+ dataset:
97
+ name: LaRoSeDa_binary
98
+ type: LaRoSeDa_binary
99
+ metrics:
100
+ - name: Average macro-f1
101
+ type: macro-f1
102
+ value: 82.13
103
+ - task:
104
+ type: text-generation
105
+ dataset:
106
+ name: LaRoSeDa_multiclass
107
+ type: LaRoSeDa_multiclass
108
+ metrics:
109
+ - name: Average macro-f1
110
+ type: macro-f1
111
+ value: 65.24
112
+ - task:
113
+ type: text-generation
114
+ dataset:
115
+ name: LaRoSeDa_binary_finetuned
116
+ type: LaRoSeDa_binary_finetuned
117
+ metrics:
118
+ - name: Average macro-f1
119
+ type: macro-f1
120
+ value: 0.00
121
+ - task:
122
+ type: text-generation
123
+ dataset:
124
+ name: LaRoSeDa_multiclass_finetuned
125
+ type: LaRoSeDa_multiclass_finetuned
126
+ metrics:
127
+ - name: Average macro-f1
128
+ type: macro-f1
129
+ value: 0.00
130
+ - task:
131
+ type: text-generation
132
+ dataset:
133
+ name: WMT_EN-RO
134
+ type: WMT_EN-RO
135
+ metrics:
136
+ - name: Average bleu
137
+ type: bleu
138
+ value: 26.25
139
+ - task:
140
+ type: text-generation
141
+ dataset:
142
+ name: WMT_RO-EN
143
+ type: WMT_RO-EN
144
+ metrics:
145
+ - name: Average bleu
146
+ type: bleu
147
+ value: 6.09
148
+ - task:
149
+ type: text-generation
150
+ dataset:
151
+ name: WMT_EN-RO_finetuned
152
+ type: WMT_EN-RO_finetuned
153
+ metrics:
154
+ - name: Average bleu
155
+ type: bleu
156
+ value: 0.00
157
+ - task:
158
+ type: text-generation
159
+ dataset:
160
+ name: WMT_RO-EN_finetuned
161
+ type: WMT_RO-EN_finetuned
162
+ metrics:
163
+ - name: Average bleu
164
+ type: bleu
165
+ value: 0.00
166
+ - task:
167
+ type: text-generation
168
+ dataset:
169
+ name: XQuAD
170
+ type: XQuAD
171
+ metrics:
172
+ - name: Average exact_match
173
+ type: exact_match
174
+ value: 23.40
175
+ - task:
176
+ type: text-generation
177
+ dataset:
178
+ name: XQuAD
179
+ type: XQuAD
180
+ metrics:
181
+ - name: Average f1
182
+ type: f1
183
+ value: 45.80
184
+ - task:
185
+ type: text-generation
186
+ dataset:
187
+ name: XQuAD_finetuned
188
+ type: XQuAD_finetuned
189
+ metrics:
190
+ - name: Average exact_match
191
+ type: exact_match
192
+ value: 0.00
193
+ - task:
194
+ type: text-generation
195
+ dataset:
196
+ name: XQuAD_finetuned
197
+ type: XQuAD_finetuned
198
+ metrics:
199
+ - name: Average f1
200
+ type: f1
201
+ value: 0.00
202
+ - task:
203
+ type: text-generation
204
+ dataset:
205
+ name: STS
206
+ type: STS
207
+ metrics:
208
+ - name: Average spearman
209
+ type: spearman
210
+ value: 77.33
211
+ - task:
212
+ type: text-generation
213
+ dataset:
214
+ name: STS
215
+ type: STS
216
+ metrics:
217
+ - name: Average pearson
218
+ type: pearson
219
+ value: 76.60
220
+ - task:
221
+ type: text-generation
222
+ dataset:
223
+ name: STS_finetuned
224
+ type: STS_finetuned
225
+ metrics:
226
+ - name: Average spearman
227
+ type: spearman
228
+ value: 0.00
229
+ - task:
230
+ type: text-generation
231
+ dataset:
232
+ name: STS_finetuned
233
+ type: STS_finetuned
234
+ metrics:
235
+ - name: Average pearson
236
+ type: pearson
237
+ value: 0.00
238
+ - task:
239
+ type: text-generation
240
+ dataset:
241
+ name: RoMT-Bench
242
+ type: RoMT-Bench
243
+ metrics:
244
+ - name: First turn
245
+ type: Score
246
+ value: 6.44
247
+ - name: Second turn
248
+ type: Score
249
+ value: 5.33
250
+ - task:
251
+ type: text-generation
252
+ dataset:
253
+ name: OpenLLM-Ro/ro_arc_challenge
254
+ type: OpenLLM-Ro/ro_arc_challenge
255
+ metrics:
256
+ - name: 0-shot
257
+ type: accuracy
258
+ value: 51.67
259
+ - name: 1-shot
260
+ type: accuracy
261
+ value: 45.59
262
+ - name: 3-shot
263
+ type: accuracy
264
+ value: 48.24
265
+ - name: 5-shot
266
+ type: accuracy
267
+ value: 50.21
268
+ - name: 10-shot
269
+ type: accuracy
270
+ value: 54.07
271
+ - name: 25-shot
272
+ type: accuracy
273
+ value: 54.58
274
+ - task:
275
+ type: text-generation
276
+ dataset:
277
+ name: OpenLLM-Ro/ro_mmlu
278
+ type: OpenLLM-Ro/ro_mmlu
279
+ metrics:
280
+ - name: 0-shot
281
+ type: accuracy
282
+ value: 40.86
283
+ - name: 1-shot
284
+ type: accuracy
285
+ value: 48.67
286
+ - name: 3-shot
287
+ type: accuracy
288
+ value: 51.26
289
+ - name: 5-shot
290
+ type: accuracy
291
+ value: 50.75
292
+ - task:
293
+ type: text-generation
294
+ dataset:
295
+ name: OpenLLM-Ro/ro_winogrande
296
+ type: OpenLLM-Ro/ro_winogrande
297
+ metrics:
298
+ - name: 0-shot
299
+ type: accuracy
300
+ value: 64.80
301
+ - name: 1-shot
302
+ type: accuracy
303
+ value: 68.19
304
+ - name: 3-shot
305
+ type: accuracy
306
+ value: 70.09
307
+ - name: 5-shot
308
+ type: accuracy
309
+ value: 70.56
310
+ - task:
311
+ type: text-generation
312
+ dataset:
313
+ name: OpenLLM-Ro/ro_hellaswag
314
+ type: OpenLLM-Ro/ro_hellaswag
315
+ metrics:
316
+ - name: 0-shot
317
+ type: accuracy
318
+ value: 61.96
319
+ - name: 1-shot
320
+ type: accuracy
321
+ value: 60.88
322
+ - name: 3-shot
323
+ type: accuracy
324
+ value: 61.86
325
+ - name: 5-shot
326
+ type: accuracy
327
+ value: 62.73
328
+ - name: 10-shot
329
+ type: accuracy
330
+ value: 63.93
331
+ - task:
332
+ type: text-generation
333
+ dataset:
334
+ name: OpenLLM-Ro/ro_gsm8k
335
+ type: OpenLLM-Ro/ro_gsm8k
336
+ metrics:
337
+ - name: 0-shot
338
+ type: accuracy
339
+ value: 23.28
340
+ - name: 1-shot
341
+ type: accuracy
342
+ value: 34.95
343
+ - name: 3-shot
344
+ type: accuracy
345
+ value: 38.59
346
+ - task:
347
+ type: text-generation
348
+ dataset:
349
+ name: LaRoSeDa_binary
350
+ type: LaRoSeDa_binary
351
+ metrics:
352
+ - name: 0-shot
353
+ type: macro-f1
354
+ value: 34.36
355
+ - name: 1-shot
356
+ type: macro-f1
357
+ value: 97.87
358
+ - name: 3-shot
359
+ type: macro-f1
360
+ value: 98.40
361
+ - name: 5-shot
362
+ type: macro-f1
363
+ value: 97.90
364
+ - task:
365
+ type: text-generation
366
+ dataset:
367
+ name: LaRoSeDa_multiclass
368
+ type: LaRoSeDa_multiclass
369
+ metrics:
370
+ - name: 0-shot
371
+ type: macro-f1
372
+ value: 66.17
373
+ - name: 1-shot
374
+ type: macro-f1
375
+ value: 65.93
376
+ - name: 3-shot
377
+ type: macro-f1
378
+ value: 61.86
379
+ - name: 5-shot
380
+ type: macro-f1
381
+ value: 66.99
382
+ - task:
383
+ type: text-generation
384
+ dataset:
385
+ name: WMT_EN-RO
386
+ type: WMT_EN-RO
387
+ metrics:
388
+ - name: 0-shot
389
+ type: bleu
390
+ value: 18.43
391
+ - name: 1-shot
392
+ type: bleu
393
+ value: 28.25
394
+ - name: 3-shot
395
+ type: bleu
396
+ value: 29.45
397
+ - name: 5-shot
398
+ type: bleu
399
+ value: 28.88
400
+ - task:
401
+ type: text-generation
402
+ dataset:
403
+ name: WMT_RO-EN
404
+ type: WMT_RO-EN
405
+ metrics:
406
+ - name: 0-shot
407
+ type: bleu
408
+ value: 2.80
409
+ - name: 1-shot
410
+ type: bleu
411
+ value: 2.90
412
+ - name: 3-shot
413
+ type: bleu
414
+ value: 6.63
415
+ - name: 5-shot
416
+ type: bleu
417
+ value: 12.04
418
+ - task:
419
+ type: text-generation
420
+ dataset:
421
+ name: XQuAD_EM
422
+ type: XQuAD_EM
423
+ metrics:
424
+ - name: 0-shot
425
+ type: exact_match
426
+ value: 5.04
427
+ - name: 1-shot
428
+ type: exact_match
429
+ value: 22.44
430
+ - name: 3-shot
431
+ type: exact_match
432
+ value: 30.42
433
+ - name: 5-shot
434
+ type: exact_match
435
+ value: 35.71
436
+ - task:
437
+ type: text-generation
438
+ dataset:
439
+ name: XQuAD_F1
440
+ type: XQuAD_F1
441
+ metrics:
442
+ - name: 0-shot
443
+ type: f1
444
+ value: 23.36
445
+ - name: 1-shot
446
+ type: f1
447
+ value: 44.63
448
+ - name: 3-shot
449
+ type: f1
450
+ value: 54.78
451
+ - name: 5-shot
452
+ type: f1
453
+ value: 60.43
454
+ - task:
455
+ type: text-generation
456
+ dataset:
457
+ name: STS
458
+ type: STS
459
+ metrics:
460
+ - name: 0-shot
461
+ type: spearman
462
+ value: 73.38
463
+ - name: 1-shot
464
+ type: spearman
465
+ value: 78.93
466
+ - name: 3-shot
467
+ type: spearman
468
+ value: 79.68
469
+ - task:
470
+ type: text-generation
471
+ dataset:
472
+ name: STS
473
+ type: STS
474
+ metrics:
475
+ - name: 0-shot
476
+ type: pearson
477
+ value: 73.93
478
+ - name: 1-shot
479
+ type: pearson
480
+ value: 77.69
481
+ - name: 3-shot
482
+ type: pearson
483
+ value: 78.17
484
+
485
+ ---
486
+
487
+ # Model Card for Model ID
488
+
489
+ <!-- Provide a quick summary of what the model is/does. -->
490
+
491
+ RoMistral is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human alignedinstruct 7B model**. Links to other models can be found at the bottom of this page.
492
+
493
+ ## Model Details
494
+
495
+ ### Model Description
496
+
497
+ <!-- Provide a longer summary of what this model is. -->
498
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
499
+
500
+
501
+ - **Developed by:** OpenLLM-Ro
502
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
503
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
504
+ <!-- - **Model type:** [More Information Needed] -->
505
+ - **Language(s):** Romanian
506
+ - **License:** cc-by-nc-4.0
507
+ - **Finetuned from model:** [RoMistral-7b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2024-10-09)
508
+ - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer)
509
+
510
+
511
+ <!-- - **Finetuned from model [optional]:** [More Information Needed] -->
512
+
513
+ ### Model Sources
514
+
515
+ <!-- Provide the basic links for the model. -->
516
+
517
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
518
+ - **Paper:** https://arxiv.org/abs/2406.18266
519
+
520
+ ## Intended Use
521
+
522
+ ### Intended Use Cases
523
+
524
+ RoMistral is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
525
+
526
+ ### Out-of-Scope Use
527
+
528
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
529
+
530
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
531
+
532
+
533
+
534
+ ## How to Get Started with the Model
535
+
536
+ Use the code below to get started with the model.
537
+
538
+ ```python
539
+ from transformers import AutoTokenizer, AutoModelForCausalLM
540
+
541
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2024-10-09")
542
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2024-10-09")
543
+
544
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
545
+ chat = [
546
+ {"role": "user", "content": instruction},
547
+ ]
548
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
549
+
550
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
551
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
552
+ print(tokenizer.decode(outputs[0]))
553
+ ```
554
+
555
+ ## Academic Benchmarks
556
+
557
+
558
+ <table>
559
+ <tbody>
560
+ <tr>
561
+ <td><strong>Model</strong></td>
562
+ <td><strong><center>Average</center></strong></td>
563
+ <td><strong><center>ARC</center></strong></td>
564
+ <td><strong><center>MMLU</center></strong></td>
565
+ <td><strong><center>Winogrande</center></strong></td>
566
+ <td><strong><center>Hellaswag</center></strong></td>
567
+ <td><strong><center>GSM8k</center></strong></td>
568
+ <td><strong><center>TruthfulQA</center></strong></td>
569
+ </tr>
570
+ <tr>
571
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>47.40</center></td><td><center>46.29</center></td><td><center>47.00</center></td><td><center>58.78</center></td><td><center>54.27</center></td><td><center>13.47</center></td><td><center><strong>64.59</strong></center></td>
572
+ </tr>
573
+ <tr>
574
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>52.54</center></td><td><center>50.41</center></td><td><center><strong>51.61</strong></center></td><td><center>66.48</center></td><td><center>60.27</center></td><td><center><strong>34.19</strong></center></td><td><center>52.30</center></td>
575
+ </tr>
576
+ <tr>
577
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center><strong>52.91</strong></center></td><td><center><strong>52.27</strong></center></td><td><center>49.33</center></td><td><center><strong>70.03</strong></center></td><td><center><strong>62.88</strong></center></td><td><center>32.42</center></td><td><center>50.51</center></td>
578
+ </tr>
579
+ <tr>
580
+ <td><em>RoMistral-7b-Instruct-DPO-2024-10-09</em></td><td><center><em>51.95</em></center></td><td><center><em>50.73</em></center></td><td><center><em>47.88</em></center></td><td><center><em>68.41</em></center></td><td><center><em>62.27</em></center></td><td><center><em>32.27</em></center></td><td><center><em>50.12</em></center></td>
581
+ </tr>
582
+ </tbody>
583
+ </table>
584
+
585
+ ## Downstream tasks
586
+
587
+ <table>
588
+ <tbody>
589
+ <tr>
590
+ <td></td>
591
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
592
+ <td colspan="4"><center><strong>WMT</strong></center></td>
593
+ </tr>
594
+ <tr>
595
+ <td></td>
596
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
597
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
598
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
599
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
600
+ </tr>
601
+ <tr>
602
+ <td><strong>Model</strong></td>
603
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
604
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
605
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
606
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
607
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
608
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
609
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
610
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
611
+ </tr>
612
+ <tr>
613
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>96.97</center></td><td><center>56.66</center></td><td><center>98.83</center></td><td><center>87.32</center></td><td><center>18.60</center></td><td><center><strong>33.99</strong></center></td><td><center>26.19</center></td><td><center>39.88</center></td>
614
+ </tr>
615
+ <tr>
616
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center><strong>97.36</strong></center></td><td><center>67.55</center></td><td><center>98.80</center></td><td><center><strong>88.28</strong></center></td><td><center>27.93</center></td><td><center>13.21</center></td><td><center><strong>28.72</strong></center></td><td><center><strong>40.86</strong></center></td>
617
+ </tr>
618
+ <tr>
619
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>95.56</center></td><td><center><strong>67.83</strong></center></td><td><center><strong>99.00</strong></center></td><td><center>87.57</center></td><td><center><strong>28.28</strong></center></td><td><center>6.10</center></td><td><center>27.70</center></td><td><center>40.36</center></td>
620
+ </tr>
621
+ <tr>
622
+ <td><em>RoMistral-7b-Instruct-DPO-2024-10-09</em></td><td><center><em>82.13</em></center></td><td><center><em>65.24</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>26.25</em></center></td><td><center><em>6.09</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
623
+ </tr>
624
+ </tbody>
625
+ </table>
626
+
627
+
628
+ <table>
629
+ <tbody>
630
+ <tr>
631
+ <td></td>
632
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
633
+ <td colspan="4"><center><strong>STS</strong></center></td>
634
+ </tr>
635
+ <tr>
636
+ <td></td>
637
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
638
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
639
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
640
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
641
+ </tr>
642
+ <tr>
643
+ <td><strong>Model</strong></td>
644
+ <td><center><strong>(EM)</strong></center></td>
645
+ <td><center><strong>(F1)</strong></center></td>
646
+ <td><center><strong>(EM)</strong></center></td>
647
+ <td><center><strong>(F1)</strong></center></td>
648
+ <td><center><strong>(Spearman)</strong></center></td>
649
+ <td><center><strong>(Pearson)</strong></center></td>
650
+ <td><center><strong>(Spearman)</strong></center></td>
651
+ <td><center><strong>(Pearson)</strong></center></td>
652
+ </tr>
653
+ <tr>
654
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>27.92</center></td><td><center>50.71</center></td><td><center><strong>65.46</strong></center></td><td><center><strong>79.73</strong></center></td><td><center>62.62</center></td><td><center>60.86</center></td><td><center>84.92</center></td><td><center>85.44</center></td>
655
+ </tr>
656
+ <tr>
657
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center><strong>43.66</strong></center></td><td><center><strong>63.70</strong></center></td><td><center>55.04</center></td><td><center>72.31</center></td><td><center>77.43</center></td><td><center><strong>78.43</strong></center></td><td><center>87.25</center></td><td><center>87.79</center></td>
658
+ </tr>
659
+ <tr>
660
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>41.09</center></td><td><center>63.21</center></td><td><center>47.56</center></td><td><center>62.69</center></td><td><center><strong>78.47</strong></center></td><td><center>77.24</center></td><td><center><strong>87.28</strong></center></td><td><center><strong>87.88</strong></center></td>
661
+ </tr>
662
+ <tr>
663
+ <td><em>RoMistral-7b-Instruct-DPO-2024-10-09</em></td><td><center><em>23.40</em></center></td><td><center><em>45.80</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>77.33</em></center></td><td><center><em>76.60</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
664
+ </tr>
665
+ </tbody>
666
+ </table>
667
+
668
+
669
+ ## MT-Bench
670
+
671
+ <table>
672
+ <tbody>
673
+ <tr>
674
+ <td><strong>Model</strong></td>
675
+ <td><strong><center>Average</center></strong></td>
676
+ <td><strong><center>1st turn</center></strong></td>
677
+ <td><strong><center>2nd turn</center></strong></td>
678
+ <td><strong><center>Answers in Ro</center></strong></td>
679
+ </tr>
680
+ <tr>
681
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>5.03</center></td><td><center>5.05</center></td><td><center>5.00</center></td><td><center>154/160</center></td>
682
+ </tr>
683
+ <tr>
684
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>4.99</center></td><td><center>5.46</center></td><td><center>4.53</center></td><td><center><strong>160/160</strong></center></td>
685
+ </tr>
686
+ <tr>
687
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>5.29</center></td><td><center>5.86</center></td><td><center>4.72</center></td><td><center><strong>160/160</strong></center></td>
688
+ </tr>
689
+ <tr>
690
+ <td><em>RoMistral-7b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>5.88</strong></em></center></td><td><center><em><strong>6.44</strong></em></center></td><td><center><em><strong>5.33</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
691
+ </tr>
692
+ </tbody>
693
+ </table>
694
+
695
+
696
+ ## RoCulturaBench
697
+
698
+ <table>
699
+ <tbody>
700
+ <tr>
701
+ <td><strong>Model</strong></td>
702
+ <td><strong><center>Average</center></strong></td>
703
+ <td><strong><center>Answers in Ro</center></strong></td>
704
+ </tr>
705
+ <tr>
706
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>3.68</center></td><td><center>97/100</center></td>
707
+ </tr>
708
+ <tr>
709
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>3.38</center></td><td><center><strong>100/100</strong></center></td>
710
+ </tr>
711
+ <tr>
712
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>3.99</center></td><td><center><strong>100/100</strong></center></td>
713
+ </tr>
714
+ <tr>
715
+ <td><em>RoMistral-7b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>4.72</strong></em></center></td><td><center><em><strong>100/100</strong></em></center></td>
716
+ </tr>
717
+ </tbody>
718
+ </table>
719
+
720
+
721
+
722
+
723
+ ## RoMistral Model Family
724
+
725
+ | Model | Link |
726
+ |--------------------|:--------:|
727
+ |RoMistral-7b-Instruct-2024-05-17| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2024-05-17) |
728
+ |RoMistral-7b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2024-10-09) |
729
+ |*RoMistral-7b-Instruct-DPO-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2024-10-09) |
730
+
731
+
732
+ ## Citation
733
+
734
+ ```
735
+ @misc{masala2024vorbecstiromanecsterecipetrain,
736
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
737
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
738
+ year={2024},
739
+ eprint={2406.18266},
740
+ archivePrefix={arXiv},
741
+ primaryClass={cs.CL},
742
+ url={https://arxiv.org/abs/2406.18266},
743
+ }
744
+ ```
745
+ <!-- **APA:**
746
+
747
+ [More Information Needed] -->