Update README.md
Browse files
README.md
CHANGED
@@ -10,14 +10,19 @@ datasets:
|
|
10 |
pipeline_tag: image-feature-extraction
|
11 |
base_model: OpenGVLab/InternViT-6B-448px-V1-2
|
12 |
base_model_relation: finetune
|
|
|
13 |
---
|
14 |
|
15 |
# InternViT-6B-448px-V1-5
|
16 |
|
17 |
-
[\[π GitHub\]](https://github.com/OpenGVLab/InternVL) [\[π Blog\]](https://internvl.github.io/blog/) [\[π InternVL 1.0
|
18 |
|
19 |
[\[π¨οΈ Chat Demo\]](https://internvl.opengvlab.com/) [\[π€ HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[π Quick Start\]](#quick-start) [\[π δΈζ解读\]](https://zhuanlan.zhihu.com/p/706547971) [\[π Documents\]](https://internvl.readthedocs.io/en/latest/)
|
20 |
|
|
|
|
|
|
|
|
|
21 |
We develop InternViT-6B-448px-V1-5 based on the pre-training of the strong foundation of [InternViT-6B-448px-V1-2](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2). In this update, the resolution of training images is expanded from 448×448 to dynamic 448×448, where the basic tile size is 448×448 and the number of tiles ranges from 1 to 12.
|
22 |
Additionally, we enhance the data scale, quality, and diversity of the pre-training dataset, resulting in the powerful robustness, OCR capability, and high-resolution processing capability of our
|
23 |
1.5 version model.
|
@@ -59,6 +64,12 @@ outputs = model(pixel_values)
|
|
59 |
If you find this project useful in your research, please consider citing:
|
60 |
|
61 |
```BibTeX
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
@article{chen2023internvl,
|
63 |
title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
|
64 |
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
|
|
|
10 |
pipeline_tag: image-feature-extraction
|
11 |
base_model: OpenGVLab/InternViT-6B-448px-V1-2
|
12 |
base_model_relation: finetune
|
13 |
+
new_version: OpenGVLab/InternViT-6B-448px-V2_5
|
14 |
---
|
15 |
|
16 |
# InternViT-6B-448px-V1-5
|
17 |
|
18 |
+
[\[π GitHub\]](https://github.com/OpenGVLab/InternVL) [\[π Blog\]](https://internvl.github.io/blog/) [\[π InternVL 1.0\]](https://arxiv.org/abs/2312.14238) [\[π InternVL 1.5\]](https://arxiv.org/abs/2404.16821) [\[π Mini-InternVL\]](https://arxiv.org/abs/2410.16261)
|
19 |
|
20 |
[\[π¨οΈ Chat Demo\]](https://internvl.opengvlab.com/) [\[π€ HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[π Quick Start\]](#quick-start) [\[π δΈζ解读\]](https://zhuanlan.zhihu.com/p/706547971) [\[π Documents\]](https://internvl.readthedocs.io/en/latest/)
|
21 |
|
22 |
+
<div align="center">
|
23 |
+
<img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
|
24 |
+
</div>
|
25 |
+
|
26 |
We develop InternViT-6B-448px-V1-5 based on the pre-training of the strong foundation of [InternViT-6B-448px-V1-2](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2). In this update, the resolution of training images is expanded from 448×448 to dynamic 448×448, where the basic tile size is 448×448 and the number of tiles ranges from 1 to 12.
|
27 |
Additionally, we enhance the data scale, quality, and diversity of the pre-training dataset, resulting in the powerful robustness, OCR capability, and high-resolution processing capability of our
|
28 |
1.5 version model.
|
|
|
64 |
If you find this project useful in your research, please consider citing:
|
65 |
|
66 |
```BibTeX
|
67 |
+
@article{gao2024mini,
|
68 |
+
title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
|
69 |
+
author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
|
70 |
+
journal={arXiv preprint arXiv:2410.16261},
|
71 |
+
year={2024}
|
72 |
+
}
|
73 |
@article{chen2023internvl,
|
74 |
title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
|
75 |
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
|