Update README.md
Browse files
README.md
CHANGED
@@ -4,6 +4,480 @@ language:
|
|
4 |
- ro
|
5 |
base_model:
|
6 |
- OpenLLM-Ro/RoLlama2-7b-Base
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
---
|
9 |
|
@@ -73,16 +547,100 @@ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
|
|
73 |
print(tokenizer.decode(outputs[0]))
|
74 |
```
|
75 |
|
76 |
-
## Benchmarks
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
## Romanian MT-Bench
|
88 |
|
|
|
4 |
- ro
|
5 |
base_model:
|
6 |
- OpenLLM-Ro/RoLlama2-7b-Base
|
7 |
+
model-index:
|
8 |
+
- name: OpenLLM-Ro/RoLlama2-7b-Instruct
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: text-generation
|
12 |
+
dataset:
|
13 |
+
name: RoMT-Bench
|
14 |
+
type: RoMT-Bench
|
15 |
+
metrics:
|
16 |
+
- name: Score
|
17 |
+
type: Score
|
18 |
+
value: 3.86
|
19 |
+
- task:
|
20 |
+
type: text-generation
|
21 |
+
dataset:
|
22 |
+
name: RoCulturaBench
|
23 |
+
type: RoCulturaBench
|
24 |
+
metrics:
|
25 |
+
- name: Score
|
26 |
+
type: Score
|
27 |
+
value: 3.77
|
28 |
+
- task:
|
29 |
+
type: text-generation
|
30 |
+
dataset:
|
31 |
+
name: Romanian_Academic_Benchmarks
|
32 |
+
type: Romanian_Academic_Benchmarks
|
33 |
+
metrics:
|
34 |
+
- name: Average accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 45.71
|
37 |
+
- task:
|
38 |
+
type: text-generation
|
39 |
+
dataset:
|
40 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
41 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
42 |
+
metrics:
|
43 |
+
- name: Average accuracy
|
44 |
+
type: accuracy
|
45 |
+
value: 43.66
|
46 |
+
- task:
|
47 |
+
type: text-generation
|
48 |
+
dataset:
|
49 |
+
name: OpenLLM-Ro/ro_mmlu
|
50 |
+
type: OpenLLM-Ro/ro_mmlu
|
51 |
+
metrics:
|
52 |
+
- name: Average accuracy
|
53 |
+
type: accuracy
|
54 |
+
value: 39.70
|
55 |
+
- task:
|
56 |
+
type: text-generation
|
57 |
+
dataset:
|
58 |
+
name: OpenLLM-Ro/ro_winogrande
|
59 |
+
type: OpenLLM-Ro/ro_winogrande
|
60 |
+
metrics:
|
61 |
+
- name: Average accuracy
|
62 |
+
type: accuracy
|
63 |
+
value: 70.34
|
64 |
+
- task:
|
65 |
+
type: text-generation
|
66 |
+
dataset:
|
67 |
+
name: OpenLLM-Ro/ro_hellaswag
|
68 |
+
type: OpenLLM-Ro/ro_hellaswag
|
69 |
+
metrics:
|
70 |
+
- name: Average accuracy
|
71 |
+
type: accuracy
|
72 |
+
value: 57.36
|
73 |
+
- task:
|
74 |
+
type: text-generation
|
75 |
+
dataset:
|
76 |
+
name: OpenLLM-Ro/ro_gsm8k
|
77 |
+
type: OpenLLM-Ro/ro_gsm8k
|
78 |
+
metrics:
|
79 |
+
- name: Average accuracy
|
80 |
+
type: accuracy
|
81 |
+
value: 18.78
|
82 |
+
- task:
|
83 |
+
type: text-generation
|
84 |
+
dataset:
|
85 |
+
name: OpenLLM-Ro/ro_truthfulqa
|
86 |
+
type: OpenLLM-Ro/ro_truthfulqa
|
87 |
+
metrics:
|
88 |
+
- name: Average accuracy
|
89 |
+
type: accuracy
|
90 |
+
value: 44.44
|
91 |
+
- task:
|
92 |
+
type: text-generation
|
93 |
+
dataset:
|
94 |
+
name: LaRoSeDa_binary
|
95 |
+
type: LaRoSeDa_binary
|
96 |
+
metrics:
|
97 |
+
- name: Average macro-f1
|
98 |
+
type: macro-f1
|
99 |
+
value: 97.48
|
100 |
+
- task:
|
101 |
+
type: text-generation
|
102 |
+
dataset:
|
103 |
+
name: LaRoSeDa_multiclass
|
104 |
+
type: LaRoSeDa_multiclass
|
105 |
+
metrics:
|
106 |
+
- name: Average macro-f1
|
107 |
+
type: macro-f1
|
108 |
+
value: 65.26
|
109 |
+
- task:
|
110 |
+
type: text-generation
|
111 |
+
dataset:
|
112 |
+
name: LaRoSeDa_binary_finetuned
|
113 |
+
type: LaRoSeDa_binary_finetuned
|
114 |
+
metrics:
|
115 |
+
- name: Average macro-f1
|
116 |
+
type: macro-f1
|
117 |
+
value: 98.83
|
118 |
+
- task:
|
119 |
+
type: text-generation
|
120 |
+
dataset:
|
121 |
+
name: LaRoSeDa_multiclass_finetuned
|
122 |
+
type: LaRoSeDa_multiclass_finetuned
|
123 |
+
metrics:
|
124 |
+
- name: Average macro-f1
|
125 |
+
type: macro-f1
|
126 |
+
value: 87.28
|
127 |
+
- task:
|
128 |
+
type: text-generation
|
129 |
+
dataset:
|
130 |
+
name: WMT_EN-RO
|
131 |
+
type: WMT_EN-RO
|
132 |
+
metrics:
|
133 |
+
- name: Average bleu
|
134 |
+
type: bleu
|
135 |
+
value: 27.38
|
136 |
+
- task:
|
137 |
+
type: text-generation
|
138 |
+
dataset:
|
139 |
+
name: WMT_RO-EN
|
140 |
+
type: WMT_RO-EN
|
141 |
+
metrics:
|
142 |
+
- name: Average bleu
|
143 |
+
type: bleu
|
144 |
+
value: 10.32
|
145 |
+
- task:
|
146 |
+
type: text-generation
|
147 |
+
dataset:
|
148 |
+
name: WMT_EN-RO_finetuned
|
149 |
+
type: WMT_EN-RO_finetuned
|
150 |
+
metrics:
|
151 |
+
- name: Average bleu
|
152 |
+
type: bleu
|
153 |
+
value: 27.59
|
154 |
+
- task:
|
155 |
+
type: text-generation
|
156 |
+
dataset:
|
157 |
+
name: WMT_RO-EN_finetuned
|
158 |
+
type: WMT_RO-EN_finetuned
|
159 |
+
metrics:
|
160 |
+
- name: Average bleu
|
161 |
+
type: bleu
|
162 |
+
value: 40.13
|
163 |
+
- task:
|
164 |
+
type: text-generation
|
165 |
+
dataset:
|
166 |
+
name: XQuAD
|
167 |
+
type: XQuAD
|
168 |
+
metrics:
|
169 |
+
- name: Average exact_match
|
170 |
+
type: exact_match
|
171 |
+
value: 44.52
|
172 |
+
- task:
|
173 |
+
type: text-generation
|
174 |
+
dataset:
|
175 |
+
name: XQuAD
|
176 |
+
type: XQuAD
|
177 |
+
metrics:
|
178 |
+
- name: Average f1
|
179 |
+
type: f1
|
180 |
+
value: 64.75
|
181 |
+
- task:
|
182 |
+
type: text-generation
|
183 |
+
dataset:
|
184 |
+
name: XQuAD_finetuned
|
185 |
+
type: XQuAD_finetuned
|
186 |
+
metrics:
|
187 |
+
- name: Average exact_match
|
188 |
+
type: exact_match
|
189 |
+
value: 54.96
|
190 |
+
- task:
|
191 |
+
type: text-generation
|
192 |
+
dataset:
|
193 |
+
name: XQuAD_finetuned
|
194 |
+
type: XQuAD_finetuned
|
195 |
+
metrics:
|
196 |
+
- name: Average f1
|
197 |
+
type: f1
|
198 |
+
value: 70.20
|
199 |
+
- task:
|
200 |
+
type: text-generation
|
201 |
+
dataset:
|
202 |
+
name: STS
|
203 |
+
type: STS
|
204 |
+
metrics:
|
205 |
+
- name: Average spearman
|
206 |
+
type: spearman
|
207 |
+
value: 65.50
|
208 |
+
- task:
|
209 |
+
type: text-generation
|
210 |
+
dataset:
|
211 |
+
name: STS
|
212 |
+
type: STS
|
213 |
+
metrics:
|
214 |
+
- name: Average pearson
|
215 |
+
type: pearson
|
216 |
+
value: 67.79
|
217 |
+
- task:
|
218 |
+
type: text-generation
|
219 |
+
dataset:
|
220 |
+
name: STS_finetuned
|
221 |
+
type: STS_finetuned
|
222 |
+
metrics:
|
223 |
+
- name: Average spearman
|
224 |
+
type: spearman
|
225 |
+
value: 84.44
|
226 |
+
- task:
|
227 |
+
type: text-generation
|
228 |
+
dataset:
|
229 |
+
name: STS_finetuned
|
230 |
+
type: STS_finetuned
|
231 |
+
metrics:
|
232 |
+
- name: Average pearson
|
233 |
+
type: pearson
|
234 |
+
value: 84.76
|
235 |
+
- task:
|
236 |
+
type: text-generation
|
237 |
+
dataset:
|
238 |
+
name: RoMT-Bench
|
239 |
+
type: RoMT-Bench
|
240 |
+
metrics:
|
241 |
+
- name: First turn
|
242 |
+
type: Score
|
243 |
+
value: 4.67
|
244 |
+
- name: Second turn
|
245 |
+
type: Score
|
246 |
+
value: 3.04
|
247 |
+
- task:
|
248 |
+
type: text-generation
|
249 |
+
dataset:
|
250 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
251 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
252 |
+
metrics:
|
253 |
+
- name: 0-shot
|
254 |
+
type: accuracy
|
255 |
+
value: 41.73
|
256 |
+
- name: 1-shot
|
257 |
+
type: accuracy
|
258 |
+
value: 42.16
|
259 |
+
- name: 3-shot
|
260 |
+
type: accuracy
|
261 |
+
value: 43.53
|
262 |
+
- name: 5-shot
|
263 |
+
type: accuracy
|
264 |
+
value: 44.90
|
265 |
+
- name: 10-shot
|
266 |
+
type: accuracy
|
267 |
+
value: 44.99
|
268 |
+
- name: 25-shot
|
269 |
+
type: accuracy
|
270 |
+
value: 44.64
|
271 |
+
- task:
|
272 |
+
type: text-generation
|
273 |
+
dataset:
|
274 |
+
name: OpenLLM-Ro/ro_mmlu
|
275 |
+
type: OpenLLM-Ro/ro_mmlu
|
276 |
+
metrics:
|
277 |
+
- name: 0-shot
|
278 |
+
type: accuracy
|
279 |
+
value: 38.54
|
280 |
+
- name: 1-shot
|
281 |
+
type: accuracy
|
282 |
+
value: 39.36
|
283 |
+
- name: 3-shot
|
284 |
+
type: accuracy
|
285 |
+
value: 40.82
|
286 |
+
- name: 5-shot
|
287 |
+
type: accuracy
|
288 |
+
value: 40.07
|
289 |
+
- task:
|
290 |
+
type: text-generation
|
291 |
+
dataset:
|
292 |
+
name: OpenLLM-Ro/ro_winogrande
|
293 |
+
type: OpenLLM-Ro/ro_winogrande
|
294 |
+
metrics:
|
295 |
+
- name: 0-shot
|
296 |
+
type: accuracy
|
297 |
+
value: 72.61
|
298 |
+
- name: 1-shot
|
299 |
+
type: accuracy
|
300 |
+
value: 69.93
|
301 |
+
- name: 3-shot
|
302 |
+
type: accuracy
|
303 |
+
value: 70.40
|
304 |
+
- name: 5-shot
|
305 |
+
type: accuracy
|
306 |
+
value: 68.43
|
307 |
+
- task:
|
308 |
+
type: text-generation
|
309 |
+
dataset:
|
310 |
+
name: OpenLLM-Ro/ro_hellaswag
|
311 |
+
type: OpenLLM-Ro/ro_hellaswag
|
312 |
+
metrics:
|
313 |
+
- name: 0-shot
|
314 |
+
type: accuracy
|
315 |
+
value: 56.90
|
316 |
+
- name: 1-shot
|
317 |
+
type: accuracy
|
318 |
+
value: 57.07
|
319 |
+
- name: 3-shot
|
320 |
+
type: accuracy
|
321 |
+
value: 57.56
|
322 |
+
- name: 5-shot
|
323 |
+
type: accuracy
|
324 |
+
value: 57.35
|
325 |
+
- name: 10-shot
|
326 |
+
type: accuracy
|
327 |
+
value: 57.93
|
328 |
+
- task:
|
329 |
+
type: text-generation
|
330 |
+
dataset:
|
331 |
+
name: OpenLLM-Ro/ro_gsm8k
|
332 |
+
type: OpenLLM-Ro/ro_gsm8k
|
333 |
+
metrics:
|
334 |
+
- name: 0-shot
|
335 |
+
type: accuracy
|
336 |
+
value: 11.22
|
337 |
+
- name: 1-shot
|
338 |
+
type: accuracy
|
339 |
+
value: 21.38
|
340 |
+
- name: 3-shot
|
341 |
+
type: accuracy
|
342 |
+
value: 23.73
|
343 |
+
- task:
|
344 |
+
type: text-generation
|
345 |
+
dataset:
|
346 |
+
name: LaRoSeDa_binary
|
347 |
+
type: LaRoSeDa_binary
|
348 |
+
metrics:
|
349 |
+
- name: 0-shot
|
350 |
+
type: macro-f1
|
351 |
+
value: 97.67
|
352 |
+
- name: 1-shot
|
353 |
+
type: macro-f1
|
354 |
+
value: 96.77
|
355 |
+
- name: 3-shot
|
356 |
+
type: macro-f1
|
357 |
+
value: 97.60
|
358 |
+
- name: 5-shot
|
359 |
+
type: macro-f1
|
360 |
+
value: 97.87
|
361 |
+
- task:
|
362 |
+
type: text-generation
|
363 |
+
dataset:
|
364 |
+
name: LaRoSeDa_multiclass
|
365 |
+
type: LaRoSeDa_multiclass
|
366 |
+
metrics:
|
367 |
+
- name: 0-shot
|
368 |
+
type: macro-f1
|
369 |
+
value: 61.82
|
370 |
+
- name: 1-shot
|
371 |
+
type: macro-f1
|
372 |
+
value: 58.84
|
373 |
+
- name: 3-shot
|
374 |
+
type: macro-f1
|
375 |
+
value: 68.67
|
376 |
+
- name: 5-shot
|
377 |
+
type: macro-f1
|
378 |
+
value: 71.71
|
379 |
+
- task:
|
380 |
+
type: text-generation
|
381 |
+
dataset:
|
382 |
+
name: WMT_EN-RO
|
383 |
+
type: WMT_EN-RO
|
384 |
+
metrics:
|
385 |
+
- name: 0-shot
|
386 |
+
type: bleu
|
387 |
+
value: 19.71
|
388 |
+
- name: 1-shot
|
389 |
+
type: bleu
|
390 |
+
value: 29.62
|
391 |
+
- name: 3-shot
|
392 |
+
type: bleu
|
393 |
+
value: 30.11
|
394 |
+
- name: 5-shot
|
395 |
+
type: bleu
|
396 |
+
value: 30.10
|
397 |
+
- task:
|
398 |
+
type: text-generation
|
399 |
+
dataset:
|
400 |
+
name: WMT_RO-EN
|
401 |
+
type: WMT_RO-EN
|
402 |
+
metrics:
|
403 |
+
- name: 0-shot
|
404 |
+
type: bleu
|
405 |
+
value: 1.86
|
406 |
+
- name: 1-shot
|
407 |
+
type: bleu
|
408 |
+
value: 4.41
|
409 |
+
- name: 3-shot
|
410 |
+
type: bleu
|
411 |
+
value: 14.95
|
412 |
+
- name: 5-shot
|
413 |
+
type: bleu
|
414 |
+
value: 20.07
|
415 |
+
- task:
|
416 |
+
type: text-generation
|
417 |
+
dataset:
|
418 |
+
name: XQuAD_EM
|
419 |
+
type: XQuAD_EM
|
420 |
+
metrics:
|
421 |
+
- name: 0-shot
|
422 |
+
type: exact_match
|
423 |
+
value: 34.87
|
424 |
+
- name: 1-shot
|
425 |
+
type: exact_match
|
426 |
+
value: 44.96
|
427 |
+
- name: 3-shot
|
428 |
+
type: exact_match
|
429 |
+
value: 48.40
|
430 |
+
- name: 5-shot
|
431 |
+
type: exact_match
|
432 |
+
value: 49.83
|
433 |
+
- task:
|
434 |
+
type: text-generation
|
435 |
+
dataset:
|
436 |
+
name: XQuAD_F1
|
437 |
+
type: XQuAD_F1
|
438 |
+
metrics:
|
439 |
+
- name: 0-shot
|
440 |
+
type: f1
|
441 |
+
value: 58.07
|
442 |
+
- name: 1-shot
|
443 |
+
type: f1
|
444 |
+
value: 63.93
|
445 |
+
- name: 3-shot
|
446 |
+
type: f1
|
447 |
+
value: 67.89
|
448 |
+
- name: 5-shot
|
449 |
+
type: f1
|
450 |
+
value: 69.10
|
451 |
+
- task:
|
452 |
+
type: text-generation
|
453 |
+
dataset:
|
454 |
+
name: STS
|
455 |
+
type: STS
|
456 |
+
metrics:
|
457 |
+
- name: 0-shot
|
458 |
+
type: spearman
|
459 |
+
value: 61.14
|
460 |
+
- name: 1-shot
|
461 |
+
type: spearman
|
462 |
+
value: 66.91
|
463 |
+
- name: 3-shot
|
464 |
+
type: spearman
|
465 |
+
value: 68.46
|
466 |
+
- task:
|
467 |
+
type: text-generation
|
468 |
+
dataset:
|
469 |
+
name: STS
|
470 |
+
type: STS
|
471 |
+
metrics:
|
472 |
+
- name: 0-shot
|
473 |
+
type: pearson
|
474 |
+
value: 61.88
|
475 |
+
- name: 1-shot
|
476 |
+
type: pearson
|
477 |
+
value: 70.04
|
478 |
+
- name: 3-shot
|
479 |
+
type: pearson
|
480 |
+
value: 71.46
|
481 |
|
482 |
---
|
483 |
|
|
|
547 |
print(tokenizer.decode(outputs[0]))
|
548 |
```
|
549 |
|
550 |
+
## Academic Benchmarks
|
551 |
+
|
552 |
+
<table>
|
553 |
+
<tbody>
|
554 |
+
<tr>
|
555 |
+
<td><strong>Model</strong></td>
|
556 |
+
<td><strong><center>Average</center></strong></td>
|
557 |
+
<td><strong><center>ARC</center></strong></td>
|
558 |
+
<td><strong><center>MMLU</center></strong></td>
|
559 |
+
<td><strong><center>Winogrande</center></strong></td>
|
560 |
+
<td><strong><center>Hellaswag</center></strong></td>
|
561 |
+
<td><strong><center>GSM8k</center></strong></td>
|
562 |
+
<td><strong><center>TruthfulQA</center></strong></td>
|
563 |
+
</tr>
|
564 |
+
<tr>
|
565 |
+
<td>Llama-2-7b-chat</td><td><center>36.84</center></td><td><center>37.03</center></td><td><center>33.80</center></td><td><center>55.87</center></td><td><center>45.36</center></td><td><center>4.90</center></td><td><center>44.09</center></td>
|
566 |
+
</tr>
|
567 |
+
<tr>
|
568 |
+
<td><em>RoLlama2-7b-Instruct</em></td><td><center><em><strong>45.71</strong></em></center></td><td><center><em><strong>43.66</strong></em></center></td><td><center><em><strong>39.70</strong></em></center></td><td><center><em><strong>70.34</strong></em></center></td><td><center><em><strong>57.36</strong></em></center></td><td><center><em><strong>18.78</strong></em></center></td><td><center><em><strong>44.44</strong></em></center></td>
|
569 |
+
</tr>
|
570 |
+
</tbody>
|
571 |
+
</table>
|
572 |
+
|
573 |
+
## Downstream tasks
|
574 |
|
575 |
|
576 |
+
<table>
|
577 |
+
<tbody>
|
578 |
+
<tr>
|
579 |
+
<td></td>
|
580 |
+
<td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
|
581 |
+
<td colspan="4"><center><strong>WMT</strong></center></td>
|
582 |
+
</tr>
|
583 |
+
<tr>
|
584 |
+
<td></td>
|
585 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
586 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
587 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
588 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
589 |
+
</tr>
|
590 |
+
<tr>
|
591 |
+
<td><strong>Model</strong></td>
|
592 |
+
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
|
593 |
+
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
|
594 |
+
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
|
595 |
+
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
|
596 |
+
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
|
597 |
+
<td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
|
598 |
+
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
|
599 |
+
<td><center><strong>RO-EN<br>(Bleu)</strong></center>
|
600 |
+
</tr>
|
601 |
+
<tr>
|
602 |
+
<td>Llama-2-7b-chat</td><td><center>87.78</center></td><td><center>52.81</center></td><td><center>97.27</center></td><td><center>82.02</center></td><td><center>15.55</center></td><td><center><strong>28.53</strong></center></td><td><center>19.99</center></td><td><center>31.48</center></td>
|
603 |
+
</tr>
|
604 |
+
<tr>
|
605 |
+
<td><em>RoLlama2-7b-Instruct</em></td><td><center><em><strong>97.48</strong></em></center></td><td><center><em><strong>65.26</strong></em></center></td><td><center><em><strong>98.83</strong></em></center></td><td><center><em><strong>87.28</strong></em></center></td><td><center><em><strong>27.38</strong></em></center></td><td><center><em>10.32</em></center></td><td><center><em><strong>27.59</strong></em></center></td><td><center><em><strong>40.13</strong></em></center></td>
|
606 |
+
</tr>
|
607 |
+
</tbody>
|
608 |
+
</table>
|
609 |
+
|
610 |
+
|
611 |
+
<table>
|
612 |
+
<tbody>
|
613 |
+
<tr>
|
614 |
+
<td></td>
|
615 |
+
<td colspan="4"><center><strong>XQuAD</strong></center></td>
|
616 |
+
<td colspan="4"><center><strong>STS</strong></center></td>
|
617 |
+
</tr>
|
618 |
+
<tr>
|
619 |
+
<td></td>
|
620 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
621 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
622 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
623 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
624 |
+
</tr>
|
625 |
+
<tr>
|
626 |
+
<td><strong>Model</strong></td>
|
627 |
+
<td><center><strong>(EM)</strong></center></td>
|
628 |
+
<td><center><strong>(F1)</strong></center></td>
|
629 |
+
<td><center><strong>(EM)</strong></center></td>
|
630 |
+
<td><center><strong>(F1)</strong></center></td>
|
631 |
+
<td><center><strong>(Spearman)</strong></center></td>
|
632 |
+
<td><center><strong>(Pearson)</strong></center></td>
|
633 |
+
<td><center><strong>(Spearman)</strong></center></td>
|
634 |
+
<td><center><strong>(Pearson)</strong></center></td>
|
635 |
+
</tr>
|
636 |
+
<tr>
|
637 |
+
<td>Llama-2-7b-chat</td><td><center>32.35</center></td><td><center>54.00</center></td><td><center><strong>60.34</strong></center></td><td><center><strong>75.98</strong></center></td><td><center>32.56</center></td><td><center>31.99</center></td><td><center>74.08</center></td><td><center>72.64</center></td>
|
638 |
+
</tr>
|
639 |
+
<tr>
|
640 |
+
<td><em>RoLlama2-7b-Instruct</em></td><td><center><em><strong>44.52</strong></em></center></td><td><center><em><strong>64.75</strong></em></center></td><td><center><em>54.96</em></center></td><td><center><em>70.20</em></center></td><td><center><em><strong>65.50</strong></em></center></td><td><center><em><strong>67.79</strong></em></center></td><td><center><em><strong>84.44</strong></em></center></td><td><center><em><strong>84.76</strong></em></center></td>
|
641 |
+
</tr>
|
642 |
+
</tbody>
|
643 |
+
</table>
|
644 |
|
645 |
## Romanian MT-Bench
|
646 |
|