mihaimasala commited on
Commit
2c94f54
·
verified ·
1 Parent(s): 19c886b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +482 -475
README.md CHANGED
@@ -5,480 +5,487 @@ language:
5
  base_model:
6
  - OpenLLM-Ro/RoLlama2-7b-Base
7
  model-index:
8
- - name: OpenLLM-Ro/RoLlama2-7b-Instruct
9
- results:
10
- - task:
11
- type: text-generation
12
- dataset:
13
- name: RoMT-Bench
14
- type: RoMT-Bench
15
- metrics:
16
- - name: Score
17
- type: Score
18
- value: 3.86
19
- - task:
20
- type: text-generation
21
- dataset:
22
- name: RoCulturaBench
23
- type: RoCulturaBench
24
- metrics:
25
- - name: Score
26
- type: Score
27
- value: 3.77
28
- - task:
29
- type: text-generation
30
- dataset:
31
- name: Romanian_Academic_Benchmarks
32
- type: Romanian_Academic_Benchmarks
33
- metrics:
34
- - name: Average accuracy
35
- type: accuracy
36
- value: 45.71
37
- - task:
38
- type: text-generation
39
- dataset:
40
- name: OpenLLM-Ro/ro_arc_challenge
41
- type: OpenLLM-Ro/ro_arc_challenge
42
- metrics:
43
- - name: Average accuracy
44
- type: accuracy
45
- value: 43.66
46
- - task:
47
- type: text-generation
48
- dataset:
49
- name: OpenLLM-Ro/ro_mmlu
50
- type: OpenLLM-Ro/ro_mmlu
51
- metrics:
52
- - name: Average accuracy
53
- type: accuracy
54
- value: 39.70
55
- - task:
56
- type: text-generation
57
- dataset:
58
- name: OpenLLM-Ro/ro_winogrande
59
- type: OpenLLM-Ro/ro_winogrande
60
- metrics:
61
- - name: Average accuracy
62
- type: accuracy
63
- value: 70.34
64
- - task:
65
- type: text-generation
66
- dataset:
67
- name: OpenLLM-Ro/ro_hellaswag
68
- type: OpenLLM-Ro/ro_hellaswag
69
- metrics:
70
- - name: Average accuracy
71
- type: accuracy
72
- value: 57.36
73
- - task:
74
- type: text-generation
75
- dataset:
76
- name: OpenLLM-Ro/ro_gsm8k
77
- type: OpenLLM-Ro/ro_gsm8k
78
- metrics:
79
- - name: Average accuracy
80
- type: accuracy
81
- value: 18.78
82
- - task:
83
- type: text-generation
84
- dataset:
85
- name: OpenLLM-Ro/ro_truthfulqa
86
- type: OpenLLM-Ro/ro_truthfulqa
87
- metrics:
88
- - name: Average accuracy
89
- type: accuracy
90
- value: 44.44
91
- - task:
92
- type: text-generation
93
- dataset:
94
- name: LaRoSeDa_binary
95
- type: LaRoSeDa_binary
96
- metrics:
97
- - name: Average macro-f1
98
- type: macro-f1
99
- value: 97.48
100
- - task:
101
- type: text-generation
102
- dataset:
103
- name: LaRoSeDa_multiclass
104
- type: LaRoSeDa_multiclass
105
- metrics:
106
- - name: Average macro-f1
107
- type: macro-f1
108
- value: 65.26
109
- - task:
110
- type: text-generation
111
- dataset:
112
- name: LaRoSeDa_binary_finetuned
113
- type: LaRoSeDa_binary_finetuned
114
- metrics:
115
- - name: Average macro-f1
116
- type: macro-f1
117
- value: 98.83
118
- - task:
119
- type: text-generation
120
- dataset:
121
- name: LaRoSeDa_multiclass_finetuned
122
- type: LaRoSeDa_multiclass_finetuned
123
- metrics:
124
- - name: Average macro-f1
125
- type: macro-f1
126
- value: 87.28
127
- - task:
128
- type: text-generation
129
- dataset:
130
- name: WMT_EN-RO
131
- type: WMT_EN-RO
132
- metrics:
133
- - name: Average bleu
134
- type: bleu
135
- value: 27.38
136
- - task:
137
- type: text-generation
138
- dataset:
139
- name: WMT_RO-EN
140
- type: WMT_RO-EN
141
- metrics:
142
- - name: Average bleu
143
- type: bleu
144
- value: 10.32
145
- - task:
146
- type: text-generation
147
- dataset:
148
- name: WMT_EN-RO_finetuned
149
- type: WMT_EN-RO_finetuned
150
- metrics:
151
- - name: Average bleu
152
- type: bleu
153
- value: 27.59
154
- - task:
155
- type: text-generation
156
- dataset:
157
- name: WMT_RO-EN_finetuned
158
- type: WMT_RO-EN_finetuned
159
- metrics:
160
- - name: Average bleu
161
- type: bleu
162
- value: 40.13
163
- - task:
164
- type: text-generation
165
- dataset:
166
- name: XQuAD
167
- type: XQuAD
168
- metrics:
169
- - name: Average exact_match
170
- type: exact_match
171
- value: 44.52
172
- - task:
173
- type: text-generation
174
- dataset:
175
- name: XQuAD
176
- type: XQuAD
177
- metrics:
178
- - name: Average f1
179
- type: f1
180
- value: 64.75
181
- - task:
182
- type: text-generation
183
- dataset:
184
- name: XQuAD_finetuned
185
- type: XQuAD_finetuned
186
- metrics:
187
- - name: Average exact_match
188
- type: exact_match
189
- value: 54.96
190
- - task:
191
- type: text-generation
192
- dataset:
193
- name: XQuAD_finetuned
194
- type: XQuAD_finetuned
195
- metrics:
196
- - name: Average f1
197
- type: f1
198
- value: 70.20
199
- - task:
200
- type: text-generation
201
- dataset:
202
- name: STS
203
- type: STS
204
- metrics:
205
- - name: Average spearman
206
- type: spearman
207
- value: 65.50
208
- - task:
209
- type: text-generation
210
- dataset:
211
- name: STS
212
- type: STS
213
- metrics:
214
- - name: Average pearson
215
- type: pearson
216
- value: 67.79
217
- - task:
218
- type: text-generation
219
- dataset:
220
- name: STS_finetuned
221
- type: STS_finetuned
222
- metrics:
223
- - name: Average spearman
224
- type: spearman
225
- value: 84.44
226
- - task:
227
- type: text-generation
228
- dataset:
229
- name: STS_finetuned
230
- type: STS_finetuned
231
- metrics:
232
- - name: Average pearson
233
- type: pearson
234
- value: 84.76
235
- - task:
236
- type: text-generation
237
- dataset:
238
- name: RoMT-Bench
239
- type: RoMT-Bench
240
- metrics:
241
- - name: First turn
242
- type: Score
243
- value: 4.67
244
- - name: Second turn
245
- type: Score
246
- value: 3.04
247
- - task:
248
- type: text-generation
249
- dataset:
250
- name: OpenLLM-Ro/ro_arc_challenge
251
- type: OpenLLM-Ro/ro_arc_challenge
252
- metrics:
253
- - name: 0-shot
254
- type: accuracy
255
- value: 41.73
256
- - name: 1-shot
257
- type: accuracy
258
- value: 42.16
259
- - name: 3-shot
260
- type: accuracy
261
- value: 43.53
262
- - name: 5-shot
263
- type: accuracy
264
- value: 44.90
265
- - name: 10-shot
266
- type: accuracy
267
- value: 44.99
268
- - name: 25-shot
269
- type: accuracy
270
- value: 44.64
271
- - task:
272
- type: text-generation
273
- dataset:
274
- name: OpenLLM-Ro/ro_mmlu
275
- type: OpenLLM-Ro/ro_mmlu
276
- metrics:
277
- - name: 0-shot
278
- type: accuracy
279
- value: 38.54
280
- - name: 1-shot
281
- type: accuracy
282
- value: 39.36
283
- - name: 3-shot
284
- type: accuracy
285
- value: 40.82
286
- - name: 5-shot
287
- type: accuracy
288
- value: 40.07
289
- - task:
290
- type: text-generation
291
- dataset:
292
- name: OpenLLM-Ro/ro_winogrande
293
- type: OpenLLM-Ro/ro_winogrande
294
- metrics:
295
- - name: 0-shot
296
- type: accuracy
297
- value: 72.61
298
- - name: 1-shot
299
- type: accuracy
300
- value: 69.93
301
- - name: 3-shot
302
- type: accuracy
303
- value: 70.40
304
- - name: 5-shot
305
- type: accuracy
306
- value: 68.43
307
- - task:
308
- type: text-generation
309
- dataset:
310
- name: OpenLLM-Ro/ro_hellaswag
311
- type: OpenLLM-Ro/ro_hellaswag
312
- metrics:
313
- - name: 0-shot
314
- type: accuracy
315
- value: 56.90
316
- - name: 1-shot
317
- type: accuracy
318
- value: 57.07
319
- - name: 3-shot
320
- type: accuracy
321
- value: 57.56
322
- - name: 5-shot
323
- type: accuracy
324
- value: 57.35
325
- - name: 10-shot
326
- type: accuracy
327
- value: 57.93
328
- - task:
329
- type: text-generation
330
- dataset:
331
- name: OpenLLM-Ro/ro_gsm8k
332
- type: OpenLLM-Ro/ro_gsm8k
333
- metrics:
334
- - name: 0-shot
335
- type: accuracy
336
- value: 11.22
337
- - name: 1-shot
338
- type: accuracy
339
- value: 21.38
340
- - name: 3-shot
341
- type: accuracy
342
- value: 23.73
343
- - task:
344
- type: text-generation
345
- dataset:
346
- name: LaRoSeDa_binary
347
- type: LaRoSeDa_binary
348
- metrics:
349
- - name: 0-shot
350
- type: macro-f1
351
- value: 97.67
352
- - name: 1-shot
353
- type: macro-f1
354
- value: 96.77
355
- - name: 3-shot
356
- type: macro-f1
357
- value: 97.60
358
- - name: 5-shot
359
- type: macro-f1
360
- value: 97.87
361
- - task:
362
- type: text-generation
363
- dataset:
364
- name: LaRoSeDa_multiclass
365
- type: LaRoSeDa_multiclass
366
- metrics:
367
- - name: 0-shot
368
- type: macro-f1
369
- value: 61.82
370
- - name: 1-shot
371
- type: macro-f1
372
- value: 58.84
373
- - name: 3-shot
374
- type: macro-f1
375
- value: 68.67
376
- - name: 5-shot
377
- type: macro-f1
378
- value: 71.71
379
- - task:
380
- type: text-generation
381
- dataset:
382
- name: WMT_EN-RO
383
- type: WMT_EN-RO
384
- metrics:
385
- - name: 0-shot
386
- type: bleu
387
- value: 19.71
388
- - name: 1-shot
389
- type: bleu
390
- value: 29.62
391
- - name: 3-shot
392
- type: bleu
393
- value: 30.11
394
- - name: 5-shot
395
- type: bleu
396
- value: 30.10
397
- - task:
398
- type: text-generation
399
- dataset:
400
- name: WMT_RO-EN
401
- type: WMT_RO-EN
402
- metrics:
403
- - name: 0-shot
404
- type: bleu
405
- value: 1.86
406
- - name: 1-shot
407
- type: bleu
408
- value: 4.41
409
- - name: 3-shot
410
- type: bleu
411
- value: 14.95
412
- - name: 5-shot
413
- type: bleu
414
- value: 20.07
415
- - task:
416
- type: text-generation
417
- dataset:
418
- name: XQuAD_EM
419
- type: XQuAD_EM
420
- metrics:
421
- - name: 0-shot
422
- type: exact_match
423
- value: 34.87
424
- - name: 1-shot
425
- type: exact_match
426
- value: 44.96
427
- - name: 3-shot
428
- type: exact_match
429
- value: 48.40
430
- - name: 5-shot
431
- type: exact_match
432
- value: 49.83
433
- - task:
434
- type: text-generation
435
- dataset:
436
- name: XQuAD_F1
437
- type: XQuAD_F1
438
- metrics:
439
- - name: 0-shot
440
- type: f1
441
- value: 58.07
442
- - name: 1-shot
443
- type: f1
444
- value: 63.93
445
- - name: 3-shot
446
- type: f1
447
- value: 67.89
448
- - name: 5-shot
449
- type: f1
450
- value: 69.10
451
- - task:
452
- type: text-generation
453
- dataset:
454
- name: STS
455
- type: STS
456
- metrics:
457
- - name: 0-shot
458
- type: spearman
459
- value: 61.14
460
- - name: 1-shot
461
- type: spearman
462
- value: 66.91
463
- - name: 3-shot
464
- type: spearman
465
- value: 68.46
466
- - task:
467
- type: text-generation
468
- dataset:
469
- name: STS
470
- type: STS
471
- metrics:
472
- - name: 0-shot
473
- type: pearson
474
- value: 61.88
475
- - name: 1-shot
476
- type: pearson
477
- value: 70.04
478
- - name: 3-shot
479
- type: pearson
480
- value: 71.46
481
-
 
 
 
 
 
 
 
482
  ---
483
 
484
  # Model Card for Model ID
@@ -502,7 +509,7 @@ OpenLLM represents the first open-source effort to build a LLM specialized for R
502
  - **Language(s):** Romanian
503
  - **License:** cc-by-nc-4.0
504
  - **Finetuned from model:** [RoLlama2-7b-Base](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Base)
505
-
506
 
507
  ### Model Sources
508
 
 
5
  base_model:
6
  - OpenLLM-Ro/RoLlama2-7b-Base
7
  model-index:
8
+ - name: OpenLLM-Ro/RoLlama2-7b-Instruct
9
+ results:
10
+ - task:
11
+ type: text-generation
12
+ dataset:
13
+ name: RoMT-Bench
14
+ type: RoMT-Bench
15
+ metrics:
16
+ - name: Score
17
+ type: Score
18
+ value: 3.86
19
+ - task:
20
+ type: text-generation
21
+ dataset:
22
+ name: RoCulturaBench
23
+ type: RoCulturaBench
24
+ metrics:
25
+ - name: Score
26
+ type: Score
27
+ value: 3.77
28
+ - task:
29
+ type: text-generation
30
+ dataset:
31
+ name: Romanian_Academic_Benchmarks
32
+ type: Romanian_Academic_Benchmarks
33
+ metrics:
34
+ - name: Average accuracy
35
+ type: accuracy
36
+ value: 45.71
37
+ - task:
38
+ type: text-generation
39
+ dataset:
40
+ name: OpenLLM-Ro/ro_arc_challenge
41
+ type: OpenLLM-Ro/ro_arc_challenge
42
+ metrics:
43
+ - name: Average accuracy
44
+ type: accuracy
45
+ value: 43.66
46
+ - task:
47
+ type: text-generation
48
+ dataset:
49
+ name: OpenLLM-Ro/ro_mmlu
50
+ type: OpenLLM-Ro/ro_mmlu
51
+ metrics:
52
+ - name: Average accuracy
53
+ type: accuracy
54
+ value: 39.7
55
+ - task:
56
+ type: text-generation
57
+ dataset:
58
+ name: OpenLLM-Ro/ro_winogrande
59
+ type: OpenLLM-Ro/ro_winogrande
60
+ metrics:
61
+ - name: Average accuracy
62
+ type: accuracy
63
+ value: 70.34
64
+ - task:
65
+ type: text-generation
66
+ dataset:
67
+ name: OpenLLM-Ro/ro_hellaswag
68
+ type: OpenLLM-Ro/ro_hellaswag
69
+ metrics:
70
+ - name: Average accuracy
71
+ type: accuracy
72
+ value: 57.36
73
+ - task:
74
+ type: text-generation
75
+ dataset:
76
+ name: OpenLLM-Ro/ro_gsm8k
77
+ type: OpenLLM-Ro/ro_gsm8k
78
+ metrics:
79
+ - name: Average accuracy
80
+ type: accuracy
81
+ value: 18.78
82
+ - task:
83
+ type: text-generation
84
+ dataset:
85
+ name: OpenLLM-Ro/ro_truthfulqa
86
+ type: OpenLLM-Ro/ro_truthfulqa
87
+ metrics:
88
+ - name: Average accuracy
89
+ type: accuracy
90
+ value: 44.44
91
+ - task:
92
+ type: text-generation
93
+ dataset:
94
+ name: LaRoSeDa_binary
95
+ type: LaRoSeDa_binary
96
+ metrics:
97
+ - name: Average macro-f1
98
+ type: macro-f1
99
+ value: 97.48
100
+ - task:
101
+ type: text-generation
102
+ dataset:
103
+ name: LaRoSeDa_multiclass
104
+ type: LaRoSeDa_multiclass
105
+ metrics:
106
+ - name: Average macro-f1
107
+ type: macro-f1
108
+ value: 65.26
109
+ - task:
110
+ type: text-generation
111
+ dataset:
112
+ name: LaRoSeDa_binary_finetuned
113
+ type: LaRoSeDa_binary_finetuned
114
+ metrics:
115
+ - name: Average macro-f1
116
+ type: macro-f1
117
+ value: 98.83
118
+ - task:
119
+ type: text-generation
120
+ dataset:
121
+ name: LaRoSeDa_multiclass_finetuned
122
+ type: LaRoSeDa_multiclass_finetuned
123
+ metrics:
124
+ - name: Average macro-f1
125
+ type: macro-f1
126
+ value: 87.28
127
+ - task:
128
+ type: text-generation
129
+ dataset:
130
+ name: WMT_EN-RO
131
+ type: WMT_EN-RO
132
+ metrics:
133
+ - name: Average bleu
134
+ type: bleu
135
+ value: 27.38
136
+ - task:
137
+ type: text-generation
138
+ dataset:
139
+ name: WMT_RO-EN
140
+ type: WMT_RO-EN
141
+ metrics:
142
+ - name: Average bleu
143
+ type: bleu
144
+ value: 10.32
145
+ - task:
146
+ type: text-generation
147
+ dataset:
148
+ name: WMT_EN-RO_finetuned
149
+ type: WMT_EN-RO_finetuned
150
+ metrics:
151
+ - name: Average bleu
152
+ type: bleu
153
+ value: 27.59
154
+ - task:
155
+ type: text-generation
156
+ dataset:
157
+ name: WMT_RO-EN_finetuned
158
+ type: WMT_RO-EN_finetuned
159
+ metrics:
160
+ - name: Average bleu
161
+ type: bleu
162
+ value: 40.13
163
+ - task:
164
+ type: text-generation
165
+ dataset:
166
+ name: XQuAD
167
+ type: XQuAD
168
+ metrics:
169
+ - name: Average exact_match
170
+ type: exact_match
171
+ value: 44.52
172
+ - task:
173
+ type: text-generation
174
+ dataset:
175
+ name: XQuAD
176
+ type: XQuAD
177
+ metrics:
178
+ - name: Average f1
179
+ type: f1
180
+ value: 64.75
181
+ - task:
182
+ type: text-generation
183
+ dataset:
184
+ name: XQuAD_finetuned
185
+ type: XQuAD_finetuned
186
+ metrics:
187
+ - name: Average exact_match
188
+ type: exact_match
189
+ value: 54.96
190
+ - task:
191
+ type: text-generation
192
+ dataset:
193
+ name: XQuAD_finetuned
194
+ type: XQuAD_finetuned
195
+ metrics:
196
+ - name: Average f1
197
+ type: f1
198
+ value: 70.2
199
+ - task:
200
+ type: text-generation
201
+ dataset:
202
+ name: STS
203
+ type: STS
204
+ metrics:
205
+ - name: Average spearman
206
+ type: spearman
207
+ value: 65.5
208
+ - task:
209
+ type: text-generation
210
+ dataset:
211
+ name: STS
212
+ type: STS
213
+ metrics:
214
+ - name: Average pearson
215
+ type: pearson
216
+ value: 67.79
217
+ - task:
218
+ type: text-generation
219
+ dataset:
220
+ name: STS_finetuned
221
+ type: STS_finetuned
222
+ metrics:
223
+ - name: Average spearman
224
+ type: spearman
225
+ value: 84.44
226
+ - task:
227
+ type: text-generation
228
+ dataset:
229
+ name: STS_finetuned
230
+ type: STS_finetuned
231
+ metrics:
232
+ - name: Average pearson
233
+ type: pearson
234
+ value: 84.76
235
+ - task:
236
+ type: text-generation
237
+ dataset:
238
+ name: RoMT-Bench
239
+ type: RoMT-Bench
240
+ metrics:
241
+ - name: First turn
242
+ type: Score
243
+ value: 4.67
244
+ - name: Second turn
245
+ type: Score
246
+ value: 3.04
247
+ - task:
248
+ type: text-generation
249
+ dataset:
250
+ name: OpenLLM-Ro/ro_arc_challenge
251
+ type: OpenLLM-Ro/ro_arc_challenge
252
+ metrics:
253
+ - name: 0-shot
254
+ type: accuracy
255
+ value: 41.73
256
+ - name: 1-shot
257
+ type: accuracy
258
+ value: 42.16
259
+ - name: 3-shot
260
+ type: accuracy
261
+ value: 43.53
262
+ - name: 5-shot
263
+ type: accuracy
264
+ value: 44.9
265
+ - name: 10-shot
266
+ type: accuracy
267
+ value: 44.99
268
+ - name: 25-shot
269
+ type: accuracy
270
+ value: 44.64
271
+ - task:
272
+ type: text-generation
273
+ dataset:
274
+ name: OpenLLM-Ro/ro_mmlu
275
+ type: OpenLLM-Ro/ro_mmlu
276
+ metrics:
277
+ - name: 0-shot
278
+ type: accuracy
279
+ value: 38.54
280
+ - name: 1-shot
281
+ type: accuracy
282
+ value: 39.36
283
+ - name: 3-shot
284
+ type: accuracy
285
+ value: 40.82
286
+ - name: 5-shot
287
+ type: accuracy
288
+ value: 40.07
289
+ - task:
290
+ type: text-generation
291
+ dataset:
292
+ name: OpenLLM-Ro/ro_winogrande
293
+ type: OpenLLM-Ro/ro_winogrande
294
+ metrics:
295
+ - name: 0-shot
296
+ type: accuracy
297
+ value: 72.61
298
+ - name: 1-shot
299
+ type: accuracy
300
+ value: 69.93
301
+ - name: 3-shot
302
+ type: accuracy
303
+ value: 70.4
304
+ - name: 5-shot
305
+ type: accuracy
306
+ value: 68.43
307
+ - task:
308
+ type: text-generation
309
+ dataset:
310
+ name: OpenLLM-Ro/ro_hellaswag
311
+ type: OpenLLM-Ro/ro_hellaswag
312
+ metrics:
313
+ - name: 0-shot
314
+ type: accuracy
315
+ value: 56.9
316
+ - name: 1-shot
317
+ type: accuracy
318
+ value: 57.07
319
+ - name: 3-shot
320
+ type: accuracy
321
+ value: 57.56
322
+ - name: 5-shot
323
+ type: accuracy
324
+ value: 57.35
325
+ - name: 10-shot
326
+ type: accuracy
327
+ value: 57.93
328
+ - task:
329
+ type: text-generation
330
+ dataset:
331
+ name: OpenLLM-Ro/ro_gsm8k
332
+ type: OpenLLM-Ro/ro_gsm8k
333
+ metrics:
334
+ - name: 0-shot
335
+ type: accuracy
336
+ value: 11.22
337
+ - name: 1-shot
338
+ type: accuracy
339
+ value: 21.38
340
+ - name: 3-shot
341
+ type: accuracy
342
+ value: 23.73
343
+ - task:
344
+ type: text-generation
345
+ dataset:
346
+ name: LaRoSeDa_binary
347
+ type: LaRoSeDa_binary
348
+ metrics:
349
+ - name: 0-shot
350
+ type: macro-f1
351
+ value: 97.67
352
+ - name: 1-shot
353
+ type: macro-f1
354
+ value: 96.77
355
+ - name: 3-shot
356
+ type: macro-f1
357
+ value: 97.6
358
+ - name: 5-shot
359
+ type: macro-f1
360
+ value: 97.87
361
+ - task:
362
+ type: text-generation
363
+ dataset:
364
+ name: LaRoSeDa_multiclass
365
+ type: LaRoSeDa_multiclass
366
+ metrics:
367
+ - name: 0-shot
368
+ type: macro-f1
369
+ value: 61.82
370
+ - name: 1-shot
371
+ type: macro-f1
372
+ value: 58.84
373
+ - name: 3-shot
374
+ type: macro-f1
375
+ value: 68.67
376
+ - name: 5-shot
377
+ type: macro-f1
378
+ value: 71.71
379
+ - task:
380
+ type: text-generation
381
+ dataset:
382
+ name: WMT_EN-RO
383
+ type: WMT_EN-RO
384
+ metrics:
385
+ - name: 0-shot
386
+ type: bleu
387
+ value: 19.71
388
+ - name: 1-shot
389
+ type: bleu
390
+ value: 29.62
391
+ - name: 3-shot
392
+ type: bleu
393
+ value: 30.11
394
+ - name: 5-shot
395
+ type: bleu
396
+ value: 30.1
397
+ - task:
398
+ type: text-generation
399
+ dataset:
400
+ name: WMT_RO-EN
401
+ type: WMT_RO-EN
402
+ metrics:
403
+ - name: 0-shot
404
+ type: bleu
405
+ value: 1.86
406
+ - name: 1-shot
407
+ type: bleu
408
+ value: 4.41
409
+ - name: 3-shot
410
+ type: bleu
411
+ value: 14.95
412
+ - name: 5-shot
413
+ type: bleu
414
+ value: 20.07
415
+ - task:
416
+ type: text-generation
417
+ dataset:
418
+ name: XQuAD_EM
419
+ type: XQuAD_EM
420
+ metrics:
421
+ - name: 0-shot
422
+ type: exact_match
423
+ value: 34.87
424
+ - name: 1-shot
425
+ type: exact_match
426
+ value: 44.96
427
+ - name: 3-shot
428
+ type: exact_match
429
+ value: 48.4
430
+ - name: 5-shot
431
+ type: exact_match
432
+ value: 49.83
433
+ - task:
434
+ type: text-generation
435
+ dataset:
436
+ name: XQuAD_F1
437
+ type: XQuAD_F1
438
+ metrics:
439
+ - name: 0-shot
440
+ type: f1
441
+ value: 58.07
442
+ - name: 1-shot
443
+ type: f1
444
+ value: 63.93
445
+ - name: 3-shot
446
+ type: f1
447
+ value: 67.89
448
+ - name: 5-shot
449
+ type: f1
450
+ value: 69.1
451
+ - task:
452
+ type: text-generation
453
+ dataset:
454
+ name: STS
455
+ type: STS
456
+ metrics:
457
+ - name: 0-shot
458
+ type: spearman
459
+ value: 61.14
460
+ - name: 1-shot
461
+ type: spearman
462
+ value: 66.91
463
+ - name: 3-shot
464
+ type: spearman
465
+ value: 68.46
466
+ - task:
467
+ type: text-generation
468
+ dataset:
469
+ name: STS
470
+ type: STS
471
+ metrics:
472
+ - name: 0-shot
473
+ type: pearson
474
+ value: 61.88
475
+ - name: 1-shot
476
+ type: pearson
477
+ value: 70.04
478
+ - name: 3-shot
479
+ type: pearson
480
+ value: 71.46
481
+ datasets:
482
+ - OpenLLM-Ro/ro_sft_alpaca
483
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
484
+ - OpenLLM-Ro/ro_sft_dolly
485
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
486
+ - OpenLLM-Ro/ro_sft_norobots
487
+ - OpenLLM-Ro/ro_sft_orca
488
+ - OpenLLM-Ro/ro_sft_camel
489
  ---
490
 
491
  # Model Card for Model ID
 
509
  - **Language(s):** Romanian
510
  - **License:** cc-by-nc-4.0
511
  - **Finetuned from model:** [RoLlama2-7b-Base](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Base)
512
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel)
513
 
514
  ### Model Sources
515