Weiyun1025 commited on
Commit
131516d
·
verified ·
1 Parent(s): 4731937

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
chat_template.jinja ADDED
@@ -0,0 +1,397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {#-
2
+ In addition to the normal inputs of `messages` and `tools`, this template also accepts the
3
+ following kwargs:
4
+ - "builtin_tools": A list, can contain "browser" and/or "python".
5
+ - "model_identity": A string that optionally describes the model identity.
6
+ - "reasoning_effort": A string that describes the reasoning effort, defaults to "medium".
7
+ #}
8
+
9
+ {#- Tool Definition Rendering ============================================== #}
10
+ {%- macro render_typescript_type(param_spec, required_params, is_nullable=false) -%}
11
+ {%- if param_spec.type == "array" -%}
12
+ {%- if param_spec['items'] -%}
13
+ {%- if param_spec['items']['type'] == "string" -%}
14
+ {{- "string[]" }}
15
+ {%- elif param_spec['items']['type'] == "number" -%}
16
+ {{- "number[]" }}
17
+ {%- elif param_spec['items']['type'] == "integer" -%}
18
+ {{- "number[]" }}
19
+ {%- elif param_spec['items']['type'] == "boolean" -%}
20
+ {{- "boolean[]" }}
21
+ {%- else -%}
22
+ {%- set inner_type = render_typescript_type(param_spec['items'], required_params) -%}
23
+ {%- if inner_type == "object | object" or inner_type|length > 50 -%}
24
+ {{- "any[]" }}
25
+ {%- else -%}
26
+ {{- inner_type + "[]" }}
27
+ {%- endif -%}
28
+ {%- endif -%}
29
+ {%- if param_spec.nullable -%}
30
+ {{- " | null" }}
31
+ {%- endif -%}
32
+ {%- else -%}
33
+ {{- "any[]" }}
34
+ {%- if param_spec.nullable -%}
35
+ {{- " | null" }}
36
+ {%- endif -%}
37
+ {%- endif -%}
38
+ {%- elif param_spec.type is defined and param_spec.type is iterable and param_spec.type is not string and param_spec.type is not mapping and param_spec.type[0] is defined -%}
39
+ {#- Handle array of types like ["object", "object"] from Union[dict, list] #}
40
+ {%- if param_spec.type | length > 1 -%}
41
+ {{- param_spec.type | join(" | ") }}
42
+ {%- else -%}
43
+ {{- param_spec.type[0] }}
44
+ {%- endif -%}
45
+ {%- elif param_spec.oneOf -%}
46
+ {#- Handle oneOf schemas - check for complex unions and fallback to any #}
47
+ {%- set has_object_variants = false -%}
48
+ {%- for variant in param_spec.oneOf -%}
49
+ {%- if variant.type == "object" -%}
50
+ {%- set has_object_variants = true -%}
51
+ {%- endif -%}
52
+ {%- endfor -%}
53
+ {%- if has_object_variants and param_spec.oneOf|length > 1 -%}
54
+ {{- "any" }}
55
+ {%- else -%}
56
+ {%- for variant in param_spec.oneOf -%}
57
+ {{- render_typescript_type(variant, required_params) -}}
58
+ {%- if variant.description %}
59
+ {{- "// " + variant.description }}
60
+ {%- endif -%}
61
+ {%- if variant.default is defined %}
62
+ {{ "// default: " + variant.default|tojson }}
63
+ {%- endif -%}
64
+ {%- if not loop.last %}
65
+ {{- " | " }}
66
+ {% endif -%}
67
+ {%- endfor -%}
68
+ {%- endif -%}
69
+ {%- elif param_spec.type == "string" -%}
70
+ {%- if param_spec.enum -%}
71
+ {{- '"' + param_spec.enum|join('" | "') + '"' -}}
72
+ {%- else -%}
73
+ {{- "string" }}
74
+ {%- if param_spec.nullable %}
75
+ {{- " | null" }}
76
+ {%- endif -%}
77
+ {%- endif -%}
78
+ {%- elif param_spec.type == "number" -%}
79
+ {{- "number" }}
80
+ {%- elif param_spec.type == "integer" -%}
81
+ {{- "number" }}
82
+ {%- elif param_spec.type == "boolean" -%}
83
+ {{- "boolean" }}
84
+
85
+ {%- elif param_spec.type == "object" -%}
86
+ {%- if param_spec.properties -%}
87
+ {{- "{
88
+ " }}
89
+ {%- for prop_name, prop_spec in param_spec.properties.items() -%}
90
+ {{- prop_name -}}
91
+ {%- if prop_name not in (param_spec.required or []) -%}
92
+ {{- "?" }}
93
+ {%- endif -%}
94
+ {{- ": " }}
95
+ {{ render_typescript_type(prop_spec, param_spec.required or []) }}
96
+ {%- if not loop.last -%}
97
+ {{-", " }}
98
+ {%- endif -%}
99
+ {%- endfor -%}
100
+ {{- "}" }}
101
+ {%- else -%}
102
+ {{- "object" }}
103
+ {%- endif -%}
104
+ {%- else -%}
105
+ {{- "any" }}
106
+ {%- endif -%}
107
+ {%- endmacro -%}
108
+
109
+ {%- macro render_tool_namespace(namespace_name, tools) -%}
110
+ {{- "## " + namespace_name + "
111
+
112
+ " }}
113
+ {{- "namespace " + namespace_name + " {
114
+
115
+ " }}
116
+ {%- for tool in tools %}
117
+ {%- set tool = tool.function %}
118
+ {{- "// " + tool.description + "
119
+ " }}
120
+ {{- "type "+ tool.name + " = " }}
121
+ {%- if tool.parameters and tool.parameters.properties %}
122
+ {{- "(_: {
123
+ " }}
124
+ {%- for param_name, param_spec in tool.parameters.properties.items() %}
125
+ {%- if param_spec.description %}
126
+ {{- "// " + param_spec.description + "
127
+ " }}
128
+ {%- endif %}
129
+ {{- param_name }}
130
+ {%- if param_name not in (tool.parameters.required or []) -%}
131
+ {{- "?" }}
132
+ {%- endif -%}
133
+ {{- ": " }}
134
+ {{- render_typescript_type(param_spec, tool.parameters.required or []) }}
135
+ {%- if param_spec.default is defined -%}
136
+ {%- if param_spec.enum %}
137
+ {{- ", // default: " + param_spec.default }}
138
+ {%- elif param_spec.oneOf %}
139
+ {{- "// default: " + param_spec.default }}
140
+ {%- else %}
141
+ {{- ", // default: " + param_spec.default|tojson }}
142
+ {%- endif -%}
143
+ {%- endif -%}
144
+ {%- if not loop.last %}
145
+ {{- ",
146
+ " }}
147
+ {%- else %}
148
+ {{- "
149
+ " }}
150
+ {%- endif -%}
151
+ {%- endfor %}
152
+ {{- "}) => any;
153
+
154
+ " }}
155
+ {%- else -%}
156
+ {{- "() => any;
157
+
158
+ " }}
159
+ {%- endif -%}
160
+ {%- endfor %}
161
+ {{- "} // namespace " + namespace_name }}
162
+ {%- endmacro -%}
163
+
164
+ {%- macro render_builtin_tools(browser_tool, python_tool) -%}
165
+ {%- if browser_tool %}
166
+ {{- "## browser
167
+
168
+ " }}
169
+ {{- "// Tool for browsing.
170
+ " }}
171
+ {{- "// The `cursor` appears in brackets before each browsing display: `[{cursor}]`.
172
+ " }}
173
+ {{- "// Cite information from the tool using the following format:
174
+ " }}
175
+ {{- "// `【{cursor}†L{line_start}(-L{line_end})?】`, for example: `【6†L9-L11】` or `【8†L3】`.
176
+ " }}
177
+ {{- "// Do not quote more than 10 words directly from the tool output.
178
+ " }}
179
+ {{- "// sources=web (default: web)
180
+ " }}
181
+ {{- "namespace browser {
182
+
183
+ " }}
184
+ {{- "// Searches for information related to `query` and displays `topn` results.
185
+ " }}
186
+ {{- "type search = (_: {
187
+ " }}
188
+ {{- "query: string,
189
+ " }}
190
+ {{- "topn?: number, // default: 10
191
+ " }}
192
+ {{- "source?: string,
193
+ " }}
194
+ {{- "}) => any;
195
+
196
+ " }}
197
+ {{- "// Opens the link `id` from the page indicated by `cursor` starting at line number `loc`, showing `num_lines` lines.
198
+ " }}
199
+ {{- "// Valid link ids are displayed with the formatting: `【{id}†.*】`.
200
+ " }}
201
+ {{- "// If `cursor` is not provided, the most recent page is implied.
202
+ " }}
203
+ {{- "// If `id` is a string, it is treated as a fully qualified URL associated with `source`.
204
+ " }}
205
+ {{- "// If `loc` is not provided, the viewport will be positioned at the beginning of the document or centered on the most relevant passage, if available.
206
+ " }}
207
+ {{- "// Use this function without `id` to scroll to a new location of an opened page.
208
+ " }}
209
+ {{- "type open = (_: {
210
+ " }}
211
+ {{- "id?: number | string, // default: -1
212
+ " }}
213
+ {{- "cursor?: number, // default: -1
214
+ " }}
215
+ {{- "loc?: number, // default: -1
216
+ " }}
217
+ {{- "num_lines?: number, // default: -1
218
+ " }}
219
+ {{- "view_source?: boolean, // default: false
220
+ " }}
221
+ {{- "source?: string,
222
+ " }}
223
+ {{- "}) => any;
224
+
225
+ " }}
226
+ {{- "// Finds exact matches of `pattern` in the current page, or the page given by `cursor`.
227
+ " }}
228
+ {{- "type find = (_: {
229
+ " }}
230
+ {{- "pattern: string,
231
+ " }}
232
+ {{- "cursor?: number, // default: -1
233
+ " }}
234
+ {{- "}) => any;
235
+
236
+ " }}
237
+ {{- "} // namespace browser
238
+
239
+ " }}
240
+ {%- endif -%}
241
+
242
+ {%- if python_tool %}
243
+ {{- "## python
244
+
245
+ " }}
246
+ {{- "Use this tool to execute Python code in your chain of thought. The code will not be shown to the user. This tool should be used for internal reasoning, but not for code that is intended to be visible to the user (e.g. when creating plots, tables, or files).
247
+
248
+ " }}
249
+ {{- "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 120.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is UNKNOWN. Depends on the cluster.
250
+
251
+ " }}
252
+ {%- endif -%}
253
+ {%- endmacro -%}
254
+
255
+ {#- System Message Construction ============================================ #}
256
+ {%- macro build_system_message() -%}
257
+ {%- if model_identity is not defined %}
258
+ {%- set model_identity = "You are ChatGPT, a large language model trained by OpenAI." %}
259
+ {%- endif %}
260
+ {{- model_identity + "
261
+ " }}
262
+ {{- "Knowledge cutoff: 2024-06
263
+ " }}
264
+ {{- "Current date: " + strftime_now("%Y-%m-%d") + "
265
+
266
+ " }}
267
+ {%- if reasoning_effort is not defined %}
268
+ {%- set reasoning_effort = "medium" %}
269
+ {%- endif %}
270
+ {{- "Reasoning: " + reasoning_effort + "
271
+
272
+ " }}
273
+ {%- if builtin_tools %}
274
+ {{- "# Tools
275
+
276
+ " }}
277
+ {%- set available_builtin_tools = namespace(browser=false, python=false) %}
278
+ {%- for tool in builtin_tools %}
279
+ {%- if tool == "browser" %}
280
+ {%- set available_builtin_tools.browser = true %}
281
+ {%- elif tool == "python" %}
282
+ {%- set available_builtin_tools.python = true %}
283
+ {%- endif %}
284
+ {%- endfor %}
285
+ {{- render_builtin_tools(available_builtin_tools.browser, available_builtin_tools.python) }}
286
+ {%- endif -%}
287
+ {{- "# Valid channels: analysis, commentary, final. Channel must be included for every message." }}
288
+ {%- if tools -%}
289
+ {{- "
290
+ Calls to these tools must go to the commentary channel: 'functions'." }}
291
+ {%- endif -%}
292
+ {%- endmacro -%}
293
+
294
+ {#- Main Template Logic ================================================= #}
295
+ {#- Set defaults #}
296
+
297
+ {#- Render system message #}
298
+ {{- "<|start|>system<|message|>" }}
299
+ {{- build_system_message() }}
300
+ {{- "<|end|>" }}
301
+
302
+ {#- Extract developer message #}
303
+ {%- if messages[0].role == "developer" or messages[0].role == "system" %}
304
+ {%- set developer_message = messages[0].content %}
305
+ {%- set loop_messages = messages[1:] %}
306
+ {%- else %}
307
+ {%- set developer_message = "" %}
308
+ {%- set loop_messages = messages %}
309
+ {%- endif %}
310
+
311
+ {#- Render developer message #}
312
+ {%- if developer_message or tools %}
313
+ {{- "<|start|>developer<|message|>" }}
314
+ {%- if developer_message %}
315
+ {{- "# Instructions
316
+
317
+ " }}
318
+ {{- developer_message }}
319
+ {%- endif %}
320
+ {%- if tools -%}
321
+ {{- "
322
+
323
+ " }}
324
+ {{- "# Tools
325
+
326
+ " }}
327
+ {{- render_tool_namespace("functions", tools) }}
328
+ {%- endif -%}
329
+ {{- "<|end|>" }}
330
+ {%- endif %}
331
+
332
+ {#- Render messages #}
333
+ {%- set last_tool_call = namespace(name=none) %}
334
+ {%- for message in loop_messages -%}
335
+ {#- At this point only assistant/user/tool messages should remain #}
336
+ {%- if message.role == 'assistant' -%}
337
+ {#- Checks to ensure the messages are being passed in the format we expect #}
338
+ {%- if "content" in message %}
339
+ {%- if "<|channel|>analysis<|message|>" in message.content or "<|channel|>final<|message|>" in message.content %}
340
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the content field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
341
+ {%- endif %}
342
+ {%- endif %}
343
+ {%- if "thinking" in message %}
344
+ {%- if "<|channel|>analysis<|message|>" in message.thinking or "<|channel|>final<|message|>" in message.thinking %}
345
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the thinking field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
346
+ {%- endif %}
347
+ {%- endif %}
348
+ {%- if "tool_calls" in message %}
349
+ {#- We assume max 1 tool call per message, and so we infer the tool call name #}
350
+ {#- in "tool" messages from the most recent assistant tool call name #}
351
+ {%- set tool_call = message.tool_calls[0] %}
352
+ {%- if tool_call.function %}
353
+ {%- set tool_call = tool_call.function %}
354
+ {%- endif %}
355
+ {%- if message.content and message.thinking %}
356
+ {{- raise_exception("Cannot pass both content and thinking in an assistant message with tool calls! Put the analysis message in one or the other, but not both.") }}
357
+ {%- elif message.content %}
358
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.content + "<|end|>" }}
359
+ {%- elif message.thinking %}
360
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
361
+ {%- endif %}
362
+ {{- "<|start|>assistant to=" }}
363
+ {{- "functions." + tool_call.name + "<|channel|>commentary " }}
364
+ {{- (tool_call.content_type if tool_call.content_type is defined else "json") + "<|message|>" }}
365
+ {{- tool_call.arguments|tojson }}
366
+ {{- "<|call|>" }}
367
+ {%- set last_tool_call.name = tool_call.name %}
368
+ {%- elif loop.last and not add_generation_prompt %}
369
+ {#- Only render the CoT if the final turn is an assistant turn and add_generation_prompt is false #}
370
+ {#- This is a situation that should only occur in training, never in inference. #}
371
+ {%- if "thinking" in message %}
372
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
373
+ {%- endif %}
374
+ {#- <|return|> indicates the end of generation, but <|end|> does not #}
375
+ {#- <|return|> should never be an input to the model, but we include it as the final token #}
376
+ {#- when training, so the model learns to emit it. #}
377
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|return|>" }}
378
+ {%- else %}
379
+ {#- CoT is dropped during all previous turns, so we never render it for inference #}
380
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|end|>" }}
381
+ {%- set last_tool_call.name = none %}
382
+ {%- endif %}
383
+ {%- elif message.role == 'tool' -%}
384
+ {%- if last_tool_call.name is none %}
385
+ {{- raise_exception("Message has tool role, but there was no previous assistant message with a tool call!") }}
386
+ {%- endif %}
387
+ {{- "<|start|>functions." + last_tool_call.name }}
388
+ {{- " to=assistant<|channel|>commentary<|message|>" + message.content|tojson + "<|end|>" }}
389
+ {%- elif message.role == 'user' -%}
390
+ {{- "<|start|>user<|message|>" + message.content + "<|end|>" }}
391
+ {%- endif -%}
392
+ {%- endfor -%}
393
+
394
+ {#- Generation prompt #}
395
+ {%- if add_generation_prompt -%}
396
+ <|start|>assistant
397
+ {%- endif -%}
config.json ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InternVLChatModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
7
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
8
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
9
+ },
10
+ "downsample_ratio": 0.5,
11
+ "dynamic_image_size": true,
12
+ "force_image_size": 448,
13
+ "llm_config": {
14
+ "_name_or_path": "/mnt/shared-storage-user/intern7shared/internvl_a4s/checkpoints/gpt-oss-20b",
15
+ "architectures": [
16
+ "GptOssForCausalLM"
17
+ ],
18
+ "attention_bias": true,
19
+ "attention_dropout": 0.0,
20
+ "eos_token_id": 200002,
21
+ "experts_per_token": 4,
22
+ "head_dim": 64,
23
+ "hidden_act": "silu",
24
+ "hidden_size": 2880,
25
+ "initial_context_length": 4096,
26
+ "initializer_range": 0.02,
27
+ "intermediate_size": 2880,
28
+ "layer_types": [
29
+ "sliding_attention",
30
+ "full_attention",
31
+ "sliding_attention",
32
+ "full_attention",
33
+ "sliding_attention",
34
+ "full_attention",
35
+ "sliding_attention",
36
+ "full_attention",
37
+ "sliding_attention",
38
+ "full_attention",
39
+ "sliding_attention",
40
+ "full_attention",
41
+ "sliding_attention",
42
+ "full_attention",
43
+ "sliding_attention",
44
+ "full_attention",
45
+ "sliding_attention",
46
+ "full_attention",
47
+ "sliding_attention",
48
+ "full_attention",
49
+ "sliding_attention",
50
+ "full_attention",
51
+ "sliding_attention",
52
+ "full_attention"
53
+ ],
54
+ "max_position_embeddings": 131072,
55
+ "model_type": "gpt_oss",
56
+ "num_attention_heads": 64,
57
+ "num_experts_per_tok": 4,
58
+ "num_hidden_layers": 24,
59
+ "num_key_value_heads": 8,
60
+ "num_local_experts": 32,
61
+ "output_router_logits": false,
62
+ "pad_token_id": 199999,
63
+ "rms_norm_eps": 1e-05,
64
+ "rope_scaling": {
65
+ "beta_fast": 32.0,
66
+ "beta_slow": 1.0,
67
+ "factor": 32.0,
68
+ "original_max_position_embeddings": 4096,
69
+ "rope_type": "yarn",
70
+ "truncate": false
71
+ },
72
+ "rope_theta": 150000,
73
+ "router_aux_loss_coef": 0.9,
74
+ "sliding_window": 128,
75
+ "swiglu_limit": 7.0,
76
+ "use_cache": false,
77
+ "vocab_size": 200028
78
+ },
79
+ "max_dynamic_patch": 12,
80
+ "min_dynamic_patch": 1,
81
+ "model_type": "internvl_chat",
82
+ "output_attentions": false,
83
+ "output_router_logits": false,
84
+ "pad2square": false,
85
+ "ps_version": "v2",
86
+ "router_aux_loss_coef": 0.9,
87
+ "select_layer": -1,
88
+ "template": "internvl3_5_gpt_oss",
89
+ "tie_word_embeddings": false,
90
+ "torch_dtype": "bfloat16",
91
+ "transformers_version": null,
92
+ "use_backbone_lora": 0,
93
+ "use_llm_lora": 0,
94
+ "use_thumbnail": true,
95
+ "vision_config": {
96
+ "architectures": [
97
+ "InternVisionModel"
98
+ ],
99
+ "attention_dropout": 0.0,
100
+ "auto_map": {
101
+ "AutoConfig": "configuration_intern_vit.InternVisionConfig",
102
+ "AutoModel": "modeling_intern_vit.InternVisionModel"
103
+ },
104
+ "drop_path_rate": 0.1,
105
+ "dropout": 0.0,
106
+ "hidden_act": "gelu",
107
+ "hidden_size": 1024,
108
+ "image_size": 448,
109
+ "initializer_factor": 1.0,
110
+ "initializer_range": 0.02,
111
+ "intermediate_size": 4096,
112
+ "layer_norm_eps": 1e-06,
113
+ "model_type": "intern_vit_6b",
114
+ "norm_type": "layer_norm",
115
+ "num_attention_heads": 16,
116
+ "num_channels": 3,
117
+ "num_hidden_layers": 24,
118
+ "patch_size": 14,
119
+ "qk_normalization": false,
120
+ "qkv_bias": true,
121
+ "torch_dtype": "bfloat16",
122
+ "use_flash_attn": true
123
+ }
124
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
configuration_internvl_chat.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+ from typing import Dict, Any, Optional
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+
18
+ class InternVLChatConfig(PretrainedConfig):
19
+ model_type = 'internvl_chat'
20
+ is_composition = True
21
+
22
+ def __init__(
23
+ self,
24
+ vision_config: Optional[Dict[str, Any]] = None,
25
+ llm_config: Optional[Dict[str, Any]] = None,
26
+ use_backbone_lora=0,
27
+ use_llm_lora=0,
28
+ select_layer=-1,
29
+ force_image_size=None,
30
+ downsample_ratio=0.5,
31
+ template=None,
32
+ dynamic_image_size=False,
33
+ use_thumbnail=False,
34
+ ps_version="v1",
35
+ min_dynamic_patch=1,
36
+ max_dynamic_patch=6,
37
+ **kwargs,
38
+ ):
39
+ super().__init__(**kwargs)
40
+
41
+ if vision_config is None:
42
+ vision_config = {'architectures': ['InternVisionModel']}
43
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
44
+
45
+ if llm_config is None:
46
+ llm_config = {'architectures': ['Qwen2ForCausalLM']}
47
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
48
+ assert 'architectures' in llm_config, "Should specify architecture in llm_config"
49
+
50
+ if isinstance(vision_config, dict):
51
+ self.vision_config = InternVisionConfig(**vision_config)
52
+ else:
53
+ self.vision_config = vision_config
54
+
55
+ if isinstance(llm_config, dict):
56
+ architecture: str = llm_config['architectures'][0]
57
+ if architecture == 'LlamaForCausalLM':
58
+ from transformers import LlamaConfig
59
+ self.llm_config = LlamaConfig(**llm_config)
60
+ elif architecture == 'Qwen2ForCausalLM':
61
+ from transformers import Qwen2Config
62
+ self.llm_config = Qwen2Config(**llm_config)
63
+ elif architecture == 'Qwen3MoeForCausalLM':
64
+ from transformers import Qwen3MoeConfig
65
+ self.llm_config = Qwen3MoeConfig(**llm_config)
66
+ elif architecture == 'Qwen3ForCausalLM':
67
+ from transformers import Qwen3Config
68
+ self.llm_config = Qwen3Config(**llm_config)
69
+ elif architecture == 'GptOssForCausalLM':
70
+ from transformers import GptOssConfig
71
+ self.llm_config = GptOssConfig(**llm_config)
72
+ else:
73
+ raise ValueError('Unsupported architecture: {}'.format(architecture))
74
+ else:
75
+ self.llm_config = llm_config
76
+
77
+ self.use_backbone_lora = use_backbone_lora
78
+ self.use_llm_lora = use_llm_lora
79
+ self.select_layer = select_layer
80
+ self.force_image_size = force_image_size
81
+ self.downsample_ratio = downsample_ratio
82
+ self.template = template
83
+ self.dynamic_image_size = dynamic_image_size
84
+ self.use_thumbnail = use_thumbnail
85
+ self.ps_version = ps_version # pixel shuffle version
86
+ self.min_dynamic_patch = min_dynamic_patch
87
+ self.max_dynamic_patch = max_dynamic_patch
88
+ self.tie_word_embeddings = self.llm_config.tie_word_embeddings
89
+
90
+ logger.info(f'vision_select_layer: {self.select_layer}')
91
+ logger.info(f'ps_version: {self.ps_version}')
92
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
93
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
94
+
95
+ def to_dict(self):
96
+ """
97
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
98
+
99
+ Returns:
100
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
101
+ """
102
+ output = copy.deepcopy(self.__dict__)
103
+ output['vision_config'] = self.vision_config.to_dict()
104
+ output['llm_config'] = self.llm_config.to_dict()
105
+ output['model_type'] = self.__class__.model_type
106
+ output['use_backbone_lora'] = self.use_backbone_lora
107
+ output['use_llm_lora'] = self.use_llm_lora
108
+ output['select_layer'] = self.select_layer
109
+ output['force_image_size'] = self.force_image_size
110
+ output['downsample_ratio'] = self.downsample_ratio
111
+ output['template'] = self.template
112
+ output['dynamic_image_size'] = self.dynamic_image_size
113
+ output['use_thumbnail'] = self.use_thumbnail
114
+ output['ps_version'] = self.ps_version
115
+ output['min_dynamic_patch'] = self.min_dynamic_patch
116
+ output['max_dynamic_patch'] = self.max_dynamic_patch
117
+
118
+ return output
conversation.py ADDED
@@ -0,0 +1,416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+
7
+ Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
8
+ """
9
+
10
+ import dataclasses
11
+ from enum import IntEnum, auto
12
+ from typing import Dict, List, Tuple, Union
13
+
14
+
15
+ class SeparatorStyle(IntEnum):
16
+ """Separator styles."""
17
+
18
+ ADD_COLON_SINGLE = auto()
19
+ ADD_COLON_TWO = auto()
20
+ ADD_COLON_SPACE_SINGLE = auto()
21
+ NO_COLON_SINGLE = auto()
22
+ NO_COLON_TWO = auto()
23
+ ADD_NEW_LINE_SINGLE = auto()
24
+ LLAMA2 = auto()
25
+ CHATGLM = auto()
26
+ CHATML = auto()
27
+ CHATINTERN = auto()
28
+ DOLLY = auto()
29
+ RWKV = auto()
30
+ PHOENIX = auto()
31
+ ROBIN = auto()
32
+ FALCON_CHAT = auto()
33
+ CHATGLM3 = auto()
34
+ INTERNVL_ZH = auto()
35
+ MPT = auto()
36
+ MPT_TWO = auto()
37
+
38
+
39
+ @dataclasses.dataclass
40
+ class Conversation:
41
+ """A class that manages prompt templates and keeps all conversation history."""
42
+
43
+ # The name of this template
44
+ name: str
45
+ # The template of the system prompt
46
+ system_template: str = '{system_message}'
47
+ # The system message
48
+ system_message: str = ''
49
+ # The names of two roles
50
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
51
+ # All messages. Each item is (role, message).
52
+ messages: List[List[str]] = ()
53
+ # The number of few shot examples
54
+ offset: int = 0
55
+ # The separator style and configurations
56
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
57
+ sep: str = '\n'
58
+ sep2: str = None
59
+ # Stop criteria (the default one is EOS token)
60
+ stop_str: Union[str, List[str]] = None
61
+ # Stops generation if meeting any token in this list
62
+ stop_token_ids: List[int] = None
63
+
64
+ def get_prompt(self) -> str:
65
+ """Get the prompt for generation."""
66
+ system_prompt = self.system_template.format(system_message=self.system_message)
67
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
68
+ ret = system_prompt + self.sep
69
+ for role, message in self.messages:
70
+ if message:
71
+ ret += role + ': ' + message + self.sep
72
+ else:
73
+ ret += role + ':'
74
+ return ret
75
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
76
+ seps = [self.sep, self.sep2]
77
+ ret = system_prompt + seps[0]
78
+ for i, (role, message) in enumerate(self.messages):
79
+ if message:
80
+ ret += role + ': ' + message + seps[i % 2]
81
+ else:
82
+ ret += role + ':'
83
+ return ret
84
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
85
+ ret = system_prompt + self.sep
86
+ for role, message in self.messages:
87
+ if message:
88
+ ret += role + ': ' + message + self.sep
89
+ else:
90
+ ret += role + ': ' # must be end with a space
91
+ return ret
92
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
93
+ ret = '' if system_prompt == '' else system_prompt + self.sep
94
+ for role, message in self.messages:
95
+ if message:
96
+ ret += role + '\n' + message + self.sep
97
+ else:
98
+ ret += role + '\n'
99
+ return ret
100
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
101
+ ret = system_prompt
102
+ for role, message in self.messages:
103
+ if message:
104
+ ret += role + message + self.sep
105
+ else:
106
+ ret += role
107
+ return ret
108
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
109
+ seps = [self.sep, self.sep2]
110
+ ret = system_prompt
111
+ for i, (role, message) in enumerate(self.messages):
112
+ if message:
113
+ ret += role + message + seps[i % 2]
114
+ else:
115
+ ret += role
116
+ return ret
117
+ elif self.sep_style == SeparatorStyle.RWKV:
118
+ ret = system_prompt
119
+ for i, (role, message) in enumerate(self.messages):
120
+ if message:
121
+ ret += (
122
+ role
123
+ + ': '
124
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
125
+ )
126
+ ret += '\n\n'
127
+ else:
128
+ ret += role + ':'
129
+ return ret
130
+ elif self.sep_style == SeparatorStyle.LLAMA2:
131
+ seps = [self.sep, self.sep2]
132
+ if self.system_message:
133
+ ret = system_prompt
134
+ else:
135
+ ret = '[INST] '
136
+ for i, (role, message) in enumerate(self.messages):
137
+ tag = self.roles[i % 2]
138
+ if message:
139
+ if i == 0:
140
+ ret += message + ' '
141
+ else:
142
+ ret += tag + ' ' + message + seps[i % 2]
143
+ else:
144
+ ret += tag
145
+ return ret
146
+ elif self.sep_style == SeparatorStyle.CHATGLM:
147
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
148
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
149
+ round_add_n = 1 if self.name == 'chatglm2' else 0
150
+ if system_prompt:
151
+ ret = system_prompt + self.sep
152
+ else:
153
+ ret = ''
154
+
155
+ for i, (role, message) in enumerate(self.messages):
156
+ if i % 2 == 0:
157
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
158
+
159
+ if message:
160
+ ret += f'{role}:{message}{self.sep}'
161
+ else:
162
+ ret += f'{role}:'
163
+ return ret
164
+ elif self.sep_style == SeparatorStyle.CHATML:
165
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
166
+ for role, message in self.messages:
167
+ if message:
168
+ ret += role + '\n' + message + self.sep + '\n'
169
+ else:
170
+ ret += role + '\n'
171
+ return ret
172
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
173
+ ret = ''
174
+ if self.system_message:
175
+ ret += system_prompt
176
+ for role, message in self.messages:
177
+ if message:
178
+ ret += role + '\n' + ' ' + message
179
+ else:
180
+ ret += role
181
+ return ret
182
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
183
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
184
+ seps = [self.sep, self.sep2]
185
+ ret = system_prompt
186
+ for i, (role, message) in enumerate(self.messages):
187
+ # if i % 2 == 0:
188
+ # ret += "<s>"
189
+ if message:
190
+ ret += role + ':' + message + seps[i % 2] + '\n'
191
+ else:
192
+ ret += role + ':'
193
+ return ret
194
+ elif self.sep_style == SeparatorStyle.DOLLY:
195
+ seps = [self.sep, self.sep2]
196
+ ret = system_prompt
197
+ for i, (role, message) in enumerate(self.messages):
198
+ if message:
199
+ ret += role + ':\n' + message + seps[i % 2]
200
+ if i % 2 == 1:
201
+ ret += '\n\n'
202
+ else:
203
+ ret += role + ':\n'
204
+ return ret
205
+ elif self.sep_style == SeparatorStyle.PHOENIX:
206
+ ret = system_prompt
207
+ for role, message in self.messages:
208
+ if message:
209
+ ret += role + ': ' + '<s>' + message + '</s>'
210
+ else:
211
+ ret += role + ': ' + '<s>'
212
+ return ret
213
+ elif self.sep_style == SeparatorStyle.ROBIN:
214
+ ret = system_prompt + self.sep
215
+ for role, message in self.messages:
216
+ if message:
217
+ ret += role + ':\n' + message + self.sep
218
+ else:
219
+ ret += role + ':\n'
220
+ return ret
221
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
222
+ ret = ''
223
+ if self.system_message:
224
+ ret += system_prompt + self.sep
225
+ for role, message in self.messages:
226
+ if message:
227
+ ret += role + ': ' + message + self.sep
228
+ else:
229
+ ret += role + ':'
230
+
231
+ return ret
232
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
233
+ seps = [self.sep, self.sep2]
234
+ ret = self.system_message + seps[0]
235
+ for i, (role, message) in enumerate(self.messages):
236
+ if message:
237
+ ret += role + ': ' + message + seps[i % 2]
238
+ else:
239
+ ret += role + ':'
240
+ return ret
241
+ elif self.sep_style == SeparatorStyle.MPT:
242
+ ret = system_prompt + self.sep
243
+ for role, message in self.messages:
244
+ if message:
245
+ if type(message) is tuple:
246
+ message, _, _ = message
247
+ ret += role + message + self.sep
248
+ else:
249
+ ret += role
250
+ return ret
251
+ elif self.sep_style == SeparatorStyle.MPT_TWO:
252
+ ret = system_prompt + self.sep
253
+ seps = [self.sep, self.sep2]
254
+ for i, (role, message) in enumerate(self.messages):
255
+ if message:
256
+ if type(message) is tuple:
257
+ message, _, _ = message
258
+ ret += role + message + seps[i % 2]
259
+ else:
260
+ ret += role
261
+ return ret
262
+ else:
263
+ raise ValueError(f'Invalid style: {self.sep_style}')
264
+
265
+ def set_system_message(self, system_message: str):
266
+ """Set the system message."""
267
+ self.system_message = system_message
268
+
269
+ def append_message(self, role: str, message: str):
270
+ """Append a new message."""
271
+ self.messages.append([role, message])
272
+
273
+ def update_last_message(self, message: str):
274
+ """Update the last output.
275
+
276
+ The last message is typically set to be None when constructing the prompt,
277
+ so we need to update it in-place after getting the response from a model.
278
+ """
279
+ self.messages[-1][1] = message
280
+
281
+ def to_gradio_chatbot(self):
282
+ """Convert the conversation to gradio chatbot format."""
283
+ ret = []
284
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
285
+ if i % 2 == 0:
286
+ ret.append([msg, None])
287
+ else:
288
+ ret[-1][-1] = msg
289
+ return ret
290
+
291
+ def to_openai_api_messages(self):
292
+ """Convert the conversation to OpenAI chat completion format."""
293
+ ret = [{'role': 'system', 'content': self.system_message}]
294
+
295
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
296
+ if i % 2 == 0:
297
+ ret.append({'role': 'user', 'content': msg})
298
+ else:
299
+ if msg is not None:
300
+ ret.append({'role': 'assistant', 'content': msg})
301
+ return ret
302
+
303
+ def copy(self):
304
+ return Conversation(
305
+ name=self.name,
306
+ system_template=self.system_template,
307
+ system_message=self.system_message,
308
+ roles=self.roles,
309
+ messages=[[x, y] for x, y in self.messages],
310
+ offset=self.offset,
311
+ sep_style=self.sep_style,
312
+ sep=self.sep,
313
+ sep2=self.sep2,
314
+ stop_str=self.stop_str,
315
+ stop_token_ids=self.stop_token_ids,
316
+ )
317
+
318
+ def dict(self):
319
+ return {
320
+ 'template_name': self.name,
321
+ 'system_message': self.system_message,
322
+ 'roles': self.roles,
323
+ 'messages': self.messages,
324
+ 'offset': self.offset,
325
+ }
326
+
327
+
328
+ # A global registry for all conversation templates
329
+ conv_templates: Dict[str, Conversation] = {}
330
+
331
+
332
+ def register_conv_template(template: Conversation, override: bool = False):
333
+ """Register a new conversation template."""
334
+ if not override:
335
+ assert (
336
+ template.name not in conv_templates
337
+ ), f'{template.name} has been registered.'
338
+
339
+ conv_templates[template.name] = template
340
+
341
+
342
+ def get_conv_template(name: str) -> Conversation:
343
+ """Get a conversation template."""
344
+ return conv_templates[name].copy()
345
+
346
+
347
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
348
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
349
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
350
+ # Therefore, they are completely equivalent during inference.
351
+ register_conv_template(
352
+ Conversation(
353
+ name='Hermes-2',
354
+ system_template='<|im_start|>system\n{system_message}',
355
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
356
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
357
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
358
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
359
+ sep_style=SeparatorStyle.MPT,
360
+ sep='<|im_end|>',
361
+ stop_str='<|endoftext|>',
362
+ )
363
+ )
364
+
365
+
366
+ register_conv_template(
367
+ Conversation(
368
+ name='internlm2-chat',
369
+ system_template='<|im_start|>system\n{system_message}',
370
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
371
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
372
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
373
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
374
+ sep_style=SeparatorStyle.MPT,
375
+ sep='<|im_end|>',
376
+ )
377
+ )
378
+
379
+
380
+ register_conv_template(
381
+ Conversation(
382
+ name='phi3-chat',
383
+ system_template='<|system|>\n{system_message}',
384
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
385
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华���学及多家合作单位联合开发的多模态大语言模型。',
386
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
387
+ roles=('<|user|>\n', '<|assistant|>\n'),
388
+ sep_style=SeparatorStyle.MPT,
389
+ sep='<|end|>',
390
+ )
391
+ )
392
+
393
+
394
+ register_conv_template(
395
+ Conversation(
396
+ name='internvl2_5',
397
+ system_template='<|im_start|>system\n{system_message}',
398
+ system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
399
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
400
+ sep_style=SeparatorStyle.MPT,
401
+ sep='<|im_end|>\n',
402
+ )
403
+ )
404
+
405
+
406
+ register_conv_template(
407
+ Conversation(
408
+ name='internvl3_5_gpt_oss',
409
+ system_template='<|start|>system<|message|>{system_message}',
410
+ system_message='You are InternVL, a large language model trained by Shanghai AI Laboratory.\nKnowledge cutoff: 2024-06\nCurrent date: 2025-08-06\n\nReasoning: low\n\n# Valid channels: final. Channel must be included for every message.',
411
+ roles=('<|start|>user<|message|>', '<|start|>assistant'),
412
+ sep_style=SeparatorStyle.MPT_TWO,
413
+ sep='<|end|>',
414
+ sep2='<|return|>',
415
+ )
416
+ )
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.55.0"
4
+ }
model-00001-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f78b8941ff874279f4fa3abb4f6ce11b29548b8074e4bbf2e34d20e4f6f0b2a
3
+ size 4521940256
model-00002-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf3798fb7304ef5efcb7d08912b1b3b965a8223389f120224708b08022416913
3
+ size 4939128416
model-00003-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa7649d0df0e5428b40fdeca5899cd272c8ece09c22a58661f9cfb78fa5c5af3
3
+ size 4939128416
model-00004-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef463f3880b97a66121057a125559af10654aaf06a5b00c38229e87bf6c83e22
3
+ size 4939128448
model-00005-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bbc369234a649d76e07d239db39a3c6db4403c28aa78a5a0469db58684dad28
3
+ size 4939128464
model-00006-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d9fe4fd787e3dce4230dc0b128428f701f7faab9b82842193bc8d9b0717e99c
3
+ size 4939128464
model-00007-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec5dee9863dc5821b34b888b14c67e00db2bba44a680fa9c72509641e432fa2a
3
+ size 4939128464
model-00008-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29028e9a7871a30a69d7f241fcda9e24f3408c85a106e4080fb9a8a569695288
3
+ size 4939128464
model-00009-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7eabf59337540314a9cb2a0317b73ae4df9ce84b6a01c57cad5e3642ea4b223
3
+ size 3369791600
model.safetensors.index.json ADDED
@@ -0,0 +1,765 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 392282304,
4
+ "total_size": 42465537408
5
+ },
6
+ "weight_map": {
7
+ "language_model.lm_head.weight": "model-00009-of-00009.safetensors",
8
+ "language_model.model.embed_tokens.weight": "model-00001-of-00009.safetensors",
9
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00009.safetensors",
10
+ "language_model.model.layers.0.mlp.experts.down_proj": "model-00001-of-00009.safetensors",
11
+ "language_model.model.layers.0.mlp.experts.down_proj_bias": "model-00001-of-00009.safetensors",
12
+ "language_model.model.layers.0.mlp.experts.gate_up_proj": "model-00001-of-00009.safetensors",
13
+ "language_model.model.layers.0.mlp.experts.gate_up_proj_bias": "model-00001-of-00009.safetensors",
14
+ "language_model.model.layers.0.mlp.router.bias": "model-00001-of-00009.safetensors",
15
+ "language_model.model.layers.0.mlp.router.weight": "model-00001-of-00009.safetensors",
16
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
17
+ "language_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00009.safetensors",
18
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
19
+ "language_model.model.layers.0.self_attn.o_proj.bias": "model-00001-of-00009.safetensors",
20
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
21
+ "language_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00009.safetensors",
22
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
23
+ "language_model.model.layers.0.self_attn.sinks": "model-00001-of-00009.safetensors",
24
+ "language_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00009.safetensors",
25
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
26
+ "language_model.model.layers.1.input_layernorm.weight": "model-00002-of-00009.safetensors",
27
+ "language_model.model.layers.1.mlp.experts.down_proj": "model-00002-of-00009.safetensors",
28
+ "language_model.model.layers.1.mlp.experts.down_proj_bias": "model-00002-of-00009.safetensors",
29
+ "language_model.model.layers.1.mlp.experts.gate_up_proj": "model-00001-of-00009.safetensors",
30
+ "language_model.model.layers.1.mlp.experts.gate_up_proj_bias": "model-00001-of-00009.safetensors",
31
+ "language_model.model.layers.1.mlp.router.bias": "model-00001-of-00009.safetensors",
32
+ "language_model.model.layers.1.mlp.router.weight": "model-00001-of-00009.safetensors",
33
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
34
+ "language_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00009.safetensors",
35
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
36
+ "language_model.model.layers.1.self_attn.o_proj.bias": "model-00001-of-00009.safetensors",
37
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
38
+ "language_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00009.safetensors",
39
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
40
+ "language_model.model.layers.1.self_attn.sinks": "model-00001-of-00009.safetensors",
41
+ "language_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00009.safetensors",
42
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
43
+ "language_model.model.layers.10.input_layernorm.weight": "model-00005-of-00009.safetensors",
44
+ "language_model.model.layers.10.mlp.experts.down_proj": "model-00005-of-00009.safetensors",
45
+ "language_model.model.layers.10.mlp.experts.down_proj_bias": "model-00005-of-00009.safetensors",
46
+ "language_model.model.layers.10.mlp.experts.gate_up_proj": "model-00004-of-00009.safetensors",
47
+ "language_model.model.layers.10.mlp.experts.gate_up_proj_bias": "model-00004-of-00009.safetensors",
48
+ "language_model.model.layers.10.mlp.router.bias": "model-00004-of-00009.safetensors",
49
+ "language_model.model.layers.10.mlp.router.weight": "model-00004-of-00009.safetensors",
50
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
51
+ "language_model.model.layers.10.self_attn.k_proj.bias": "model-00004-of-00009.safetensors",
52
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
53
+ "language_model.model.layers.10.self_attn.o_proj.bias": "model-00004-of-00009.safetensors",
54
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
55
+ "language_model.model.layers.10.self_attn.q_proj.bias": "model-00004-of-00009.safetensors",
56
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
57
+ "language_model.model.layers.10.self_attn.sinks": "model-00004-of-00009.safetensors",
58
+ "language_model.model.layers.10.self_attn.v_proj.bias": "model-00004-of-00009.safetensors",
59
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
60
+ "language_model.model.layers.11.input_layernorm.weight": "model-00005-of-00009.safetensors",
61
+ "language_model.model.layers.11.mlp.experts.down_proj": "model-00005-of-00009.safetensors",
62
+ "language_model.model.layers.11.mlp.experts.down_proj_bias": "model-00005-of-00009.safetensors",
63
+ "language_model.model.layers.11.mlp.experts.gate_up_proj": "model-00005-of-00009.safetensors",
64
+ "language_model.model.layers.11.mlp.experts.gate_up_proj_bias": "model-00005-of-00009.safetensors",
65
+ "language_model.model.layers.11.mlp.router.bias": "model-00005-of-00009.safetensors",
66
+ "language_model.model.layers.11.mlp.router.weight": "model-00005-of-00009.safetensors",
67
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
68
+ "language_model.model.layers.11.self_attn.k_proj.bias": "model-00005-of-00009.safetensors",
69
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
70
+ "language_model.model.layers.11.self_attn.o_proj.bias": "model-00005-of-00009.safetensors",
71
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
72
+ "language_model.model.layers.11.self_attn.q_proj.bias": "model-00005-of-00009.safetensors",
73
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
74
+ "language_model.model.layers.11.self_attn.sinks": "model-00005-of-00009.safetensors",
75
+ "language_model.model.layers.11.self_attn.v_proj.bias": "model-00005-of-00009.safetensors",
76
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
77
+ "language_model.model.layers.12.input_layernorm.weight": "model-00005-of-00009.safetensors",
78
+ "language_model.model.layers.12.mlp.experts.down_proj": "model-00005-of-00009.safetensors",
79
+ "language_model.model.layers.12.mlp.experts.down_proj_bias": "model-00005-of-00009.safetensors",
80
+ "language_model.model.layers.12.mlp.experts.gate_up_proj": "model-00005-of-00009.safetensors",
81
+ "language_model.model.layers.12.mlp.experts.gate_up_proj_bias": "model-00005-of-00009.safetensors",
82
+ "language_model.model.layers.12.mlp.router.bias": "model-00005-of-00009.safetensors",
83
+ "language_model.model.layers.12.mlp.router.weight": "model-00005-of-00009.safetensors",
84
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
85
+ "language_model.model.layers.12.self_attn.k_proj.bias": "model-00005-of-00009.safetensors",
86
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
87
+ "language_model.model.layers.12.self_attn.o_proj.bias": "model-00005-of-00009.safetensors",
88
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
89
+ "language_model.model.layers.12.self_attn.q_proj.bias": "model-00005-of-00009.safetensors",
90
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
91
+ "language_model.model.layers.12.self_attn.sinks": "model-00005-of-00009.safetensors",
92
+ "language_model.model.layers.12.self_attn.v_proj.bias": "model-00005-of-00009.safetensors",
93
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
94
+ "language_model.model.layers.13.input_layernorm.weight": "model-00006-of-00009.safetensors",
95
+ "language_model.model.layers.13.mlp.experts.down_proj": "model-00006-of-00009.safetensors",
96
+ "language_model.model.layers.13.mlp.experts.down_proj_bias": "model-00006-of-00009.safetensors",
97
+ "language_model.model.layers.13.mlp.experts.gate_up_proj": "model-00005-of-00009.safetensors",
98
+ "language_model.model.layers.13.mlp.experts.gate_up_proj_bias": "model-00005-of-00009.safetensors",
99
+ "language_model.model.layers.13.mlp.router.bias": "model-00005-of-00009.safetensors",
100
+ "language_model.model.layers.13.mlp.router.weight": "model-00005-of-00009.safetensors",
101
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
102
+ "language_model.model.layers.13.self_attn.k_proj.bias": "model-00005-of-00009.safetensors",
103
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
104
+ "language_model.model.layers.13.self_attn.o_proj.bias": "model-00005-of-00009.safetensors",
105
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
106
+ "language_model.model.layers.13.self_attn.q_proj.bias": "model-00005-of-00009.safetensors",
107
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
108
+ "language_model.model.layers.13.self_attn.sinks": "model-00005-of-00009.safetensors",
109
+ "language_model.model.layers.13.self_attn.v_proj.bias": "model-00005-of-00009.safetensors",
110
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
111
+ "language_model.model.layers.14.input_layernorm.weight": "model-00006-of-00009.safetensors",
112
+ "language_model.model.layers.14.mlp.experts.down_proj": "model-00006-of-00009.safetensors",
113
+ "language_model.model.layers.14.mlp.experts.down_proj_bias": "model-00006-of-00009.safetensors",
114
+ "language_model.model.layers.14.mlp.experts.gate_up_proj": "model-00006-of-00009.safetensors",
115
+ "language_model.model.layers.14.mlp.experts.gate_up_proj_bias": "model-00006-of-00009.safetensors",
116
+ "language_model.model.layers.14.mlp.router.bias": "model-00006-of-00009.safetensors",
117
+ "language_model.model.layers.14.mlp.router.weight": "model-00006-of-00009.safetensors",
118
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
119
+ "language_model.model.layers.14.self_attn.k_proj.bias": "model-00006-of-00009.safetensors",
120
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
121
+ "language_model.model.layers.14.self_attn.o_proj.bias": "model-00006-of-00009.safetensors",
122
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
123
+ "language_model.model.layers.14.self_attn.q_proj.bias": "model-00006-of-00009.safetensors",
124
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
125
+ "language_model.model.layers.14.self_attn.sinks": "model-00006-of-00009.safetensors",
126
+ "language_model.model.layers.14.self_attn.v_proj.bias": "model-00006-of-00009.safetensors",
127
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
128
+ "language_model.model.layers.15.input_layernorm.weight": "model-00006-of-00009.safetensors",
129
+ "language_model.model.layers.15.mlp.experts.down_proj": "model-00006-of-00009.safetensors",
130
+ "language_model.model.layers.15.mlp.experts.down_proj_bias": "model-00006-of-00009.safetensors",
131
+ "language_model.model.layers.15.mlp.experts.gate_up_proj": "model-00006-of-00009.safetensors",
132
+ "language_model.model.layers.15.mlp.experts.gate_up_proj_bias": "model-00006-of-00009.safetensors",
133
+ "language_model.model.layers.15.mlp.router.bias": "model-00006-of-00009.safetensors",
134
+ "language_model.model.layers.15.mlp.router.weight": "model-00006-of-00009.safetensors",
135
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
136
+ "language_model.model.layers.15.self_attn.k_proj.bias": "model-00006-of-00009.safetensors",
137
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
138
+ "language_model.model.layers.15.self_attn.o_proj.bias": "model-00006-of-00009.safetensors",
139
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
140
+ "language_model.model.layers.15.self_attn.q_proj.bias": "model-00006-of-00009.safetensors",
141
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
142
+ "language_model.model.layers.15.self_attn.sinks": "model-00006-of-00009.safetensors",
143
+ "language_model.model.layers.15.self_attn.v_proj.bias": "model-00006-of-00009.safetensors",
144
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
145
+ "language_model.model.layers.16.input_layernorm.weight": "model-00007-of-00009.safetensors",
146
+ "language_model.model.layers.16.mlp.experts.down_proj": "model-00007-of-00009.safetensors",
147
+ "language_model.model.layers.16.mlp.experts.down_proj_bias": "model-00007-of-00009.safetensors",
148
+ "language_model.model.layers.16.mlp.experts.gate_up_proj": "model-00006-of-00009.safetensors",
149
+ "language_model.model.layers.16.mlp.experts.gate_up_proj_bias": "model-00006-of-00009.safetensors",
150
+ "language_model.model.layers.16.mlp.router.bias": "model-00006-of-00009.safetensors",
151
+ "language_model.model.layers.16.mlp.router.weight": "model-00006-of-00009.safetensors",
152
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
153
+ "language_model.model.layers.16.self_attn.k_proj.bias": "model-00006-of-00009.safetensors",
154
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
155
+ "language_model.model.layers.16.self_attn.o_proj.bias": "model-00006-of-00009.safetensors",
156
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
157
+ "language_model.model.layers.16.self_attn.q_proj.bias": "model-00006-of-00009.safetensors",
158
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
159
+ "language_model.model.layers.16.self_attn.sinks": "model-00006-of-00009.safetensors",
160
+ "language_model.model.layers.16.self_attn.v_proj.bias": "model-00006-of-00009.safetensors",
161
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
162
+ "language_model.model.layers.17.input_layernorm.weight": "model-00007-of-00009.safetensors",
163
+ "language_model.model.layers.17.mlp.experts.down_proj": "model-00007-of-00009.safetensors",
164
+ "language_model.model.layers.17.mlp.experts.down_proj_bias": "model-00007-of-00009.safetensors",
165
+ "language_model.model.layers.17.mlp.experts.gate_up_proj": "model-00007-of-00009.safetensors",
166
+ "language_model.model.layers.17.mlp.experts.gate_up_proj_bias": "model-00007-of-00009.safetensors",
167
+ "language_model.model.layers.17.mlp.router.bias": "model-00007-of-00009.safetensors",
168
+ "language_model.model.layers.17.mlp.router.weight": "model-00007-of-00009.safetensors",
169
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
170
+ "language_model.model.layers.17.self_attn.k_proj.bias": "model-00007-of-00009.safetensors",
171
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
172
+ "language_model.model.layers.17.self_attn.o_proj.bias": "model-00007-of-00009.safetensors",
173
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
174
+ "language_model.model.layers.17.self_attn.q_proj.bias": "model-00007-of-00009.safetensors",
175
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
176
+ "language_model.model.layers.17.self_attn.sinks": "model-00007-of-00009.safetensors",
177
+ "language_model.model.layers.17.self_attn.v_proj.bias": "model-00007-of-00009.safetensors",
178
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
179
+ "language_model.model.layers.18.input_layernorm.weight": "model-00007-of-00009.safetensors",
180
+ "language_model.model.layers.18.mlp.experts.down_proj": "model-00007-of-00009.safetensors",
181
+ "language_model.model.layers.18.mlp.experts.down_proj_bias": "model-00007-of-00009.safetensors",
182
+ "language_model.model.layers.18.mlp.experts.gate_up_proj": "model-00007-of-00009.safetensors",
183
+ "language_model.model.layers.18.mlp.experts.gate_up_proj_bias": "model-00007-of-00009.safetensors",
184
+ "language_model.model.layers.18.mlp.router.bias": "model-00007-of-00009.safetensors",
185
+ "language_model.model.layers.18.mlp.router.weight": "model-00007-of-00009.safetensors",
186
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
187
+ "language_model.model.layers.18.self_attn.k_proj.bias": "model-00007-of-00009.safetensors",
188
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
189
+ "language_model.model.layers.18.self_attn.o_proj.bias": "model-00007-of-00009.safetensors",
190
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
191
+ "language_model.model.layers.18.self_attn.q_proj.bias": "model-00007-of-00009.safetensors",
192
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
193
+ "language_model.model.layers.18.self_attn.sinks": "model-00007-of-00009.safetensors",
194
+ "language_model.model.layers.18.self_attn.v_proj.bias": "model-00007-of-00009.safetensors",
195
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
196
+ "language_model.model.layers.19.input_layernorm.weight": "model-00008-of-00009.safetensors",
197
+ "language_model.model.layers.19.mlp.experts.down_proj": "model-00008-of-00009.safetensors",
198
+ "language_model.model.layers.19.mlp.experts.down_proj_bias": "model-00008-of-00009.safetensors",
199
+ "language_model.model.layers.19.mlp.experts.gate_up_proj": "model-00007-of-00009.safetensors",
200
+ "language_model.model.layers.19.mlp.experts.gate_up_proj_bias": "model-00007-of-00009.safetensors",
201
+ "language_model.model.layers.19.mlp.router.bias": "model-00007-of-00009.safetensors",
202
+ "language_model.model.layers.19.mlp.router.weight": "model-00007-of-00009.safetensors",
203
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
204
+ "language_model.model.layers.19.self_attn.k_proj.bias": "model-00007-of-00009.safetensors",
205
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
206
+ "language_model.model.layers.19.self_attn.o_proj.bias": "model-00007-of-00009.safetensors",
207
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
208
+ "language_model.model.layers.19.self_attn.q_proj.bias": "model-00007-of-00009.safetensors",
209
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
210
+ "language_model.model.layers.19.self_attn.sinks": "model-00007-of-00009.safetensors",
211
+ "language_model.model.layers.19.self_attn.v_proj.bias": "model-00007-of-00009.safetensors",
212
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
213
+ "language_model.model.layers.2.input_layernorm.weight": "model-00002-of-00009.safetensors",
214
+ "language_model.model.layers.2.mlp.experts.down_proj": "model-00002-of-00009.safetensors",
215
+ "language_model.model.layers.2.mlp.experts.down_proj_bias": "model-00002-of-00009.safetensors",
216
+ "language_model.model.layers.2.mlp.experts.gate_up_proj": "model-00002-of-00009.safetensors",
217
+ "language_model.model.layers.2.mlp.experts.gate_up_proj_bias": "model-00002-of-00009.safetensors",
218
+ "language_model.model.layers.2.mlp.router.bias": "model-00002-of-00009.safetensors",
219
+ "language_model.model.layers.2.mlp.router.weight": "model-00002-of-00009.safetensors",
220
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
221
+ "language_model.model.layers.2.self_attn.k_proj.bias": "model-00002-of-00009.safetensors",
222
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
223
+ "language_model.model.layers.2.self_attn.o_proj.bias": "model-00002-of-00009.safetensors",
224
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
225
+ "language_model.model.layers.2.self_attn.q_proj.bias": "model-00002-of-00009.safetensors",
226
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
227
+ "language_model.model.layers.2.self_attn.sinks": "model-00002-of-00009.safetensors",
228
+ "language_model.model.layers.2.self_attn.v_proj.bias": "model-00002-of-00009.safetensors",
229
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
230
+ "language_model.model.layers.20.input_layernorm.weight": "model-00008-of-00009.safetensors",
231
+ "language_model.model.layers.20.mlp.experts.down_proj": "model-00008-of-00009.safetensors",
232
+ "language_model.model.layers.20.mlp.experts.down_proj_bias": "model-00008-of-00009.safetensors",
233
+ "language_model.model.layers.20.mlp.experts.gate_up_proj": "model-00008-of-00009.safetensors",
234
+ "language_model.model.layers.20.mlp.experts.gate_up_proj_bias": "model-00008-of-00009.safetensors",
235
+ "language_model.model.layers.20.mlp.router.bias": "model-00008-of-00009.safetensors",
236
+ "language_model.model.layers.20.mlp.router.weight": "model-00008-of-00009.safetensors",
237
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
238
+ "language_model.model.layers.20.self_attn.k_proj.bias": "model-00008-of-00009.safetensors",
239
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
240
+ "language_model.model.layers.20.self_attn.o_proj.bias": "model-00008-of-00009.safetensors",
241
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
242
+ "language_model.model.layers.20.self_attn.q_proj.bias": "model-00008-of-00009.safetensors",
243
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
244
+ "language_model.model.layers.20.self_attn.sinks": "model-00008-of-00009.safetensors",
245
+ "language_model.model.layers.20.self_attn.v_proj.bias": "model-00008-of-00009.safetensors",
246
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
247
+ "language_model.model.layers.21.input_layernorm.weight": "model-00008-of-00009.safetensors",
248
+ "language_model.model.layers.21.mlp.experts.down_proj": "model-00008-of-00009.safetensors",
249
+ "language_model.model.layers.21.mlp.experts.down_proj_bias": "model-00008-of-00009.safetensors",
250
+ "language_model.model.layers.21.mlp.experts.gate_up_proj": "model-00008-of-00009.safetensors",
251
+ "language_model.model.layers.21.mlp.experts.gate_up_proj_bias": "model-00008-of-00009.safetensors",
252
+ "language_model.model.layers.21.mlp.router.bias": "model-00008-of-00009.safetensors",
253
+ "language_model.model.layers.21.mlp.router.weight": "model-00008-of-00009.safetensors",
254
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
255
+ "language_model.model.layers.21.self_attn.k_proj.bias": "model-00008-of-00009.safetensors",
256
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
257
+ "language_model.model.layers.21.self_attn.o_proj.bias": "model-00008-of-00009.safetensors",
258
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
259
+ "language_model.model.layers.21.self_attn.q_proj.bias": "model-00008-of-00009.safetensors",
260
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
261
+ "language_model.model.layers.21.self_attn.sinks": "model-00008-of-00009.safetensors",
262
+ "language_model.model.layers.21.self_attn.v_proj.bias": "model-00008-of-00009.safetensors",
263
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
264
+ "language_model.model.layers.22.input_layernorm.weight": "model-00009-of-00009.safetensors",
265
+ "language_model.model.layers.22.mlp.experts.down_proj": "model-00009-of-00009.safetensors",
266
+ "language_model.model.layers.22.mlp.experts.down_proj_bias": "model-00009-of-00009.safetensors",
267
+ "language_model.model.layers.22.mlp.experts.gate_up_proj": "model-00008-of-00009.safetensors",
268
+ "language_model.model.layers.22.mlp.experts.gate_up_proj_bias": "model-00008-of-00009.safetensors",
269
+ "language_model.model.layers.22.mlp.router.bias": "model-00008-of-00009.safetensors",
270
+ "language_model.model.layers.22.mlp.router.weight": "model-00008-of-00009.safetensors",
271
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
272
+ "language_model.model.layers.22.self_attn.k_proj.bias": "model-00008-of-00009.safetensors",
273
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
274
+ "language_model.model.layers.22.self_attn.o_proj.bias": "model-00008-of-00009.safetensors",
275
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
276
+ "language_model.model.layers.22.self_attn.q_proj.bias": "model-00008-of-00009.safetensors",
277
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
278
+ "language_model.model.layers.22.self_attn.sinks": "model-00008-of-00009.safetensors",
279
+ "language_model.model.layers.22.self_attn.v_proj.bias": "model-00008-of-00009.safetensors",
280
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
281
+ "language_model.model.layers.23.input_layernorm.weight": "model-00009-of-00009.safetensors",
282
+ "language_model.model.layers.23.mlp.experts.down_proj": "model-00009-of-00009.safetensors",
283
+ "language_model.model.layers.23.mlp.experts.down_proj_bias": "model-00009-of-00009.safetensors",
284
+ "language_model.model.layers.23.mlp.experts.gate_up_proj": "model-00009-of-00009.safetensors",
285
+ "language_model.model.layers.23.mlp.experts.gate_up_proj_bias": "model-00009-of-00009.safetensors",
286
+ "language_model.model.layers.23.mlp.router.bias": "model-00009-of-00009.safetensors",
287
+ "language_model.model.layers.23.mlp.router.weight": "model-00009-of-00009.safetensors",
288
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
289
+ "language_model.model.layers.23.self_attn.k_proj.bias": "model-00009-of-00009.safetensors",
290
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
291
+ "language_model.model.layers.23.self_attn.o_proj.bias": "model-00009-of-00009.safetensors",
292
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
293
+ "language_model.model.layers.23.self_attn.q_proj.bias": "model-00009-of-00009.safetensors",
294
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
295
+ "language_model.model.layers.23.self_attn.sinks": "model-00009-of-00009.safetensors",
296
+ "language_model.model.layers.23.self_attn.v_proj.bias": "model-00009-of-00009.safetensors",
297
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
298
+ "language_model.model.layers.3.input_layernorm.weight": "model-00002-of-00009.safetensors",
299
+ "language_model.model.layers.3.mlp.experts.down_proj": "model-00002-of-00009.safetensors",
300
+ "language_model.model.layers.3.mlp.experts.down_proj_bias": "model-00002-of-00009.safetensors",
301
+ "language_model.model.layers.3.mlp.experts.gate_up_proj": "model-00002-of-00009.safetensors",
302
+ "language_model.model.layers.3.mlp.experts.gate_up_proj_bias": "model-00002-of-00009.safetensors",
303
+ "language_model.model.layers.3.mlp.router.bias": "model-00002-of-00009.safetensors",
304
+ "language_model.model.layers.3.mlp.router.weight": "model-00002-of-00009.safetensors",
305
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
306
+ "language_model.model.layers.3.self_attn.k_proj.bias": "model-00002-of-00009.safetensors",
307
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
308
+ "language_model.model.layers.3.self_attn.o_proj.bias": "model-00002-of-00009.safetensors",
309
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
310
+ "language_model.model.layers.3.self_attn.q_proj.bias": "model-00002-of-00009.safetensors",
311
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
312
+ "language_model.model.layers.3.self_attn.sinks": "model-00002-of-00009.safetensors",
313
+ "language_model.model.layers.3.self_attn.v_proj.bias": "model-00002-of-00009.safetensors",
314
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
315
+ "language_model.model.layers.4.input_layernorm.weight": "model-00003-of-00009.safetensors",
316
+ "language_model.model.layers.4.mlp.experts.down_proj": "model-00003-of-00009.safetensors",
317
+ "language_model.model.layers.4.mlp.experts.down_proj_bias": "model-00003-of-00009.safetensors",
318
+ "language_model.model.layers.4.mlp.experts.gate_up_proj": "model-00002-of-00009.safetensors",
319
+ "language_model.model.layers.4.mlp.experts.gate_up_proj_bias": "model-00002-of-00009.safetensors",
320
+ "language_model.model.layers.4.mlp.router.bias": "model-00002-of-00009.safetensors",
321
+ "language_model.model.layers.4.mlp.router.weight": "model-00002-of-00009.safetensors",
322
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
323
+ "language_model.model.layers.4.self_attn.k_proj.bias": "model-00002-of-00009.safetensors",
324
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
325
+ "language_model.model.layers.4.self_attn.o_proj.bias": "model-00002-of-00009.safetensors",
326
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
327
+ "language_model.model.layers.4.self_attn.q_proj.bias": "model-00002-of-00009.safetensors",
328
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
329
+ "language_model.model.layers.4.self_attn.sinks": "model-00002-of-00009.safetensors",
330
+ "language_model.model.layers.4.self_attn.v_proj.bias": "model-00002-of-00009.safetensors",
331
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
332
+ "language_model.model.layers.5.input_layernorm.weight": "model-00003-of-00009.safetensors",
333
+ "language_model.model.layers.5.mlp.experts.down_proj": "model-00003-of-00009.safetensors",
334
+ "language_model.model.layers.5.mlp.experts.down_proj_bias": "model-00003-of-00009.safetensors",
335
+ "language_model.model.layers.5.mlp.experts.gate_up_proj": "model-00003-of-00009.safetensors",
336
+ "language_model.model.layers.5.mlp.experts.gate_up_proj_bias": "model-00003-of-00009.safetensors",
337
+ "language_model.model.layers.5.mlp.router.bias": "model-00003-of-00009.safetensors",
338
+ "language_model.model.layers.5.mlp.router.weight": "model-00003-of-00009.safetensors",
339
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
340
+ "language_model.model.layers.5.self_attn.k_proj.bias": "model-00003-of-00009.safetensors",
341
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
342
+ "language_model.model.layers.5.self_attn.o_proj.bias": "model-00003-of-00009.safetensors",
343
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
344
+ "language_model.model.layers.5.self_attn.q_proj.bias": "model-00003-of-00009.safetensors",
345
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
346
+ "language_model.model.layers.5.self_attn.sinks": "model-00003-of-00009.safetensors",
347
+ "language_model.model.layers.5.self_attn.v_proj.bias": "model-00003-of-00009.safetensors",
348
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
349
+ "language_model.model.layers.6.input_layernorm.weight": "model-00003-of-00009.safetensors",
350
+ "language_model.model.layers.6.mlp.experts.down_proj": "model-00003-of-00009.safetensors",
351
+ "language_model.model.layers.6.mlp.experts.down_proj_bias": "model-00003-of-00009.safetensors",
352
+ "language_model.model.layers.6.mlp.experts.gate_up_proj": "model-00003-of-00009.safetensors",
353
+ "language_model.model.layers.6.mlp.experts.gate_up_proj_bias": "model-00003-of-00009.safetensors",
354
+ "language_model.model.layers.6.mlp.router.bias": "model-00003-of-00009.safetensors",
355
+ "language_model.model.layers.6.mlp.router.weight": "model-00003-of-00009.safetensors",
356
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
357
+ "language_model.model.layers.6.self_attn.k_proj.bias": "model-00003-of-00009.safetensors",
358
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
359
+ "language_model.model.layers.6.self_attn.o_proj.bias": "model-00003-of-00009.safetensors",
360
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
361
+ "language_model.model.layers.6.self_attn.q_proj.bias": "model-00003-of-00009.safetensors",
362
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
363
+ "language_model.model.layers.6.self_attn.sinks": "model-00003-of-00009.safetensors",
364
+ "language_model.model.layers.6.self_attn.v_proj.bias": "model-00003-of-00009.safetensors",
365
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
366
+ "language_model.model.layers.7.input_layernorm.weight": "model-00004-of-00009.safetensors",
367
+ "language_model.model.layers.7.mlp.experts.down_proj": "model-00004-of-00009.safetensors",
368
+ "language_model.model.layers.7.mlp.experts.down_proj_bias": "model-00004-of-00009.safetensors",
369
+ "language_model.model.layers.7.mlp.experts.gate_up_proj": "model-00003-of-00009.safetensors",
370
+ "language_model.model.layers.7.mlp.experts.gate_up_proj_bias": "model-00003-of-00009.safetensors",
371
+ "language_model.model.layers.7.mlp.router.bias": "model-00003-of-00009.safetensors",
372
+ "language_model.model.layers.7.mlp.router.weight": "model-00003-of-00009.safetensors",
373
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
374
+ "language_model.model.layers.7.self_attn.k_proj.bias": "model-00003-of-00009.safetensors",
375
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
376
+ "language_model.model.layers.7.self_attn.o_proj.bias": "model-00003-of-00009.safetensors",
377
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
378
+ "language_model.model.layers.7.self_attn.q_proj.bias": "model-00003-of-00009.safetensors",
379
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
380
+ "language_model.model.layers.7.self_attn.sinks": "model-00003-of-00009.safetensors",
381
+ "language_model.model.layers.7.self_attn.v_proj.bias": "model-00003-of-00009.safetensors",
382
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
383
+ "language_model.model.layers.8.input_layernorm.weight": "model-00004-of-00009.safetensors",
384
+ "language_model.model.layers.8.mlp.experts.down_proj": "model-00004-of-00009.safetensors",
385
+ "language_model.model.layers.8.mlp.experts.down_proj_bias": "model-00004-of-00009.safetensors",
386
+ "language_model.model.layers.8.mlp.experts.gate_up_proj": "model-00004-of-00009.safetensors",
387
+ "language_model.model.layers.8.mlp.experts.gate_up_proj_bias": "model-00004-of-00009.safetensors",
388
+ "language_model.model.layers.8.mlp.router.bias": "model-00004-of-00009.safetensors",
389
+ "language_model.model.layers.8.mlp.router.weight": "model-00004-of-00009.safetensors",
390
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
391
+ "language_model.model.layers.8.self_attn.k_proj.bias": "model-00004-of-00009.safetensors",
392
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
393
+ "language_model.model.layers.8.self_attn.o_proj.bias": "model-00004-of-00009.safetensors",
394
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
395
+ "language_model.model.layers.8.self_attn.q_proj.bias": "model-00004-of-00009.safetensors",
396
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
397
+ "language_model.model.layers.8.self_attn.sinks": "model-00004-of-00009.safetensors",
398
+ "language_model.model.layers.8.self_attn.v_proj.bias": "model-00004-of-00009.safetensors",
399
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
400
+ "language_model.model.layers.9.input_layernorm.weight": "model-00004-of-00009.safetensors",
401
+ "language_model.model.layers.9.mlp.experts.down_proj": "model-00004-of-00009.safetensors",
402
+ "language_model.model.layers.9.mlp.experts.down_proj_bias": "model-00004-of-00009.safetensors",
403
+ "language_model.model.layers.9.mlp.experts.gate_up_proj": "model-00004-of-00009.safetensors",
404
+ "language_model.model.layers.9.mlp.experts.gate_up_proj_bias": "model-00004-of-00009.safetensors",
405
+ "language_model.model.layers.9.mlp.router.bias": "model-00004-of-00009.safetensors",
406
+ "language_model.model.layers.9.mlp.router.weight": "model-00004-of-00009.safetensors",
407
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
408
+ "language_model.model.layers.9.self_attn.k_proj.bias": "model-00004-of-00009.safetensors",
409
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
410
+ "language_model.model.layers.9.self_attn.o_proj.bias": "model-00004-of-00009.safetensors",
411
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
412
+ "language_model.model.layers.9.self_attn.q_proj.bias": "model-00004-of-00009.safetensors",
413
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
414
+ "language_model.model.layers.9.self_attn.sinks": "model-00004-of-00009.safetensors",
415
+ "language_model.model.layers.9.self_attn.v_proj.bias": "model-00004-of-00009.safetensors",
416
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
417
+ "language_model.model.norm.weight": "model-00009-of-00009.safetensors",
418
+ "mlp1.0.bias": "model-00009-of-00009.safetensors",
419
+ "mlp1.0.weight": "model-00009-of-00009.safetensors",
420
+ "mlp1.1.bias": "model-00009-of-00009.safetensors",
421
+ "mlp1.1.weight": "model-00009-of-00009.safetensors",
422
+ "mlp1.3.bias": "model-00009-of-00009.safetensors",
423
+ "mlp1.3.weight": "model-00009-of-00009.safetensors",
424
+ "vision_model.embeddings.class_embedding": "model-00001-of-00009.safetensors",
425
+ "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00009.safetensors",
426
+ "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00009.safetensors",
427
+ "vision_model.embeddings.position_embedding": "model-00001-of-00009.safetensors",
428
+ "vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00009.safetensors",
429
+ "vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00009.safetensors",
430
+ "vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00009.safetensors",
431
+ "vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00009.safetensors",
432
+ "vision_model.encoder.layers.0.ls1": "model-00001-of-00009.safetensors",
433
+ "vision_model.encoder.layers.0.ls2": "model-00001-of-00009.safetensors",
434
+ "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00009.safetensors",
435
+ "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00009.safetensors",
436
+ "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00009.safetensors",
437
+ "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00009.safetensors",
438
+ "vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00009.safetensors",
439
+ "vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00009.safetensors",
440
+ "vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00009.safetensors",
441
+ "vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00009.safetensors",
442
+ "vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00009.safetensors",
443
+ "vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00009.safetensors",
444
+ "vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00009.safetensors",
445
+ "vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00009.safetensors",
446
+ "vision_model.encoder.layers.1.ls1": "model-00001-of-00009.safetensors",
447
+ "vision_model.encoder.layers.1.ls2": "model-00001-of-00009.safetensors",
448
+ "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00009.safetensors",
449
+ "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00009.safetensors",
450
+ "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00009.safetensors",
451
+ "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00009.safetensors",
452
+ "vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00009.safetensors",
453
+ "vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00009.safetensors",
454
+ "vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00009.safetensors",
455
+ "vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00009.safetensors",
456
+ "vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00009.safetensors",
457
+ "vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00009.safetensors",
458
+ "vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00009.safetensors",
459
+ "vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00009.safetensors",
460
+ "vision_model.encoder.layers.10.ls1": "model-00001-of-00009.safetensors",
461
+ "vision_model.encoder.layers.10.ls2": "model-00001-of-00009.safetensors",
462
+ "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00009.safetensors",
463
+ "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00009.safetensors",
464
+ "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00009.safetensors",
465
+ "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00009.safetensors",
466
+ "vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00009.safetensors",
467
+ "vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00009.safetensors",
468
+ "vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00009.safetensors",
469
+ "vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00009.safetensors",
470
+ "vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00009.safetensors",
471
+ "vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00009.safetensors",
472
+ "vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00009.safetensors",
473
+ "vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00009.safetensors",
474
+ "vision_model.encoder.layers.11.ls1": "model-00001-of-00009.safetensors",
475
+ "vision_model.encoder.layers.11.ls2": "model-00001-of-00009.safetensors",
476
+ "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00009.safetensors",
477
+ "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00009.safetensors",
478
+ "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00009.safetensors",
479
+ "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00009.safetensors",
480
+ "vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00009.safetensors",
481
+ "vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00009.safetensors",
482
+ "vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00009.safetensors",
483
+ "vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00009.safetensors",
484
+ "vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00009.safetensors",
485
+ "vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00009.safetensors",
486
+ "vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00009.safetensors",
487
+ "vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00009.safetensors",
488
+ "vision_model.encoder.layers.12.ls1": "model-00001-of-00009.safetensors",
489
+ "vision_model.encoder.layers.12.ls2": "model-00001-of-00009.safetensors",
490
+ "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00009.safetensors",
491
+ "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00009.safetensors",
492
+ "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00009.safetensors",
493
+ "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00009.safetensors",
494
+ "vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00009.safetensors",
495
+ "vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00009.safetensors",
496
+ "vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00009.safetensors",
497
+ "vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00009.safetensors",
498
+ "vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00009.safetensors",
499
+ "vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00009.safetensors",
500
+ "vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00009.safetensors",
501
+ "vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00009.safetensors",
502
+ "vision_model.encoder.layers.13.ls1": "model-00001-of-00009.safetensors",
503
+ "vision_model.encoder.layers.13.ls2": "model-00001-of-00009.safetensors",
504
+ "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00009.safetensors",
505
+ "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00009.safetensors",
506
+ "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00009.safetensors",
507
+ "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00009.safetensors",
508
+ "vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00009.safetensors",
509
+ "vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00009.safetensors",
510
+ "vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00009.safetensors",
511
+ "vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00009.safetensors",
512
+ "vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00009.safetensors",
513
+ "vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00009.safetensors",
514
+ "vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00009.safetensors",
515
+ "vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00009.safetensors",
516
+ "vision_model.encoder.layers.14.ls1": "model-00001-of-00009.safetensors",
517
+ "vision_model.encoder.layers.14.ls2": "model-00001-of-00009.safetensors",
518
+ "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00009.safetensors",
519
+ "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00009.safetensors",
520
+ "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00009.safetensors",
521
+ "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00009.safetensors",
522
+ "vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00009.safetensors",
523
+ "vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00009.safetensors",
524
+ "vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00009.safetensors",
525
+ "vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00009.safetensors",
526
+ "vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00009.safetensors",
527
+ "vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00009.safetensors",
528
+ "vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00009.safetensors",
529
+ "vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00009.safetensors",
530
+ "vision_model.encoder.layers.15.ls1": "model-00001-of-00009.safetensors",
531
+ "vision_model.encoder.layers.15.ls2": "model-00001-of-00009.safetensors",
532
+ "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00009.safetensors",
533
+ "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00009.safetensors",
534
+ "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00009.safetensors",
535
+ "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00009.safetensors",
536
+ "vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00009.safetensors",
537
+ "vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00009.safetensors",
538
+ "vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00009.safetensors",
539
+ "vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00009.safetensors",
540
+ "vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00009.safetensors",
541
+ "vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00009.safetensors",
542
+ "vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00009.safetensors",
543
+ "vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00009.safetensors",
544
+ "vision_model.encoder.layers.16.ls1": "model-00001-of-00009.safetensors",
545
+ "vision_model.encoder.layers.16.ls2": "model-00001-of-00009.safetensors",
546
+ "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00009.safetensors",
547
+ "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00009.safetensors",
548
+ "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00009.safetensors",
549
+ "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00009.safetensors",
550
+ "vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00009.safetensors",
551
+ "vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00009.safetensors",
552
+ "vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00009.safetensors",
553
+ "vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00009.safetensors",
554
+ "vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00009.safetensors",
555
+ "vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00009.safetensors",
556
+ "vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00009.safetensors",
557
+ "vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00009.safetensors",
558
+ "vision_model.encoder.layers.17.ls1": "model-00001-of-00009.safetensors",
559
+ "vision_model.encoder.layers.17.ls2": "model-00001-of-00009.safetensors",
560
+ "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00009.safetensors",
561
+ "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00009.safetensors",
562
+ "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00009.safetensors",
563
+ "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00009.safetensors",
564
+ "vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00009.safetensors",
565
+ "vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00009.safetensors",
566
+ "vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00009.safetensors",
567
+ "vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00009.safetensors",
568
+ "vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00009.safetensors",
569
+ "vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00009.safetensors",
570
+ "vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00009.safetensors",
571
+ "vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00009.safetensors",
572
+ "vision_model.encoder.layers.18.ls1": "model-00001-of-00009.safetensors",
573
+ "vision_model.encoder.layers.18.ls2": "model-00001-of-00009.safetensors",
574
+ "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00009.safetensors",
575
+ "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00009.safetensors",
576
+ "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00009.safetensors",
577
+ "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00009.safetensors",
578
+ "vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00009.safetensors",
579
+ "vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00009.safetensors",
580
+ "vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00009.safetensors",
581
+ "vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00009.safetensors",
582
+ "vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00009.safetensors",
583
+ "vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00009.safetensors",
584
+ "vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00009.safetensors",
585
+ "vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00009.safetensors",
586
+ "vision_model.encoder.layers.19.ls1": "model-00001-of-00009.safetensors",
587
+ "vision_model.encoder.layers.19.ls2": "model-00001-of-00009.safetensors",
588
+ "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00009.safetensors",
589
+ "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00009.safetensors",
590
+ "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00009.safetensors",
591
+ "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00009.safetensors",
592
+ "vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00009.safetensors",
593
+ "vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00009.safetensors",
594
+ "vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00009.safetensors",
595
+ "vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00009.safetensors",
596
+ "vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00009.safetensors",
597
+ "vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00009.safetensors",
598
+ "vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00009.safetensors",
599
+ "vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00009.safetensors",
600
+ "vision_model.encoder.layers.2.ls1": "model-00001-of-00009.safetensors",
601
+ "vision_model.encoder.layers.2.ls2": "model-00001-of-00009.safetensors",
602
+ "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00009.safetensors",
603
+ "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00009.safetensors",
604
+ "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00009.safetensors",
605
+ "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00009.safetensors",
606
+ "vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00009.safetensors",
607
+ "vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00009.safetensors",
608
+ "vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00009.safetensors",
609
+ "vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00009.safetensors",
610
+ "vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00009.safetensors",
611
+ "vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00009.safetensors",
612
+ "vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00009.safetensors",
613
+ "vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00009.safetensors",
614
+ "vision_model.encoder.layers.20.ls1": "model-00001-of-00009.safetensors",
615
+ "vision_model.encoder.layers.20.ls2": "model-00001-of-00009.safetensors",
616
+ "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00009.safetensors",
617
+ "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00009.safetensors",
618
+ "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00009.safetensors",
619
+ "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00009.safetensors",
620
+ "vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00009.safetensors",
621
+ "vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00009.safetensors",
622
+ "vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00009.safetensors",
623
+ "vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00009.safetensors",
624
+ "vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00009.safetensors",
625
+ "vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00009.safetensors",
626
+ "vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00009.safetensors",
627
+ "vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00009.safetensors",
628
+ "vision_model.encoder.layers.21.ls1": "model-00001-of-00009.safetensors",
629
+ "vision_model.encoder.layers.21.ls2": "model-00001-of-00009.safetensors",
630
+ "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00009.safetensors",
631
+ "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00009.safetensors",
632
+ "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00009.safetensors",
633
+ "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00009.safetensors",
634
+ "vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00009.safetensors",
635
+ "vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00009.safetensors",
636
+ "vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00009.safetensors",
637
+ "vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00009.safetensors",
638
+ "vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00009.safetensors",
639
+ "vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00009.safetensors",
640
+ "vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00009.safetensors",
641
+ "vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00009.safetensors",
642
+ "vision_model.encoder.layers.22.ls1": "model-00001-of-00009.safetensors",
643
+ "vision_model.encoder.layers.22.ls2": "model-00001-of-00009.safetensors",
644
+ "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00009.safetensors",
645
+ "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00009.safetensors",
646
+ "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00009.safetensors",
647
+ "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00009.safetensors",
648
+ "vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00009.safetensors",
649
+ "vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00009.safetensors",
650
+ "vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00009.safetensors",
651
+ "vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00009.safetensors",
652
+ "vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00009.safetensors",
653
+ "vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00009.safetensors",
654
+ "vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00009.safetensors",
655
+ "vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00009.safetensors",
656
+ "vision_model.encoder.layers.23.ls1": "model-00001-of-00009.safetensors",
657
+ "vision_model.encoder.layers.23.ls2": "model-00001-of-00009.safetensors",
658
+ "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00009.safetensors",
659
+ "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00009.safetensors",
660
+ "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00009.safetensors",
661
+ "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00009.safetensors",
662
+ "vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00009.safetensors",
663
+ "vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00009.safetensors",
664
+ "vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00009.safetensors",
665
+ "vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00009.safetensors",
666
+ "vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00009.safetensors",
667
+ "vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00009.safetensors",
668
+ "vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00009.safetensors",
669
+ "vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00009.safetensors",
670
+ "vision_model.encoder.layers.3.ls1": "model-00001-of-00009.safetensors",
671
+ "vision_model.encoder.layers.3.ls2": "model-00001-of-00009.safetensors",
672
+ "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00009.safetensors",
673
+ "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00009.safetensors",
674
+ "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00009.safetensors",
675
+ "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00009.safetensors",
676
+ "vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00009.safetensors",
677
+ "vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00009.safetensors",
678
+ "vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00009.safetensors",
679
+ "vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00009.safetensors",
680
+ "vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00009.safetensors",
681
+ "vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00009.safetensors",
682
+ "vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00009.safetensors",
683
+ "vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00009.safetensors",
684
+ "vision_model.encoder.layers.4.ls1": "model-00001-of-00009.safetensors",
685
+ "vision_model.encoder.layers.4.ls2": "model-00001-of-00009.safetensors",
686
+ "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00009.safetensors",
687
+ "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00009.safetensors",
688
+ "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00009.safetensors",
689
+ "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00009.safetensors",
690
+ "vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00009.safetensors",
691
+ "vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00009.safetensors",
692
+ "vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00009.safetensors",
693
+ "vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00009.safetensors",
694
+ "vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00009.safetensors",
695
+ "vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00009.safetensors",
696
+ "vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00009.safetensors",
697
+ "vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00009.safetensors",
698
+ "vision_model.encoder.layers.5.ls1": "model-00001-of-00009.safetensors",
699
+ "vision_model.encoder.layers.5.ls2": "model-00001-of-00009.safetensors",
700
+ "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00009.safetensors",
701
+ "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00009.safetensors",
702
+ "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00009.safetensors",
703
+ "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00009.safetensors",
704
+ "vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00009.safetensors",
705
+ "vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00009.safetensors",
706
+ "vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00009.safetensors",
707
+ "vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00009.safetensors",
708
+ "vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00009.safetensors",
709
+ "vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00009.safetensors",
710
+ "vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00009.safetensors",
711
+ "vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00009.safetensors",
712
+ "vision_model.encoder.layers.6.ls1": "model-00001-of-00009.safetensors",
713
+ "vision_model.encoder.layers.6.ls2": "model-00001-of-00009.safetensors",
714
+ "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00009.safetensors",
715
+ "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00009.safetensors",
716
+ "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00009.safetensors",
717
+ "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00009.safetensors",
718
+ "vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00009.safetensors",
719
+ "vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00009.safetensors",
720
+ "vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00009.safetensors",
721
+ "vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00009.safetensors",
722
+ "vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00009.safetensors",
723
+ "vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00009.safetensors",
724
+ "vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00009.safetensors",
725
+ "vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00009.safetensors",
726
+ "vision_model.encoder.layers.7.ls1": "model-00001-of-00009.safetensors",
727
+ "vision_model.encoder.layers.7.ls2": "model-00001-of-00009.safetensors",
728
+ "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00009.safetensors",
729
+ "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00009.safetensors",
730
+ "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00009.safetensors",
731
+ "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00009.safetensors",
732
+ "vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00009.safetensors",
733
+ "vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00009.safetensors",
734
+ "vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00009.safetensors",
735
+ "vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00009.safetensors",
736
+ "vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00009.safetensors",
737
+ "vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00009.safetensors",
738
+ "vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00009.safetensors",
739
+ "vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00009.safetensors",
740
+ "vision_model.encoder.layers.8.ls1": "model-00001-of-00009.safetensors",
741
+ "vision_model.encoder.layers.8.ls2": "model-00001-of-00009.safetensors",
742
+ "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00009.safetensors",
743
+ "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00009.safetensors",
744
+ "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00009.safetensors",
745
+ "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00009.safetensors",
746
+ "vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00009.safetensors",
747
+ "vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00009.safetensors",
748
+ "vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00009.safetensors",
749
+ "vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00009.safetensors",
750
+ "vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00009.safetensors",
751
+ "vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00009.safetensors",
752
+ "vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00009.safetensors",
753
+ "vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00009.safetensors",
754
+ "vision_model.encoder.layers.9.ls1": "model-00001-of-00009.safetensors",
755
+ "vision_model.encoder.layers.9.ls2": "model-00001-of-00009.safetensors",
756
+ "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00009.safetensors",
757
+ "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00009.safetensors",
758
+ "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00009.safetensors",
759
+ "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00009.safetensors",
760
+ "vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00009.safetensors",
761
+ "vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00009.safetensors",
762
+ "vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00009.safetensors",
763
+ "vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00009.safetensors"
764
+ }
765
+ }
modeling_intern_vit.py ADDED
@@ -0,0 +1,433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint
12
+ from einops import rearrange
13
+ from timm.layers import DropPath
14
+ from torch import nn
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import (BaseModelOutput,
17
+ BaseModelOutputWithPooling)
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging
20
+
21
+ from .configuration_intern_vit import InternVisionConfig
22
+
23
+ try:
24
+ from flash_attn.bert_padding import pad_input, unpad_input
25
+ from flash_attn.flash_attn_interface import \
26
+ flash_attn_varlen_qkvpacked_func
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention2 is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_varlen_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_varlen_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_varlen_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = True
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ supports_gradient_checkpointing = True
368
+ config_class = InternVisionConfig
369
+ _no_split_modules = ['InternVisionEncoderLayer']
370
+ # support transformers 4.51.+
371
+ _tp_plan = ''
372
+
373
+ def __init__(self, config: InternVisionConfig):
374
+ super().__init__(config)
375
+ self.config = config
376
+
377
+ self.embeddings = InternVisionEmbeddings(config)
378
+ self.encoder = InternVisionEncoder(config)
379
+
380
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
381
+ pos_emb = self.embeddings.position_embedding
382
+ _, num_positions, embed_dim = pos_emb.shape
383
+ cls_emb = pos_emb[:, :1, :]
384
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
385
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
386
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
387
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
388
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
389
+ self.embeddings.image_size = new_size
390
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
391
+
392
+ def get_input_embeddings(self):
393
+ return self.embeddings
394
+
395
+ def forward(
396
+ self,
397
+ pixel_values: Optional[torch.FloatTensor] = None,
398
+ output_hidden_states: Optional[bool] = None,
399
+ return_dict: Optional[bool] = None,
400
+ pixel_embeds: Optional[torch.FloatTensor] = None,
401
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
402
+ output_hidden_states = (
403
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
404
+ )
405
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
406
+
407
+ if pixel_values is None and pixel_embeds is None:
408
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
409
+
410
+ if pixel_embeds is not None:
411
+ hidden_states = pixel_embeds
412
+ else:
413
+ if len(pixel_values.shape) == 4:
414
+ hidden_states = self.embeddings(pixel_values)
415
+ else:
416
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
417
+ encoder_outputs = self.encoder(
418
+ inputs_embeds=hidden_states,
419
+ output_hidden_states=output_hidden_states,
420
+ return_dict=return_dict,
421
+ )
422
+ last_hidden_state = encoder_outputs.last_hidden_state
423
+ pooled_output = last_hidden_state[:, 0, :]
424
+
425
+ if not return_dict:
426
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
427
+
428
+ return BaseModelOutputWithPooling(
429
+ last_hidden_state=last_hidden_state,
430
+ pooler_output=pooled_output,
431
+ hidden_states=encoder_outputs.hidden_states,
432
+ attentions=encoder_outputs.attentions,
433
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import warnings
8
+ from typing import List, Optional, Tuple, Union
9
+
10
+ import torch
11
+ import torch.utils.checkpoint
12
+ import transformers
13
+ from torch import nn
14
+ from torch.nn import CrossEntropyLoss
15
+ from transformers import GenerationConfig
16
+ from transformers.modeling_outputs import CausalLMOutputWithPast, MoeCausalLMOutputWithPast
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import logging
19
+ from transformers import AutoModelForCausalLM
20
+ from transformers.models.gpt_oss.modeling_gpt_oss import GptOssForCausalLM, load_balancing_loss_func
21
+
22
+ from .configuration_internvl_chat import InternVLChatConfig
23
+ from .conversation import get_conv_template
24
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ def version_cmp(v1, v2, op='eq'):
30
+ import operator
31
+
32
+ from packaging import version
33
+ op_func = getattr(operator, op)
34
+ return op_func(version.parse(v1), version.parse(v2))
35
+
36
+
37
+ class InternVLChatModel(PreTrainedModel):
38
+ config_class = InternVLChatConfig
39
+ main_input_name = 'pixel_values'
40
+ base_model_prefix = 'language_model'
41
+ _supports_flash_attn_2 = True
42
+ supports_gradient_checkpointing = True
43
+ _no_split_modules = [
44
+ "InternVisionModel",
45
+ "GptOssDecoderLayer",
46
+ ]
47
+
48
+ # support transformers 4.51.+
49
+ _tp_plan = ''
50
+
51
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
52
+ super().__init__(config)
53
+
54
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
55
+ image_size = config.force_image_size or config.vision_config.image_size
56
+ patch_size = config.vision_config.patch_size
57
+ self.patch_size = patch_size
58
+ self.select_layer = config.select_layer
59
+ self.template = config.template
60
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
61
+ self.downsample_ratio = config.downsample_ratio
62
+ self.ps_version = config.ps_version
63
+ use_flash_attn = use_flash_attn if has_flash_attn else False
64
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
65
+ # config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
66
+
67
+ logger.info(f'num_image_token: {self.num_image_token}')
68
+ logger.info(f'ps_version: {self.ps_version}')
69
+ if vision_model is not None:
70
+ self.vision_model = vision_model
71
+ else:
72
+ self.vision_model = InternVisionModel(config.vision_config)
73
+
74
+ if language_model is not None:
75
+ self.language_model = language_model
76
+ else:
77
+ self.language_model = AutoModelForCausalLM.from_config(config.llm_config)
78
+ logger.info(f"language_model type: {type(self.language_model)}")
79
+
80
+ vit_hidden_size = config.vision_config.hidden_size
81
+ llm_hidden_size = config.llm_config.hidden_size
82
+
83
+ self.mlp1 = nn.Sequential(
84
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
85
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
86
+ nn.GELU(),
87
+ nn.Linear(llm_hidden_size, llm_hidden_size)
88
+ )
89
+
90
+ self.img_context_token_id = None
91
+ self.conv_template = get_conv_template(self.template)
92
+ self.system_message = self.conv_template.system_message
93
+
94
+ def forward(
95
+ self,
96
+ pixel_values: torch.FloatTensor,
97
+ input_ids: torch.LongTensor = None,
98
+ attention_mask: Optional[torch.Tensor] = None,
99
+ position_ids: Optional[torch.LongTensor] = None,
100
+ image_flags: Optional[torch.LongTensor] = None,
101
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
102
+ labels: Optional[torch.LongTensor] = None,
103
+ use_cache: Optional[bool] = None,
104
+ output_attentions: Optional[bool] = None,
105
+ output_hidden_states: Optional[bool] = None,
106
+ return_dict: Optional[bool] = None,
107
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
108
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
109
+
110
+ image_flags = image_flags.squeeze(-1)
111
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
112
+
113
+ vit_embeds = self.extract_feature(pixel_values)
114
+ vit_embeds = vit_embeds[image_flags == 1]
115
+ vit_batch_size = pixel_values.shape[0]
116
+
117
+ B, N, C = input_embeds.shape
118
+ input_embeds = input_embeds.reshape(B * N, C)
119
+
120
+ # if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
121
+ # print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
122
+
123
+ input_ids = input_ids.reshape(B * N)
124
+ selected = (input_ids == self.img_context_token_id)
125
+ try:
126
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
127
+ except Exception as e:
128
+ vit_embeds = vit_embeds.reshape(-1, C)
129
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
130
+ f'vit_embeds.shape={vit_embeds.shape}')
131
+ n_token = min(selected.sum(), vit_embeds.size(0))
132
+ input_embeds[selected][:n_token] = input_embeds[selected][:n_token] * 0.0 + vit_embeds[:n_token]
133
+
134
+ input_embeds = input_embeds.reshape(B, N, C)
135
+
136
+ outputs = self.language_model(
137
+ inputs_embeds=input_embeds,
138
+ attention_mask=attention_mask,
139
+ position_ids=position_ids,
140
+ past_key_values=past_key_values,
141
+ use_cache=use_cache,
142
+ output_attentions=output_attentions,
143
+ output_hidden_states=output_hidden_states,
144
+ return_dict=return_dict,
145
+ )
146
+ logits = outputs.logits
147
+
148
+ loss = None
149
+ aux_loss = None
150
+ if labels is not None:
151
+ # Shift so that tokens < n predict n
152
+ shift_logits = logits[..., :-1, :].contiguous()
153
+ shift_labels = labels[..., 1:].contiguous()
154
+ # Flatten the tokens
155
+ loss_fct = CrossEntropyLoss()
156
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
157
+ shift_labels = shift_labels.view(-1)
158
+ # Enable model parallelism
159
+ shift_labels = shift_labels.to(shift_logits.device)
160
+ loss = loss_fct(shift_logits, shift_labels)
161
+
162
+ if getattr(outputs, 'router_logits', None) is not None:
163
+ aux_loss = load_balancing_loss_func(
164
+ outputs.router_logits,
165
+ self.language_model.num_experts,
166
+ self.language_model.num_experts_per_tok,
167
+ attention_mask,
168
+ )
169
+
170
+ if loss is not None:
171
+ loss = loss + self.language_model.router_aux_loss_coef * aux_loss.to(loss.device)
172
+
173
+ if not return_dict:
174
+ output = (logits,) + outputs[1:]
175
+ return (loss,) + output if loss is not None else output
176
+
177
+ if aux_loss is not None:
178
+ return MoeCausalLMOutputWithPast(
179
+ loss=loss,
180
+ aux_loss=aux_loss,
181
+ logits=logits,
182
+ past_key_values=outputs.past_key_values,
183
+ hidden_states=outputs.hidden_states,
184
+ attentions=outputs.attentions,
185
+ )
186
+
187
+ return CausalLMOutputWithPast(
188
+ loss=loss,
189
+ logits=logits,
190
+ past_key_values=outputs.past_key_values,
191
+ hidden_states=outputs.hidden_states,
192
+ attentions=outputs.attentions,
193
+ )
194
+
195
+ def pixel_shuffle(self, x, scale_factor=0.5):
196
+ n, w, h, c = x.size()
197
+ # N, W, H, C --> N, W, H * scale, C // scale
198
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
199
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
200
+ x = x.permute(0, 2, 1, 3).contiguous()
201
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
202
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
203
+ int(c / (scale_factor * scale_factor)))
204
+ if self.ps_version == 'v1':
205
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
206
+ 'which results in a transposed image.')
207
+ else:
208
+ x = x.permute(0, 2, 1, 3).contiguous()
209
+ return x
210
+
211
+ def extract_feature(self, pixel_values):
212
+ if self.select_layer == -1:
213
+ vit_embeds = self.vision_model(
214
+ pixel_values=pixel_values,
215
+ output_hidden_states=False,
216
+ return_dict=True).last_hidden_state
217
+ else:
218
+ vit_embeds = self.vision_model(
219
+ pixel_values=pixel_values,
220
+ output_hidden_states=True,
221
+ return_dict=True).hidden_states[self.select_layer]
222
+ vit_embeds = vit_embeds[:, 1:, :]
223
+
224
+ h = w = int(vit_embeds.shape[1] ** 0.5)
225
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
226
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
227
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
228
+ vit_embeds = self.mlp1(vit_embeds)
229
+ return vit_embeds
230
+
231
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
232
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
233
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
234
+ if history is not None or return_history:
235
+ print('Now multi-turn chat is not supported in batch_chat.')
236
+ raise NotImplementedError
237
+
238
+ if image_counts is not None:
239
+ num_patches_list = image_counts
240
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
241
+
242
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
243
+ self.img_context_token_id = img_context_token_id
244
+
245
+ if verbose and pixel_values is not None:
246
+ image_bs = pixel_values.shape[0]
247
+ print(f'dynamic ViT batch size: {image_bs}')
248
+
249
+ queries = []
250
+ for idx, num_patches in enumerate(num_patches_list):
251
+ question = questions[idx]
252
+ if pixel_values is not None and '<image>' not in question:
253
+ question = '<image>\n' + question
254
+ template = get_conv_template(self.template)
255
+ template.system_message = self.system_message
256
+ template.append_message(template.roles[0], question)
257
+ template.append_message(template.roles[1], None)
258
+ query = template.get_prompt()
259
+
260
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
261
+ query = query.replace('<image>', image_tokens, 1)
262
+ queries.append(query)
263
+
264
+ tokenizer.padding_side = 'left'
265
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
266
+ input_ids = model_inputs['input_ids'].to(self.device)
267
+ attention_mask = model_inputs['attention_mask'].to(self.device)
268
+
269
+ sep = template.sep.strip() if template.sep2 is None else template.sep2.strip()
270
+ eos_token_id = tokenizer.convert_tokens_to_ids(sep)
271
+
272
+ generation_config['eos_token_id'] = eos_token_id
273
+ generation_output = self.generate(
274
+ pixel_values=pixel_values,
275
+ input_ids=input_ids,
276
+ attention_mask=attention_mask,
277
+ **generation_config
278
+ )
279
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=False)
280
+ responses = [response.split(sep)[0].split('<|message|>')[-1].strip() for response in responses]
281
+ return responses
282
+
283
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
284
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
285
+ verbose=False):
286
+
287
+ if history is None and pixel_values is not None and '<image>' not in question:
288
+ question = '<image>\n' + question
289
+
290
+ if num_patches_list is None:
291
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
292
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
293
+
294
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
295
+ self.img_context_token_id = img_context_token_id
296
+
297
+ template = get_conv_template(self.template)
298
+ template.system_message = self.system_message
299
+
300
+ sep = template.sep.strip() if template.sep2 is None else template.sep2.strip()
301
+ eos_token_id = tokenizer.convert_tokens_to_ids(sep)
302
+
303
+ history = [] if history is None else history
304
+ for (old_question, old_answer) in history:
305
+ template.append_message(template.roles[0], old_question)
306
+ template.append_message(template.roles[1], old_answer)
307
+ template.append_message(template.roles[0], question)
308
+ template.append_message(template.roles[1], None)
309
+ query = template.get_prompt()
310
+
311
+ if verbose and pixel_values is not None:
312
+ image_bs = pixel_values.shape[0]
313
+ print(f'dynamic ViT batch size: {image_bs}')
314
+
315
+ for num_patches in num_patches_list:
316
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
317
+ query = query.replace('<image>', image_tokens, 1)
318
+
319
+ model_inputs = tokenizer(query, return_tensors='pt')
320
+ input_ids = model_inputs['input_ids'].to(self.device)
321
+ attention_mask = model_inputs['attention_mask'].to(self.device)
322
+ generation_config['eos_token_id'] = eos_token_id
323
+ generation_output = self.generate(
324
+ pixel_values=pixel_values,
325
+ input_ids=input_ids,
326
+ attention_mask=attention_mask,
327
+ **generation_config
328
+ )
329
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=False)[0]
330
+ response = response.split(sep)[0].strip()
331
+ response = response.split('<|message|>')[-1].strip()
332
+
333
+ history.append((question, response))
334
+ if return_history:
335
+ return response, history
336
+ else:
337
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
338
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
339
+ if verbose:
340
+ print(query_to_print, response)
341
+ return response
342
+
343
+ @torch.no_grad()
344
+ def generate(
345
+ self,
346
+ pixel_values: Optional[torch.FloatTensor] = None,
347
+ input_ids: Optional[torch.FloatTensor] = None,
348
+ attention_mask: Optional[torch.LongTensor] = None,
349
+ visual_features: Optional[torch.FloatTensor] = None,
350
+ generation_config: Optional[GenerationConfig] = None,
351
+ output_hidden_states: Optional[bool] = None,
352
+ **generate_kwargs,
353
+ ) -> torch.LongTensor:
354
+
355
+ assert self.img_context_token_id is not None
356
+ if pixel_values is not None:
357
+ if visual_features is not None:
358
+ vit_embeds = visual_features
359
+ else:
360
+ vit_embeds = self.extract_feature(pixel_values)
361
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
362
+ B, N, C = input_embeds.shape
363
+ input_embeds = input_embeds.reshape(B * N, C)
364
+
365
+ input_ids = input_ids.reshape(B * N)
366
+ selected = (input_ids == self.img_context_token_id)
367
+ assert selected.sum() != 0
368
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
369
+
370
+ input_embeds = input_embeds.reshape(B, N, C)
371
+ else:
372
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
373
+
374
+ outputs = self.language_model.generate(
375
+ inputs_embeds=input_embeds,
376
+ attention_mask=attention_mask,
377
+ generation_config=generation_config,
378
+ output_hidden_states=output_hidden_states,
379
+ use_cache=True,
380
+ **generate_kwargs,
381
+ )
382
+
383
+ return outputs
384
+
385
+ @property
386
+ def lm_head(self):
387
+ return self.language_model.get_output_embeddings()
388
+
389
+ def get_output_embeddings(self):
390
+ return self.language_model.get_output_embeddings()
391
+
392
+ def get_input_embeddings(self):
393
+ return self.language_model.get_input_embeddings()
394
+
395
+ def set_input_embeddings(self, value):
396
+ return self.language_model.set_input_embeddings(value)
397
+
398
+ def set_output_embeddings(self, value):
399
+ return self.language_model.set_output_embeddings(value)
preprocessor_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": null,
3
+ "crop_to_patches": false,
4
+ "data_format": "channels_first",
5
+ "default_to_square": true,
6
+ "device": null,
7
+ "do_center_crop": null,
8
+ "do_convert_rgb": true,
9
+ "do_normalize": true,
10
+ "do_rescale": true,
11
+ "do_resize": true,
12
+ "image_mean": [
13
+ 0.485,
14
+ 0.456,
15
+ 0.406
16
+ ],
17
+ "image_processor_type": "GotOcr2ImageProcessorFast",
18
+ "image_std": [
19
+ 0.229,
20
+ 0.224,
21
+ 0.225
22
+ ],
23
+ "input_data_format": null,
24
+ "max_patches": 12,
25
+ "min_patches": 1,
26
+ "processor_class": "InternVLProcessor",
27
+ "resample": 3,
28
+ "rescale_factor": 0.00392156862745098,
29
+ "return_tensors": null,
30
+ "size": {
31
+ "height": 448,
32
+ "width": 448
33
+ }
34
+ }
processor_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "image_seq_length": 256,
3
+ "processor_class": "InternVLProcessor"
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|return|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c5d65adb9e25fe2d444137550e4bf7e9f3501f1eb542ebb8c8fdc27ea9863f1
3
+ size 27869826
tokenizer_config.json ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_eos_token": false,
3
+ "added_tokens_decoder": {
4
+ "199998": {
5
+ "content": "<|startoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "199999": {
13
+ "content": "<|endoftext|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "200000": {
21
+ "content": "<|reserved_200000|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "200001": {
29
+ "content": "<|reserved_200001|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "200002": {
37
+ "content": "<|return|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "200003": {
45
+ "content": "<|constrain|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "200004": {
53
+ "content": "<|reserved_200004|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "200005": {
61
+ "content": "<|channel|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "200006": {
69
+ "content": "<|start|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "200007": {
77
+ "content": "<|end|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "200008": {
85
+ "content": "<|message|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "200009": {
93
+ "content": "<|reserved_200009|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "200010": {
101
+ "content": "<|reserved_200010|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "200011": {
109
+ "content": "<|reserved_200011|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "200012": {
117
+ "content": "<|call|>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "200013": {
125
+ "content": "<|reserved_200013|>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "200014": {
133
+ "content": "<|reserved_200014|>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "200015": {
141
+ "content": "<|reserved_200015|>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "200016": {
149
+ "content": "<|reserved_200016|>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "200017": {
157
+ "content": "<|reserved_200017|>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "200018": {
165
+ "content": "<|endofprompt|>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "200019": {
173
+ "content": "<img>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "200020": {
181
+ "content": "</img>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "200021": {
189
+ "content": "<IMG_CONTEXT>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "200022": {
197
+ "content": "<quad>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "200023": {
205
+ "content": "</quad>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "200024": {
213
+ "content": "<ref>",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "200025": {
221
+ "content": "</ref>",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "200026": {
229
+ "content": "<box>",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "200027": {
237
+ "content": "</box>",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": true
243
+ }
244
+ },
245
+ "bos_token": "<|startoftext|>",
246
+ "clean_up_tokenization_spaces": false,
247
+ "eos_token": "<|return|>",
248
+ "extra_special_tokens": {},
249
+ "model_input_names": [
250
+ "input_ids",
251
+ "attention_mask"
252
+ ],
253
+ "model_max_length": 16384,
254
+ "pad_token": "<|endoftext|>",
255
+ "tokenizer_class": "PreTrainedTokenizerFast"
256
+ }
video_preprocessor_config.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_kwargs_names": [
3
+ "do_convert_rgb",
4
+ "do_resize",
5
+ "size",
6
+ "size_divisor",
7
+ "default_to_square",
8
+ "resample",
9
+ "do_rescale",
10
+ "rescale_factor",
11
+ "do_normalize",
12
+ "image_mean",
13
+ "image_std",
14
+ "do_pad",
15
+ "do_center_crop",
16
+ "crop_size",
17
+ "data_format",
18
+ "input_data_format",
19
+ "device"
20
+ ],
21
+ "crop_size": null,
22
+ "data_format": "channels_first",
23
+ "default_to_square": true,
24
+ "device": null,
25
+ "do_center_crop": null,
26
+ "do_convert_rgb": true,
27
+ "do_normalize": true,
28
+ "do_pad": null,
29
+ "do_rescale": true,
30
+ "do_resize": true,
31
+ "image_mean": [
32
+ 0.48145466,
33
+ 0.4578275,
34
+ 0.40821073
35
+ ],
36
+ "image_std": [
37
+ 0.26862954,
38
+ 0.26130258,
39
+ 0.27577711
40
+ ],
41
+ "input_data_format": null,
42
+ "model_valid_processing_keys": [
43
+ "do_convert_rgb",
44
+ "do_resize",
45
+ "size",
46
+ "size_divisor",
47
+ "default_to_square",
48
+ "resample",
49
+ "do_rescale",
50
+ "rescale_factor",
51
+ "do_normalize",
52
+ "image_mean",
53
+ "image_std",
54
+ "do_pad",
55
+ "do_center_crop",
56
+ "crop_size",
57
+ "data_format",
58
+ "input_data_format",
59
+ "device"
60
+ ],
61
+ "processor_class": "InternVLProcessor",
62
+ "resample": 3,
63
+ "rescale_factor": 0.00392156862745098,
64
+ "size": {
65
+ "height": 384,
66
+ "width": 384
67
+ },
68
+ "size_divisor": null,
69
+ "video_processor_type": "InternVLVideoProcessor"
70
+ }