Image-Text-to-Text
Transformers
Safetensors
multilingual
internvl
custom_code
conversational
Weiyun1025 commited on
Commit
fd81faa
·
verified ·
1 Parent(s): 5936fe3

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/image2.jpg filter=lfs diff=lfs merge=lfs -text
37
+ examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
38
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,599 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: image-text-to-text
4
+ library_name: transformers
5
+ base_model:
6
+ - OpenGVLab/InternVL3_5-4B-MPO
7
+ base_model_relation: finetune
8
+ datasets:
9
+ - OpenGVLab/MMPR-v1.2
10
+ - OpenGVLab/MMPR-Tiny
11
+ language:
12
+ - multilingual
13
+ tags:
14
+ - internvl
15
+ - custom_code
16
+ ---
17
+
18
+ # InternVL3_5-4B
19
+
20
+ [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271) [\[📜 InternVL2.5-MPO\]](https://huggingface.co/papers/2411.10442) [\[📜 InternVL3\]](https://huggingface.co/papers/2504.10479) [\[📜 InternVL3.5\]](https://huggingface.co/papers/2508.18265)
21
+
22
+ [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🗨️ Chat Demo\]](https://chat.intern-ai.org.cn/) [\[🚀 Quick Start\]](#quick-start) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
23
+
24
+ <div align="center">
25
+ <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
26
+ </div>
27
+
28
+ ## Introduction
29
+
30
+ We introduce *InternVL3.5*, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the *Cascade Reinforcement Learning (Cascade RL)* framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a *Visual Resolution Router (ViR)* that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled *Vision-Language Deployment (DvD)* strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0\% gain in overall reasoning performance and a 4.05 \\(\times\\) inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.
31
+
32
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance.jpg)
33
+
34
+ > Hatched bars represent closed-source commercial models. We report average scores on a set of multimodal general, reasoning, text, and agentic benchmarks: MMBench v1.1 (en), MMStar,BLINK, HallusionBench, AI2D, OCRBench, MMVet, MME-RealWorld (en), MVBench, VideoMME, MMMU, MathVista, MathVision, MathVerse, DynaMath, WeMath, LogicVista, MATH500, AIME24, AIME25, GPQA, MMLU-Pro, GAOKAO, IFEval, SGP-Bench, VSI-Bench, ERQA, SpaCE-10, and OmniSpatial.
35
+
36
+ See [quick start](#quick-start) for how to use our model.
37
+
38
+ ## InternVL3.5 Family
39
+
40
+ In the following table, we provide an overview of the InternVL3.5 series.
41
+ To maintain consistency with earlier generations, we provide two model formats: [the GitHub format](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B), consistent with prior releases, and [the HF format](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-HF), aligned with the official Transformers standard.
42
+
43
+ > If you want to convert the checkpoint between these two formats, please refer to the scripts about [custom2hf](https://github.com/OpenGVLab/InternVL/blob/main/internvl_chat/tools/internvl_custom2hf.py) and [hf2custom](https://github.com/OpenGVLab/InternVL/blob/main/internvl_chat/tools/internvl_hf2custom.py).
44
+
45
+
46
+ ### Github Format
47
+
48
+
49
+ | Model | #Vision Param | #Language Param | #Total Param | HF Link | ModelScope Link |
50
+ | --------------------- | ------------- | --------------- | ------------ | ------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------- |
51
+ | InternVL3.5-1B | 0.3B | 0.8B | 1.1B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B) |
52
+ | InternVL3.5-2B | 0.3B | 2.0B | 2.3B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B) |
53
+ | InternVL3.5-4B | 0.3B | 4.4B | 4.7B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B) |
54
+ | InternVL3.5-8B | 0.3B | 8.2B | 8.5B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B) |
55
+ | InternVL3.5-14B | 0.3B | 14.8B | 15.1B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B) |
56
+ | InternVL3.5-38B | 5.5B | 32.8B | 38.4B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B) |
57
+ | InternVL3.5-20B-A4B | 0.3B | 20.9B | 21.2B-A4B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview) |
58
+ | InternVL3.5-30B-A3B | 0.3B | 30.5B | 30.8B-A3B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B) |
59
+ | InternVL3.5-241B-A28B | 5.5B | 235.1B | 240.7B-A29B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B) |
60
+
61
+
62
+ ### HuggingFace Format
63
+
64
+
65
+ | Model | #Vision Param | #Language Param | #Total Param | HF Link | ModelScope Link |
66
+ | ------------------------ | ------------- | --------------- | ------------ | --------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- |
67
+ | InternVL3.5-1B-HF | 0.3B | 0.8B | 1.1B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-HF) |
68
+ | InternVL3.5-2B-HF | 0.3B | 2.0B | 2.3B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-HF) |
69
+ | InternVL3.5-4B-HF | 0.3B | 4.4B | 4.7B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-HF) |
70
+ | InternVL3.5-8B-HF | 0.3B | 8.2B | 8.5B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-HF) |
71
+ | InternVL3.5-14B-HF | 0.3B | 14.8B | 15.1B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-HF) |
72
+ | InternVL3.5-38B-HF | 5.5B | 32.8B | 38.4B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-HF) |
73
+ | InternVL3.5-20B-A4B-HF | 0.3B | 20.9B | 21.2B-A4B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview-HF) |
74
+ | InternVL3.5-30B-A3B-HF | 0.3B | 30.5B | 30.8B-A3B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-HF) |
75
+ | InternVL3.5-241B-A28B-HF | 5.5B | 235.1B | 240.7B-A29B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-HF) |
76
+
77
+
78
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_overall.jpg)
79
+
80
+ > We conduct the evaluation with [VLMEvalkit](https://github.com/open-compass/VLMEvalKit). ***To enable the Thinking mode of our model, please set the system prompt to [R1_SYSTEM_PROMPT](https://github.com/open-compass/VLMEvalKit/blob/main/vlmeval/vlm/internvl/internvl_chat.py#L38).*** When enabling Thinking mode, we recommend setting `do_sample=True` and `temperature=0.6` to mitigate undesired repetition.
81
+
82
+ Our training pipeline comprises four stages: Multimodal Continual Pre-Training (**CPT**), Supervised Fine-Tuning (**SFT**), and Cascade Reinforcement Learning (**CascadeRL**). In CascadeRL, we first fine-tune the model using Mixed Preference Optimization (**MPO**) under an offline RL setting, followed by **GSPO** under an oneline RL setting.
83
+ For the Flash version of InternVL3.5, we additionally introduce a lightweight training stage, termed Visual Consistency Learning (**ViCO**), which reduces the token cost required to represent an image patch.
84
+
85
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/training_pipeline.jpg)
86
+
87
+ Here, we also open-source the model weights after different training stages for potential research usage.
88
+ ***If you're unsure which version to use, please select the one without any suffix, as it has completed the full training pipeline.***
89
+
90
+
91
+ | Model | Training Pipeline | HF Link | ModelScope Link |
92
+ | -------------------------------- | --------------------- | --------------------------------------------------------------------------- | ------------------------------------------------------------------------------------- |
93
+ | InternVL3.5-1B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-Pretrained) |
94
+ | InternVL3.5-1B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-Instruct) |
95
+ | InternVL3.5-1B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-MPO) |
96
+ | InternVL3.5-1B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B) |
97
+ | InternVL3.5-2B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-Pretrained) |
98
+ | InternVL3.5-2B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-Instruct) |
99
+ | InternVL3.5-2B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-MPO) |
100
+ | InternVL3.5-2B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B) |
101
+ | InternVL3.5-4B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-Pretrained) |
102
+ | InternVL3.5-4B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-Instruct) |
103
+ | InternVL3.5-4B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-MPO) |
104
+ | InternVL3.5-4B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B) |
105
+ | InternVL3.5-8B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-Pretrained) |
106
+ | InternVL3.5-8B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-Instruct) |
107
+ | InternVL3.5-8B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-MPO) |
108
+ | InternVL3.5-8B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B) |
109
+ | InternVL3.5-14B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-Pretrained) |
110
+ | InternVL3.5-14B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-Instruct) |
111
+ | InternVL3.5-14B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-MPO) |
112
+ | InternVL3.5-14B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B) |
113
+ | InternVL3.5-30B-A3B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-Pretrained) |
114
+ | InternVL3.5-30B-A3B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-Instruct) |
115
+ | InternVL3.5-30B-A3B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-MPO) |
116
+ | InternVL3.5-30B-A3B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B) |
117
+ | InternVL3.5-38B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-Pretrained) |
118
+ | InternVL3.5-38B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-Instruct) |
119
+ | InternVL3.5-38B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-MPO) |
120
+ | InternVL3.5-38B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B) |
121
+ | InternVL3.5-241B-A28B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-Pretrained) |
122
+ | InternVL3.5-241B-A28B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-Instruct) |
123
+ | InternVL3.5-241B-A28B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-MPO) |
124
+ | InternVL3.5-241B-A28B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B) |
125
+
126
+
127
+ The Flash version of our model will be released as soon as possible.
128
+
129
+
130
+
131
+ ## Model Architecture
132
+
133
+ `InternVL3.5`:
134
+ This series of models follow the "ViT–MLP–LLM" paradigm adopted in previous versions of InternVL.
135
+ We initialize the language model using the Qwen3 series and GPT-OSS, and the vision encoder using InternViT-300M and InternViT-6B.
136
+ The Dynamic High Resolution strategy introduced in InternVL1.5 is also retained in our design.
137
+
138
+
139
+ `InternVL3.5-Flash`:
140
+ Compared to InternVL3.5, InternVL3.5-Flash further integrates the *Visual Resolution Router (ViR)*, thus yielding a series of efficient variants friendly suitable for resource-constrained scenarios.
141
+ Specifically, in InternVL3.5, each image patch is initially represented as 1024 visual tokens for the vision encoder, which are then compressed into 256 tokens via a pixel shuffle module before being passed to the Large Language Model (LLM).
142
+ In InternVL3.5-Flash, as shown in the Figure below, an additional pixel shuffle module with a higher compression rate is included, enabling the compression of visual tokens down to 64 tokens.
143
+ For each patch, the patch router determines the appropriate compression rate by assessing its semantic richness, and routes it to the corresponding pixel shuffle module accordingly.
144
+ Benefiting from this patch-aware compression mechanism, InternVL3.5-Flash is able to reduce the number of visual tokens by 50\% while maintaining nearly 100\% of the performance of InternVL3.5.
145
+
146
+
147
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/architecture.jpg)
148
+
149
+ ## Training and Deployment Strategy
150
+
151
+ ### Pre-Training
152
+
153
+ During the pre-training stage, we update all model parameters jointly using the combination of large-scale text and multimodal corpora. Specifically, given an arbitrary training sample consisting of a multimodal token sequence \\(\mathbf{x}=\left(x_1, x_2, \ldots, x_L\right)\\), the next token prediction (NTP) loss is calculated on each text token as follows:
154
+
155
+ $$
156
+ \mathcal{L}_{i}=-\log p_\theta\left(x_i \mid x_1, \ldots, x_{i-1}\right),
157
+ $$
158
+
159
+ where \\(x_i\\) is the predicted token and prefix tokens in \\(\{x_1, x_2, \ldots, x_{i-1}\}\\) can be either text tokens or image tokens. Notably, for conversation samples, only response tokens are included for the calculation of the loss.
160
+ Additionally, to mitigate bias toward either longer or shorter responses during training, we adopt the square averaging to re-weight the NTP loss as follows:
161
+
162
+ $$
163
+ \mathcal{L}_{i}^{'} = \frac{w_i}{\sum_j w_j} \cdot \mathcal{L}_i, \quad w_i = \frac{1}{N^{0.5}},
164
+ $$
165
+
166
+ where \\(N\\) denotes the number of tokens in the training sample on which the loss needs to be calculated. The random JPEG compression is also included to enhance the model's real-world performance.
167
+
168
+ ### Supervised Fine-Tuning
169
+
170
+ During the SFT phase, we adopt the same objective as in the pre-training stage and use the square-root averaging strategy to calculate the final loss. In this stage, the context window is set to 32K tokens to adapt long-context information.
171
+ Compared to InternVL3, the SFT stage of InternVL3.5 contains more high-quality and diverse training data derived from three sources:
172
+
173
+ (1) Instruction-following data from InternVL3, which are reused to preserve broad coverage of vision–language tasks.
174
+
175
+ (2) Multimodal reasoning data in the "Thinking" mode, which are included to instill long-thinking capabilities in the model. To construct such data, we first use InternVL3-78B to describe the image and then input the description into DeepSeek-R1 to sample rollouts with detailed reasoning processes. Rollouts with an incorrect final answer are filtered out. The questions in these datasets cover various expert domains, such as mathematics and scientific disciplines, thereby strengthening performance on different reasoning tasks.
176
+
177
+ (3) Capability-expansion datasets, which endow InternVL3.5 with new skills, including GUI-based interaction, embodied interaction, and scalable vect
178
+
179
+ ### Cascade Reinforcement Learning
180
+
181
+ Cascade RL aims to combine the benefits of offline RL and online RL to progressively facilitate the post-training of MLLMs in an efficient manner.
182
+ Specifically, we first fine-tune the model using an offline RL algorithm as an efficient warm-up stage to reach a satisfied results, which can guarantee the high-quality rollouts for the latter stage.
183
+ Subsequently, we employ an online RL algorithm to further refine the output distribution based on rollouts generated by the model itself. Compared to the single offline or online RL stage, our cascaded RL achieves significant performance improvements at a fraction of the GPU time cost.
184
+
185
+
186
+
187
+ During the offline RL stage, we employ mixed preference optimization (MPO) to fine-tune the model. Specifically, the training objective of MPO is a combination of preference loss \\(\mathcal{L}_{p}\\), quality loss \\(\mathcal{L}_{q}\\), and generation loss \\(\mathcal{L}_{g}\\), which can be formulated as follows:
188
+
189
+ $$
190
+ \mathcal{L}_{\text{MPO}}=
191
+ w_{p} \mathcal{L}_{p}
192
+ +
193
+ w_{q} \mathcal{L}_{q}
194
+ +
195
+ w_{g} \mathcal{L}_{g}
196
+ ,
197
+ $$
198
+
199
+ where \\(w_{*}\\) represents the weight assigned to each loss component.
200
+ The DPO loss, BCO loss, and LM loss serve as the preference loss, quality loss, and generation loss, respectively.
201
+
202
+
203
+ During the online RL stage, we employ GSPO, without reference model constraints, as our online RL algorithm, which we find more effective in training both dense and mixture-of-experts (MoE) models. Similar to GRPO, the advantage is defined as the normalized reward across responses sampled from the same query.
204
+ The training objective of GSPO is given by:
205
+
206
+ $$
207
+ \mathcal{L}_{\mathrm{GSPO}}(\theta)=\mathbb{E}_{x \sim \mathcal{D},\left\{y_i\right\}_{i=1}^G \sim \pi_{\theta \text { old }}(\cdot \mid x)}\left[\frac{1}{G} \sum_{i=1}^G \min \left(s_i(\theta) \widehat{A}_i, \operatorname{clip}\left(s_i(\theta), 1-\varepsilon, 1+\varepsilon\right) \widehat{A}_i\right)\right],
208
+ $$
209
+
210
+ where the importance sampling ratio is defined as the geometric mean of the per-token ratios.
211
+
212
+ > Please see [our paper](https://huggingface.co/papers/2508.18265) for more technical and experimental details.
213
+
214
+
215
+ ### Visual Consistency Learning
216
+
217
+
218
+ We further include ViCO as an additional training stage to integrate the *visual resolution router (ViR)* into InternVL3.5, thereby reducing the inference cost of InternVL3.5. The obtained efficient version of InternVL3.5 are termed as *InternVL3.5-Flash*. In particular, ViCO comprises two stages:
219
+
220
+ `Consistency training`:
221
+ In this stage, the entire model is trained to minimize the divergence between response distributions conditioned on visual tokens with different compression rates.
222
+ In practice, we introduce an extra reference model, which is frozen and initialized with InternVL3.5.
223
+ Given a sample, each image patch is represented as either 256 or 64 tokens, and the training objective is defined as follows:
224
+
225
+
226
+ $$
227
+ \mathcal{L}_\text{ViCO} =
228
+ \mathbb{E}_{\xi \sim \mathcal{R}} \Bigg[
229
+ \frac{1}{N} \sum_{i=1}^{N} \mathrm{KL} \Big(
230
+ \pi_{\theta_{ref}}\left(y_i \mid y_{<i}, I\right) \;\Big\|\;
231
+ \pi_{\theta_{policy}}\left(y_i \mid y_{<i}, I_\xi\right)
232
+ \Big)
233
+ \Bigg],
234
+ $$
235
+
236
+ where \\(\mathrm{KL}\) denotes the KL divergence and \(\xi\) denotes the compression rate, which is uniformly sampled from \(\{\frac{1}{4},\frac{1}{16}\}\). The image \(I_\xi\) is represented as 256 tokens when \(\xi=\frac{1}{4}\) and 64 tokens when \(\xi=\frac{1}{16}\). Notably, the reference model always performs inference with \(\xi=\frac{1}{4}\).
237
+
238
+
239
+ `Router training`:
240
+ This stage aims to train the ViR to select an appropriate trade-off resolution for different inputs.
241
+ ViR is formulated as a binary classifier and trained using standard cross-entropy loss.
242
+ To construct the route targets, we first compute the KL divergence between the model outputs conditioned on uncompressed visual tokens (i.e., 256 tokens per patch) and those conditioned on compressed visual tokens (i.e., 64 tokens per patch).
243
+ During this stage, the main MLLM (ViT, MLP and LLM) is kept frozen, and only the ViR is trained.
244
+ Specifically, we first compute the loss ratio for each patch:
245
+
246
+ $$
247
+ r_i = \frac{\mathcal{L}_\text{ViCO}\big(y_i \mid I_{\frac{1}{16}}\big)}{\mathcal{L}_\text{ViCO}\big(y_i \mid I_{\frac{1}{4}}\big)},
248
+ $$
249
+
250
+ which quantifies the relative increase in loss caused by compressing the visual tokens. Based on this ratio, the binary ground-truth label for the patch router is defined as:
251
+
252
+ $$
253
+ y_i^\text{router} =
254
+ \begin{cases}
255
+ 0, & r_i < \tau \; \text{(compression has negligible impact)} \\
256
+ 1, & r_i \ge \tau \; \text{(compression has significant impact)},
257
+ \end{cases}
258
+ $$
259
+
260
+ where \(y_i^{\text{router}}=0\) and \(y_i^{\text{router}}=1\) indicate that the compression rate \(\xi\) is set to \(\tfrac{1}{16}\) and \(\tfrac{1}{4}\), respectively.
261
+
262
+ > Please see [our paper](https://huggingface.co/papers/2508.18265) for more technical and experimental details.
263
+
264
+
265
+ ### Test-Time Scaling
266
+
267
+
268
+ Test-time scaling (TTS) has been empirically demonstrated as an effective approach to enhance the reasoning capabilities of LLMs and MLLMs, particularly for complex tasks necessitating multi-step inference.
269
+ In this work, we implement a comprehensive test-time scaling approach that simultaneously improves reasoning depth (i.e., deep thinking) and breadth (i.e., parallel thinking).
270
+
271
+ `Deep Thinking`: By activating the Thinking mode, we guide the model to deliberately engage in step-by-step reasoning (i.e., decomposing complex problems into logical steps and validating intermediate conclusions) prior to generating the final answer. This approach systematically improves the logical structure of solutions for complex problems, particularly those requiring multi-step inference, and enhances reasoning depth.
272
+
273
+ `Parallel Thinking`: Following InternVL3, for reasoning tasks, we adopt the Best-of-N (BoN) strategy by employing [VisualPRM-v1.1](https://huggingface.co/OpenGVLab/VisualPRM-8B-v1_1) as the critic model to select the optimal response from multiple reasoning candidates.
274
+ This approach improves reasoning breadth.
275
+
276
+ > Notably, unless otherwise specified, the experimental results reported in our paper are obtained without applying TTS. Thus far, we have only applied TTS to reasoning benchmarks, since we found that the model already exhibits strong perception and understanding capabilities, and initiating TTS yields no significant improvement.
277
+
278
+
279
+ ### Decoupled Vision-Language Deployment
280
+
281
+ In multimodal inference, the vision encoder and language model have distinct computational characteristics. The vision encoder that transforms images into semantic features is highly parallelizable and does not rely on long-term history state. In contrast, the language model adopts the inference in an autoregressive manner, which requires previous states to compute the next one. This sequential property makes the language part more sensitive to memory bandwidth and latency.
282
+ When MLLMs are deployed online at scale, the vision and language models often block each other, thus incurring additional inference cost. This effect becomes more pronounced with larger vision models or higher-resolution images.
283
+
284
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/DvD.jpg)
285
+
286
+ As shown in the Figure above, we propose decoupled vision-language deployment (DvD) to address this issue by separating vision and language processing, with a particular focus on optimizing the prefilling stage. The vision subsystem batches and processes images to produce compact feature embeddings, which are then transmitted to the language subsystem for fusion with the text context prior to decoding. This separation alleviates blocking and brings multimodal prefilling performance closer to that of pure language models.
287
+ In our system implementation, the ViT and MLP (and ViR for InternVL3.5-Flash) are deployed on the vision server, while the language server executes only the LLM. The communication is unidirectional, transmitting BF16 visual features over TCP, with RDMA optionally employed to achieve higher transmission speed. Vision processing, feature transmission, and language processing are organized into an asynchronous three-stage pipeline, enabling overlapped execution and minimizing pipeline stalls.
288
+
289
+
290
+ DvD increases GPU utilization and processing efficiency on the vision side, while enabling the language server to focus exclusively on the LLM’s prefilling and decoding without being blocked by vision computation. This design leads to improved throughput and responsiveness. Moreover, the architecture supports independent hardware cost optimization for the vision and language modules, and facilitates the seamless integration of new modules without requiring modifications to the language server deployment.
291
+
292
+
293
+ ## Evaluation on Multimodal Capability
294
+
295
+ ### Multimodal Reasoning and Mathematics
296
+
297
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_reasoning.jpg)
298
+
299
+ ### OCR, Chart, and Document Understanding
300
+
301
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_ocr.jpg)
302
+
303
+ ### Multi-Image Understanding & Real-World Comprehension
304
+
305
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_multi_images.jpg)
306
+
307
+ ### Comprehensive Multimodal Understanding & Multimodal Hallucination Evaluation
308
+
309
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_comprehensive.jpg)
310
+
311
+ ### Visual Grounding
312
+
313
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_grounding.jpg)
314
+
315
+ ### Multimodal Multilingual Understanding
316
+
317
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_multilingual.jpg)
318
+
319
+ ### Video Understanding
320
+
321
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_video.jpg)
322
+
323
+ ### GUI Tasks
324
+
325
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_gui.jpg)
326
+
327
+ ### Embodied Tasks
328
+
329
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_embody.jpg)
330
+
331
+ ### SVG Tasks
332
+
333
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_svg.jpg)
334
+
335
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_svg_gen.jpg)
336
+
337
+ ## Evaluation on Language Capability
338
+
339
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_text.jpg)
340
+
341
+ ## Ablation Study
342
+
343
+ ### Cascade Reinforcement Learning
344
+
345
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/ablation_cascade_rl.jpg)
346
+
347
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/ablation_cascade_rl_table.jpg)
348
+
349
+ ### Decoupled Vision-Language Deployment
350
+
351
+
352
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/ablation_dvd.jpg)
353
+
354
+ ## Quick Start
355
+
356
+ We provide an example code to run `InternVL3.5-8B-HF` using `transformers`. Please note that our models with up to 30B parameters can be deployed on a single A100 GPU, while the 38B model requires two A100 GPUs and the 235B model requires eight A100 GPUs.
357
+
358
+ > In most cases, both [LMDeploy](https://github.com/InternLM/lmdeploy) and [vLLM](https://github.com/vllm-project/vllm) can be used for model deployment. However, for InternVL3.5-20B-A4B, we recommend using vLLM since lmdeploy has not yet supported GPT-OSS.
359
+
360
+ > Please use transformers>=4.52.1 to ensure the model works normally. For the 20B version of our model, transformers>=4.55.0 is required.
361
+
362
+ ### Model Loading
363
+
364
+ #### 16-bit (bf16 / fp16)
365
+
366
+ ```python
367
+ import torch
368
+ from transformers import AutoTokenizer, AutoModel
369
+ path = "OpenGVLab/InternVL3_5-8B-HF"
370
+ model = AutoModel.from_pretrained(
371
+ path,
372
+ torch_dtype=torch.bfloat16,
373
+ low_cpu_mem_usage=True,
374
+ use_flash_attn=True,
375
+ trust_remote_code=True).eval().cuda()
376
+ ```
377
+
378
+ #### BNB 8-bit Quantization
379
+
380
+ ```python
381
+ import torch
382
+ from transformers import AutoTokenizer, AutoModel
383
+ path = "OpenGVLab/InternVL3_5-8B-HF"
384
+ model = AutoModel.from_pretrained(
385
+ path,
386
+ torch_dtype=torch.bfloat16,
387
+ load_in_8bit=True,
388
+ low_cpu_mem_usage=True,
389
+ use_flash_attn=True,
390
+ trust_remote_code=True).eval()
391
+ ```
392
+
393
+ #### Multiple GPUs
394
+
395
+ ```python
396
+ import math
397
+ import torch
398
+ from transformers import AutoTokenizer, AutoModel
399
+
400
+ path = "OpenGVLab/InternVL3_5-8B-HF"
401
+ model = AutoModel.from_pretrained(
402
+ path,
403
+ torch_dtype=torch.bfloat16,
404
+ low_cpu_mem_usage=True,
405
+ use_flash_attn=True,
406
+ trust_remote_code=True,
407
+ device_map="auto").eval()
408
+ ```
409
+
410
+ ### Thinking Mode
411
+
412
+ To enable thinking mode, please set the system prompt to our Thinking System Prompt. When enabling Thinking mode, we recommend setting `do_sample=True` and `temperature=0.6` to mitigate undesired repetition.
413
+
414
+ ```python
415
+ R1_SYSTEM_PROMPT = """
416
+ You are an AI assistant that rigorously follows this response protocol:
417
+
418
+ 1. First, conduct a detailed analysis of the question. Consider different angles, potential solutions, and reason through the problem step-by-step. Enclose this entire thinking process within <think> and </think> tags.
419
+
420
+ 2. After the thinking section, provide a clear, concise, and direct answer to the user's question. Separate the answer from the think section with a newline.
421
+
422
+ Ensure that the thinking process is thorough but remains focused on the query. The final answer should be standalone and not reference the thinking section.
423
+ """.strip()
424
+
425
+ messages = [
426
+ {
427
+ "role": "system",
428
+ "content": [
429
+ {"type": "text", "text": R1_SYSTEM_PROMPT},
430
+ ],
431
+ },
432
+ {
433
+ "role": "user",
434
+ "content": [
435
+ {"type": "text", "text": "xxx"},
436
+ ],
437
+ },
438
+ ]
439
+ ```
440
+
441
+ ### Inference with Transformers
442
+
443
+ The HuggingFace format checkpoints of our models are fully consistent with the APIs of the official HuggingFace models. For details, please refer to the official [documentation](https://huggingface.co/docs/transformers/v4.55.4/en/model_doc/internvl).
444
+
445
+ ## Finetune
446
+
447
+ Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTuner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
448
+
449
+ ## Deployment
450
+
451
+ ### LMDeploy
452
+
453
+ LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.
454
+
455
+ ```sh
456
+ pip install lmdeploy>=0.9.1
457
+ ```
458
+
459
+ LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
460
+
461
+ #### A 'Hello, world' Example
462
+
463
+ ```python
464
+ from lmdeploy import pipeline, PytorchEngineConfig
465
+ from lmdeploy.vl import load_image
466
+
467
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
468
+
469
+ # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
470
+ model = 'OpenGVLab/InternVL3_5-8B'
471
+ pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))
472
+
473
+ response = pipe(('describe this image', image))
474
+ print(response.text)
475
+ ```
476
+
477
+ #### Multi-images Inference
478
+
479
+ When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
480
+
481
+ ```python
482
+ from lmdeploy import pipeline, PytorchEngineConfig
483
+ from lmdeploy.vl import load_image
484
+ from lmdeploy.vl.constants import IMAGE_TOKEN
485
+
486
+ # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
487
+ model = 'OpenGVLab/InternVL3_5-8B'
488
+ pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))
489
+
490
+ image_urls=[
491
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
492
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
493
+ ]
494
+
495
+ images = [load_image(img_url) for img_url in image_urls]
496
+ # Numbering images improves multi-image conversations
497
+ response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
498
+ print(response.text)
499
+ ```
500
+
501
+ #### Batch Prompts Inference
502
+
503
+ Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
504
+
505
+ ```python
506
+ from lmdeploy import pipeline, PytorchEngineConfig
507
+ from lmdeploy.vl import load_image
508
+
509
+ # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
510
+ model = 'OpenGVLab/InternVL3_5-8B'
511
+ pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))
512
+
513
+ image_urls=[
514
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
515
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
516
+ ]
517
+ prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
518
+ response = pipe(prompts)
519
+ print(response)
520
+ ```
521
+
522
+ #### Multi-turn Conversation
523
+
524
+ There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
525
+
526
+ ```python
527
+ from lmdeploy import pipeline, PytorchEngineConfig, GenerationConfig
528
+ from lmdeploy.vl import load_image
529
+
530
+ # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
531
+ model = 'OpenGVLab/InternVL3_5-8B'
532
+ pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))
533
+
534
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
535
+ gen_config = GenerationConfig(top_k=50, top_p=0.95, temperature=0.6, max_new_tokens=8192)
536
+ sess = pipe.chat(('describe this image', image), gen_config=gen_config)
537
+ print(sess.response.text)
538
+ sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
539
+ print(sess.response.text)
540
+ ```
541
+
542
+ #### Service
543
+
544
+ LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
545
+
546
+ ```shell
547
+ lmdeploy serve api_server OpenGVLab/InternVL3_5-8B --server-port 23333 --tp 1 --backend pytorch
548
+ ```
549
+
550
+ To use the OpenAI-style interface, you need to install OpenAI:
551
+
552
+ ```shell
553
+ pip install openai
554
+ ```
555
+
556
+ Then, use the code below to make the API call:
557
+
558
+ ```python
559
+ from openai import OpenAI
560
+
561
+ client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
562
+ model_name = client.models.list().data[0].id
563
+ response = client.chat.completions.create(
564
+ model=model_name,
565
+ messages=[{
566
+ 'role':
567
+ 'user',
568
+ 'content': [{
569
+ 'type': 'text',
570
+ 'text': 'describe this image',
571
+ }, {
572
+ 'type': 'image_url',
573
+ 'image_url': {
574
+ 'url':
575
+ 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
576
+ },
577
+ }],
578
+ }],
579
+ temperature=0.8,
580
+ top_p=0.8)
581
+ print(response)
582
+ ```
583
+
584
+ ## License
585
+
586
+ This project is released under the apache-2.0 License. This project uses the pre-trained Qwen3 as a component, which is licensed under the apache-2.0 License.
587
+
588
+ ## Citation
589
+
590
+ If you find this project useful in your research, please consider citing:
591
+
592
+ ```BibTeX
593
+ @article{wang2025internvl3_5,
594
+ title={InternVL3.5: Advancing Open-Source Multimodal Models in Versatility, Reasoning, and Efficiency},
595
+ author={Wang, Weiyun and Gao, Zhangwei and Gu, Lixin and Pu, Hengjun and Cui, Long and Wei, Xingguang and Liu, Zhaoyang and Jing, Linglin and Ye, Shenglong and Shao, Jie and others},
596
+ journal={arXiv preprint arXiv:2508.18265},
597
+ year={2025}
598
+ }
599
+ ```
added_tokens.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151677,
3
+ "</img>": 151670,
4
+ "</quad>": 151673,
5
+ "</ref>": 151675,
6
+ "</think>": 151668,
7
+ "</tool_call>": 151658,
8
+ "</tool_response>": 151666,
9
+ "<IMG_CONTEXT>": 151671,
10
+ "<box>": 151676,
11
+ "<img>": 151669,
12
+ "<quad>": 151672,
13
+ "<ref>": 151674,
14
+ "<think>": 151667,
15
+ "<tool_call>": 151657,
16
+ "<tool_response>": 151665,
17
+ "<video>": 151678,
18
+ "<|box_end|>": 151649,
19
+ "<|box_start|>": 151648,
20
+ "<|endoftext|>": 151643,
21
+ "<|file_sep|>": 151664,
22
+ "<|fim_middle|>": 151660,
23
+ "<|fim_pad|>": 151662,
24
+ "<|fim_prefix|>": 151659,
25
+ "<|fim_suffix|>": 151661,
26
+ "<|im_end|>": 151645,
27
+ "<|im_start|>": 151644,
28
+ "<|image_pad|>": 151655,
29
+ "<|object_ref_end|>": 151647,
30
+ "<|object_ref_start|>": 151646,
31
+ "<|quad_end|>": 151651,
32
+ "<|quad_start|>": 151650,
33
+ "<|repo_name|>": 151663,
34
+ "<|video_pad|>": 151656,
35
+ "<|vision_end|>": 151653,
36
+ "<|vision_pad|>": 151654,
37
+ "<|vision_start|>": 151652
38
+ }
chat_template.jinja ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {% for message in messages %}{{'<|im_start|>' + message['role'] + '
2
+ '}}{% if message['content'] is string %}{{ message['content'] }}{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' %}{{ '<IMG_CONTEXT>
3
+ ' }}{% elif content['type'] == 'video' %}{{ '<video>
4
+ ' }}{% elif content['type'] == 'text' %}{{ content['text'] }}{% endif %}{% endfor %}{% endif %}{{'<|im_end|>
5
+ '}}{% endfor %}{% if add_generation_prompt %}{{'<|im_start|>assistant
6
+ ' }}{% endif %}
config.json ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InternVLForConditionalGeneration"
4
+ ],
5
+ "downsample_ratio": 0.5,
6
+ "image_seq_length": 256,
7
+ "image_token_id": 151671,
8
+ "model_type": "internvl",
9
+ "projector_hidden_act": "gelu",
10
+ "text_config": {
11
+ "_name_or_path": "/root/codespace/checkpoints/Qwen3-4B",
12
+ "architectures": [
13
+ "Qwen3ForCausalLM"
14
+ ],
15
+ "attention_bias": false,
16
+ "attention_dropout": 0.0,
17
+ "bos_token_id": 151643,
18
+ "debug": false,
19
+ "eos_token_id": 151645,
20
+ "ep_size": 1,
21
+ "head_dim": 128,
22
+ "hidden_act": "silu",
23
+ "hidden_size": 2560,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 9728,
26
+ "layer_types": [
27
+ "full_attention",
28
+ "full_attention",
29
+ "full_attention",
30
+ "full_attention",
31
+ "full_attention",
32
+ "full_attention",
33
+ "full_attention",
34
+ "full_attention",
35
+ "full_attention",
36
+ "full_attention",
37
+ "full_attention",
38
+ "full_attention",
39
+ "full_attention",
40
+ "full_attention",
41
+ "full_attention",
42
+ "full_attention",
43
+ "full_attention",
44
+ "full_attention",
45
+ "full_attention",
46
+ "full_attention",
47
+ "full_attention",
48
+ "full_attention",
49
+ "full_attention",
50
+ "full_attention",
51
+ "full_attention",
52
+ "full_attention",
53
+ "full_attention",
54
+ "full_attention",
55
+ "full_attention",
56
+ "full_attention",
57
+ "full_attention",
58
+ "full_attention",
59
+ "full_attention",
60
+ "full_attention",
61
+ "full_attention",
62
+ "full_attention"
63
+ ],
64
+ "max_position_embeddings": 40960,
65
+ "max_window_layers": 36,
66
+ "micro_forward": false,
67
+ "model_type": "qwen3",
68
+ "num_attention_heads": 32,
69
+ "num_hidden_layers": 36,
70
+ "num_key_value_heads": 8,
71
+ "rms_norm_eps": 1e-06,
72
+ "rope_scaling": null,
73
+ "rope_theta": 1000000,
74
+ "skip_checkpoint": false,
75
+ "sliding_window": null,
76
+ "torch_dtype": "bfloat16",
77
+ "use_cache": true,
78
+ "use_deepep": false,
79
+ "use_sliding_window": false,
80
+ "vocab_size": 151936
81
+ },
82
+ "torch_dtype": "bfloat16",
83
+ "transformers_version": "4.55.0",
84
+ "vision_config": {
85
+ "architectures": [
86
+ "InternVisionModel"
87
+ ],
88
+ "attention_bias": true,
89
+ "attention_dropout": 0.0,
90
+ "dropout": 0.0,
91
+ "hidden_act": "gelu",
92
+ "hidden_dropout_prob": 0.0,
93
+ "hidden_size": 1024,
94
+ "image_size": [
95
+ 448,
96
+ 448
97
+ ],
98
+ "initializer_factor": 0.1,
99
+ "initializer_range": 1e-10,
100
+ "intermediate_size": 4096,
101
+ "layer_norm_eps": 1e-06,
102
+ "layer_scale_init_value": 0.1,
103
+ "model_type": "internvl_vision",
104
+ "norm_type": "layer_norm",
105
+ "num_attention_heads": 16,
106
+ "num_channels": 3,
107
+ "num_hidden_layers": 24,
108
+ "patch_size": [
109
+ 14,
110
+ 14
111
+ ],
112
+ "projection_dropout": 0.0,
113
+ "torch_dtype": "bfloat16",
114
+ "use_absolute_position_embeddings": true,
115
+ "use_mask_token": false,
116
+ "use_mean_pooling": true,
117
+ "use_qk_norm": false
118
+ },
119
+ "vision_feature_layer": -1,
120
+ "vision_feature_select_strategy": "default"
121
+ }
examples/image1.jpg ADDED
examples/image2.jpg ADDED

Git LFS Details

  • SHA256: 08487494b8dc08d44bc36491adf3ab89ff30d13a3122da86f3cd67cad89eeee8
  • Pointer size: 131 Bytes
  • Size of remote file: 126 kB
examples/red-panda.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d921c07bb97224d65a37801541d246067f0d506f08723ffa1ad85c217907ccb8
3
+ size 1867237
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151645,
5
+ "transformers_version": "4.55.0"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:337d6d5bea97956480a1560c3a88e4e6c4455c3954b94ed468c367cf4b500f20
3
+ size 4954007064
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:343234927f41c7d3a4aa8a2280864f477b1f77795463feb6b26910fa2e4921d3
3
+ size 4511078400
model.safetensors.index.json ADDED
@@ -0,0 +1,849 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 4732489216,
4
+ "total_size": 9464978432
5
+ },
6
+ "weight_map": {
7
+ "language_model.lm_head.weight": "model-00002-of-00002.safetensors",
8
+ "language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
9
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
10
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
11
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
12
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
13
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
14
+ "language_model.model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
15
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
16
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
17
+ "language_model.model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
18
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
19
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "language_model.model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
26
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "language_model.model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
29
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "language_model.model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
37
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "language_model.model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
40
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
42
+ "language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
43
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
44
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
45
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
46
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
47
+ "language_model.model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
48
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
49
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
50
+ "language_model.model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
51
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "language_model.model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
59
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
60
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
61
+ "language_model.model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
62
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
63
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
64
+ "language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
65
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
66
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
67
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
68
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "language_model.model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
70
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
71
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
72
+ "language_model.model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
73
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
74
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
75
+ "language_model.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
77
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
78
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
79
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "language_model.model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
81
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
82
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
83
+ "language_model.model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
84
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
85
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
86
+ "language_model.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
87
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
88
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
89
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
90
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
91
+ "language_model.model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
92
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
93
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
94
+ "language_model.model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
95
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
96
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
97
+ "language_model.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
98
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
99
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
100
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
101
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
102
+ "language_model.model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
103
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
+ "language_model.model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
106
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
107
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
108
+ "language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
109
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
110
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
111
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
112
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
113
+ "language_model.model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
114
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
115
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
116
+ "language_model.model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
117
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
118
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
119
+ "language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
120
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
121
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
122
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
123
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
124
+ "language_model.model.layers.18.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
125
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
126
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
127
+ "language_model.model.layers.18.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
128
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
129
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
130
+ "language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
131
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
132
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
133
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
134
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "language_model.model.layers.19.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
136
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
137
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
138
+ "language_model.model.layers.19.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
139
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
140
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
141
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
142
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
143
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
144
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
145
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
146
+ "language_model.model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
147
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
148
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
149
+ "language_model.model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
150
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
151
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
155
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "language_model.model.layers.20.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
158
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
159
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
160
+ "language_model.model.layers.20.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
161
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
162
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
163
+ "language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
164
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
165
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
166
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
167
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
168
+ "language_model.model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
169
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
170
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
171
+ "language_model.model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
172
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
173
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
174
+ "language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
176
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
177
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
178
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
179
+ "language_model.model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
180
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
181
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
182
+ "language_model.model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
183
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
184
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
185
+ "language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
186
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
187
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
188
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
189
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
190
+ "language_model.model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
191
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
192
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
193
+ "language_model.model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
194
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
195
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
196
+ "language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
197
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
198
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
199
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
200
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
201
+ "language_model.model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
202
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
203
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
204
+ "language_model.model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
205
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
206
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
207
+ "language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
208
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
209
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
210
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
211
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "language_model.model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
213
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
214
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
215
+ "language_model.model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
216
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
217
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
218
+ "language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
219
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
220
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
221
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
222
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
223
+ "language_model.model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
224
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
225
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
226
+ "language_model.model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
227
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
228
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
229
+ "language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
230
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
231
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
232
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
233
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
234
+ "language_model.model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
235
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
236
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
237
+ "language_model.model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
238
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
239
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
240
+ "language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
241
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
242
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
243
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
244
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
245
+ "language_model.model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
246
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
247
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
248
+ "language_model.model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
249
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
250
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
251
+ "language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
252
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
253
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
254
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
255
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
256
+ "language_model.model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
257
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
258
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
259
+ "language_model.model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
260
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
261
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
262
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
263
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
264
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
265
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
266
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
267
+ "language_model.model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
268
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
269
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
270
+ "language_model.model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
271
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
272
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
273
+ "language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
274
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
275
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
276
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
277
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
278
+ "language_model.model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
279
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
280
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
281
+ "language_model.model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
282
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
283
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
285
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
286
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
287
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
288
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
289
+ "language_model.model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
290
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
291
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
292
+ "language_model.model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
293
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
294
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
295
+ "language_model.model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
296
+ "language_model.model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
297
+ "language_model.model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
298
+ "language_model.model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
299
+ "language_model.model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "language_model.model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
301
+ "language_model.model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "language_model.model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "language_model.model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
304
+ "language_model.model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
305
+ "language_model.model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
306
+ "language_model.model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
307
+ "language_model.model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
308
+ "language_model.model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
309
+ "language_model.model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
310
+ "language_model.model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
311
+ "language_model.model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
312
+ "language_model.model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
313
+ "language_model.model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
314
+ "language_model.model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
315
+ "language_model.model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
316
+ "language_model.model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
317
+ "language_model.model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
318
+ "language_model.model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
319
+ "language_model.model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
320
+ "language_model.model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
321
+ "language_model.model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
322
+ "language_model.model.layers.34.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
323
+ "language_model.model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
324
+ "language_model.model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
325
+ "language_model.model.layers.34.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
326
+ "language_model.model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
327
+ "language_model.model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
328
+ "language_model.model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
329
+ "language_model.model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
330
+ "language_model.model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
331
+ "language_model.model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
332
+ "language_model.model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "language_model.model.layers.35.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
334
+ "language_model.model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
335
+ "language_model.model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
336
+ "language_model.model.layers.35.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
337
+ "language_model.model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
338
+ "language_model.model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
339
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
340
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
341
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
342
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
343
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
344
+ "language_model.model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
345
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
346
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
347
+ "language_model.model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
348
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
349
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
350
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
351
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
352
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
353
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
354
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
355
+ "language_model.model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
356
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
357
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
358
+ "language_model.model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
359
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
360
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
361
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
362
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
363
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
364
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
365
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
366
+ "language_model.model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
367
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
368
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
369
+ "language_model.model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
370
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
371
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
372
+ "language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
374
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
375
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
376
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
377
+ "language_model.model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
378
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
379
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
380
+ "language_model.model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
381
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
382
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
383
+ "language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
384
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
385
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
386
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
387
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
388
+ "language_model.model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
389
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
390
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
391
+ "language_model.model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
392
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
393
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
394
+ "language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
395
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
396
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
397
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
398
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
399
+ "language_model.model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
400
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
401
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
402
+ "language_model.model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
403
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
404
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
405
+ "language_model.model.norm.weight": "model-00002-of-00002.safetensors",
406
+ "multi_modal_projector.layer_norm.bias": "model-00001-of-00002.safetensors",
407
+ "multi_modal_projector.layer_norm.weight": "model-00001-of-00002.safetensors",
408
+ "multi_modal_projector.linear_1.bias": "model-00001-of-00002.safetensors",
409
+ "multi_modal_projector.linear_1.weight": "model-00001-of-00002.safetensors",
410
+ "multi_modal_projector.linear_2.bias": "model-00001-of-00002.safetensors",
411
+ "multi_modal_projector.linear_2.weight": "model-00001-of-00002.safetensors",
412
+ "vision_tower.embeddings.cls_token": "model-00001-of-00002.safetensors",
413
+ "vision_tower.embeddings.patch_embeddings.projection.bias": "model-00001-of-00002.safetensors",
414
+ "vision_tower.embeddings.patch_embeddings.projection.weight": "model-00001-of-00002.safetensors",
415
+ "vision_tower.embeddings.position_embeddings": "model-00001-of-00002.safetensors",
416
+ "vision_tower.encoder.layer.0.attention.k_proj.bias": "model-00001-of-00002.safetensors",
417
+ "vision_tower.encoder.layer.0.attention.k_proj.weight": "model-00001-of-00002.safetensors",
418
+ "vision_tower.encoder.layer.0.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
419
+ "vision_tower.encoder.layer.0.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
420
+ "vision_tower.encoder.layer.0.attention.q_proj.bias": "model-00001-of-00002.safetensors",
421
+ "vision_tower.encoder.layer.0.attention.q_proj.weight": "model-00001-of-00002.safetensors",
422
+ "vision_tower.encoder.layer.0.attention.v_proj.bias": "model-00001-of-00002.safetensors",
423
+ "vision_tower.encoder.layer.0.attention.v_proj.weight": "model-00001-of-00002.safetensors",
424
+ "vision_tower.encoder.layer.0.lambda_1": "model-00001-of-00002.safetensors",
425
+ "vision_tower.encoder.layer.0.lambda_2": "model-00001-of-00002.safetensors",
426
+ "vision_tower.encoder.layer.0.layernorm_after.bias": "model-00001-of-00002.safetensors",
427
+ "vision_tower.encoder.layer.0.layernorm_after.weight": "model-00001-of-00002.safetensors",
428
+ "vision_tower.encoder.layer.0.layernorm_before.bias": "model-00001-of-00002.safetensors",
429
+ "vision_tower.encoder.layer.0.layernorm_before.weight": "model-00001-of-00002.safetensors",
430
+ "vision_tower.encoder.layer.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
431
+ "vision_tower.encoder.layer.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
432
+ "vision_tower.encoder.layer.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
433
+ "vision_tower.encoder.layer.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
434
+ "vision_tower.encoder.layer.1.attention.k_proj.bias": "model-00001-of-00002.safetensors",
435
+ "vision_tower.encoder.layer.1.attention.k_proj.weight": "model-00001-of-00002.safetensors",
436
+ "vision_tower.encoder.layer.1.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
437
+ "vision_tower.encoder.layer.1.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
438
+ "vision_tower.encoder.layer.1.attention.q_proj.bias": "model-00001-of-00002.safetensors",
439
+ "vision_tower.encoder.layer.1.attention.q_proj.weight": "model-00001-of-00002.safetensors",
440
+ "vision_tower.encoder.layer.1.attention.v_proj.bias": "model-00001-of-00002.safetensors",
441
+ "vision_tower.encoder.layer.1.attention.v_proj.weight": "model-00001-of-00002.safetensors",
442
+ "vision_tower.encoder.layer.1.lambda_1": "model-00001-of-00002.safetensors",
443
+ "vision_tower.encoder.layer.1.lambda_2": "model-00001-of-00002.safetensors",
444
+ "vision_tower.encoder.layer.1.layernorm_after.bias": "model-00001-of-00002.safetensors",
445
+ "vision_tower.encoder.layer.1.layernorm_after.weight": "model-00001-of-00002.safetensors",
446
+ "vision_tower.encoder.layer.1.layernorm_before.bias": "model-00001-of-00002.safetensors",
447
+ "vision_tower.encoder.layer.1.layernorm_before.weight": "model-00001-of-00002.safetensors",
448
+ "vision_tower.encoder.layer.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
449
+ "vision_tower.encoder.layer.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
450
+ "vision_tower.encoder.layer.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
451
+ "vision_tower.encoder.layer.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
452
+ "vision_tower.encoder.layer.10.attention.k_proj.bias": "model-00001-of-00002.safetensors",
453
+ "vision_tower.encoder.layer.10.attention.k_proj.weight": "model-00001-of-00002.safetensors",
454
+ "vision_tower.encoder.layer.10.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
455
+ "vision_tower.encoder.layer.10.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
456
+ "vision_tower.encoder.layer.10.attention.q_proj.bias": "model-00001-of-00002.safetensors",
457
+ "vision_tower.encoder.layer.10.attention.q_proj.weight": "model-00001-of-00002.safetensors",
458
+ "vision_tower.encoder.layer.10.attention.v_proj.bias": "model-00001-of-00002.safetensors",
459
+ "vision_tower.encoder.layer.10.attention.v_proj.weight": "model-00001-of-00002.safetensors",
460
+ "vision_tower.encoder.layer.10.lambda_1": "model-00001-of-00002.safetensors",
461
+ "vision_tower.encoder.layer.10.lambda_2": "model-00001-of-00002.safetensors",
462
+ "vision_tower.encoder.layer.10.layernorm_after.bias": "model-00001-of-00002.safetensors",
463
+ "vision_tower.encoder.layer.10.layernorm_after.weight": "model-00001-of-00002.safetensors",
464
+ "vision_tower.encoder.layer.10.layernorm_before.bias": "model-00001-of-00002.safetensors",
465
+ "vision_tower.encoder.layer.10.layernorm_before.weight": "model-00001-of-00002.safetensors",
466
+ "vision_tower.encoder.layer.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
467
+ "vision_tower.encoder.layer.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
468
+ "vision_tower.encoder.layer.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
469
+ "vision_tower.encoder.layer.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
470
+ "vision_tower.encoder.layer.11.attention.k_proj.bias": "model-00001-of-00002.safetensors",
471
+ "vision_tower.encoder.layer.11.attention.k_proj.weight": "model-00001-of-00002.safetensors",
472
+ "vision_tower.encoder.layer.11.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
473
+ "vision_tower.encoder.layer.11.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
474
+ "vision_tower.encoder.layer.11.attention.q_proj.bias": "model-00001-of-00002.safetensors",
475
+ "vision_tower.encoder.layer.11.attention.q_proj.weight": "model-00001-of-00002.safetensors",
476
+ "vision_tower.encoder.layer.11.attention.v_proj.bias": "model-00001-of-00002.safetensors",
477
+ "vision_tower.encoder.layer.11.attention.v_proj.weight": "model-00001-of-00002.safetensors",
478
+ "vision_tower.encoder.layer.11.lambda_1": "model-00001-of-00002.safetensors",
479
+ "vision_tower.encoder.layer.11.lambda_2": "model-00001-of-00002.safetensors",
480
+ "vision_tower.encoder.layer.11.layernorm_after.bias": "model-00001-of-00002.safetensors",
481
+ "vision_tower.encoder.layer.11.layernorm_after.weight": "model-00001-of-00002.safetensors",
482
+ "vision_tower.encoder.layer.11.layernorm_before.bias": "model-00001-of-00002.safetensors",
483
+ "vision_tower.encoder.layer.11.layernorm_before.weight": "model-00001-of-00002.safetensors",
484
+ "vision_tower.encoder.layer.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
485
+ "vision_tower.encoder.layer.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
486
+ "vision_tower.encoder.layer.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
487
+ "vision_tower.encoder.layer.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
488
+ "vision_tower.encoder.layer.12.attention.k_proj.bias": "model-00001-of-00002.safetensors",
489
+ "vision_tower.encoder.layer.12.attention.k_proj.weight": "model-00001-of-00002.safetensors",
490
+ "vision_tower.encoder.layer.12.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
491
+ "vision_tower.encoder.layer.12.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
492
+ "vision_tower.encoder.layer.12.attention.q_proj.bias": "model-00001-of-00002.safetensors",
493
+ "vision_tower.encoder.layer.12.attention.q_proj.weight": "model-00001-of-00002.safetensors",
494
+ "vision_tower.encoder.layer.12.attention.v_proj.bias": "model-00001-of-00002.safetensors",
495
+ "vision_tower.encoder.layer.12.attention.v_proj.weight": "model-00001-of-00002.safetensors",
496
+ "vision_tower.encoder.layer.12.lambda_1": "model-00001-of-00002.safetensors",
497
+ "vision_tower.encoder.layer.12.lambda_2": "model-00001-of-00002.safetensors",
498
+ "vision_tower.encoder.layer.12.layernorm_after.bias": "model-00001-of-00002.safetensors",
499
+ "vision_tower.encoder.layer.12.layernorm_after.weight": "model-00001-of-00002.safetensors",
500
+ "vision_tower.encoder.layer.12.layernorm_before.bias": "model-00001-of-00002.safetensors",
501
+ "vision_tower.encoder.layer.12.layernorm_before.weight": "model-00001-of-00002.safetensors",
502
+ "vision_tower.encoder.layer.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
503
+ "vision_tower.encoder.layer.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
504
+ "vision_tower.encoder.layer.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
505
+ "vision_tower.encoder.layer.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
506
+ "vision_tower.encoder.layer.13.attention.k_proj.bias": "model-00001-of-00002.safetensors",
507
+ "vision_tower.encoder.layer.13.attention.k_proj.weight": "model-00001-of-00002.safetensors",
508
+ "vision_tower.encoder.layer.13.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
509
+ "vision_tower.encoder.layer.13.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
510
+ "vision_tower.encoder.layer.13.attention.q_proj.bias": "model-00001-of-00002.safetensors",
511
+ "vision_tower.encoder.layer.13.attention.q_proj.weight": "model-00001-of-00002.safetensors",
512
+ "vision_tower.encoder.layer.13.attention.v_proj.bias": "model-00001-of-00002.safetensors",
513
+ "vision_tower.encoder.layer.13.attention.v_proj.weight": "model-00001-of-00002.safetensors",
514
+ "vision_tower.encoder.layer.13.lambda_1": "model-00001-of-00002.safetensors",
515
+ "vision_tower.encoder.layer.13.lambda_2": "model-00001-of-00002.safetensors",
516
+ "vision_tower.encoder.layer.13.layernorm_after.bias": "model-00001-of-00002.safetensors",
517
+ "vision_tower.encoder.layer.13.layernorm_after.weight": "model-00001-of-00002.safetensors",
518
+ "vision_tower.encoder.layer.13.layernorm_before.bias": "model-00001-of-00002.safetensors",
519
+ "vision_tower.encoder.layer.13.layernorm_before.weight": "model-00001-of-00002.safetensors",
520
+ "vision_tower.encoder.layer.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
521
+ "vision_tower.encoder.layer.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
522
+ "vision_tower.encoder.layer.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
523
+ "vision_tower.encoder.layer.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
524
+ "vision_tower.encoder.layer.14.attention.k_proj.bias": "model-00001-of-00002.safetensors",
525
+ "vision_tower.encoder.layer.14.attention.k_proj.weight": "model-00001-of-00002.safetensors",
526
+ "vision_tower.encoder.layer.14.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
527
+ "vision_tower.encoder.layer.14.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
528
+ "vision_tower.encoder.layer.14.attention.q_proj.bias": "model-00001-of-00002.safetensors",
529
+ "vision_tower.encoder.layer.14.attention.q_proj.weight": "model-00001-of-00002.safetensors",
530
+ "vision_tower.encoder.layer.14.attention.v_proj.bias": "model-00001-of-00002.safetensors",
531
+ "vision_tower.encoder.layer.14.attention.v_proj.weight": "model-00001-of-00002.safetensors",
532
+ "vision_tower.encoder.layer.14.lambda_1": "model-00001-of-00002.safetensors",
533
+ "vision_tower.encoder.layer.14.lambda_2": "model-00001-of-00002.safetensors",
534
+ "vision_tower.encoder.layer.14.layernorm_after.bias": "model-00001-of-00002.safetensors",
535
+ "vision_tower.encoder.layer.14.layernorm_after.weight": "model-00001-of-00002.safetensors",
536
+ "vision_tower.encoder.layer.14.layernorm_before.bias": "model-00001-of-00002.safetensors",
537
+ "vision_tower.encoder.layer.14.layernorm_before.weight": "model-00001-of-00002.safetensors",
538
+ "vision_tower.encoder.layer.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
539
+ "vision_tower.encoder.layer.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
540
+ "vision_tower.encoder.layer.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
541
+ "vision_tower.encoder.layer.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
542
+ "vision_tower.encoder.layer.15.attention.k_proj.bias": "model-00001-of-00002.safetensors",
543
+ "vision_tower.encoder.layer.15.attention.k_proj.weight": "model-00001-of-00002.safetensors",
544
+ "vision_tower.encoder.layer.15.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
545
+ "vision_tower.encoder.layer.15.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
546
+ "vision_tower.encoder.layer.15.attention.q_proj.bias": "model-00001-of-00002.safetensors",
547
+ "vision_tower.encoder.layer.15.attention.q_proj.weight": "model-00001-of-00002.safetensors",
548
+ "vision_tower.encoder.layer.15.attention.v_proj.bias": "model-00001-of-00002.safetensors",
549
+ "vision_tower.encoder.layer.15.attention.v_proj.weight": "model-00001-of-00002.safetensors",
550
+ "vision_tower.encoder.layer.15.lambda_1": "model-00001-of-00002.safetensors",
551
+ "vision_tower.encoder.layer.15.lambda_2": "model-00001-of-00002.safetensors",
552
+ "vision_tower.encoder.layer.15.layernorm_after.bias": "model-00001-of-00002.safetensors",
553
+ "vision_tower.encoder.layer.15.layernorm_after.weight": "model-00001-of-00002.safetensors",
554
+ "vision_tower.encoder.layer.15.layernorm_before.bias": "model-00001-of-00002.safetensors",
555
+ "vision_tower.encoder.layer.15.layernorm_before.weight": "model-00001-of-00002.safetensors",
556
+ "vision_tower.encoder.layer.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
557
+ "vision_tower.encoder.layer.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
558
+ "vision_tower.encoder.layer.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
559
+ "vision_tower.encoder.layer.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
560
+ "vision_tower.encoder.layer.16.attention.k_proj.bias": "model-00001-of-00002.safetensors",
561
+ "vision_tower.encoder.layer.16.attention.k_proj.weight": "model-00001-of-00002.safetensors",
562
+ "vision_tower.encoder.layer.16.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
563
+ "vision_tower.encoder.layer.16.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
564
+ "vision_tower.encoder.layer.16.attention.q_proj.bias": "model-00001-of-00002.safetensors",
565
+ "vision_tower.encoder.layer.16.attention.q_proj.weight": "model-00001-of-00002.safetensors",
566
+ "vision_tower.encoder.layer.16.attention.v_proj.bias": "model-00001-of-00002.safetensors",
567
+ "vision_tower.encoder.layer.16.attention.v_proj.weight": "model-00001-of-00002.safetensors",
568
+ "vision_tower.encoder.layer.16.lambda_1": "model-00001-of-00002.safetensors",
569
+ "vision_tower.encoder.layer.16.lambda_2": "model-00001-of-00002.safetensors",
570
+ "vision_tower.encoder.layer.16.layernorm_after.bias": "model-00001-of-00002.safetensors",
571
+ "vision_tower.encoder.layer.16.layernorm_after.weight": "model-00001-of-00002.safetensors",
572
+ "vision_tower.encoder.layer.16.layernorm_before.bias": "model-00001-of-00002.safetensors",
573
+ "vision_tower.encoder.layer.16.layernorm_before.weight": "model-00001-of-00002.safetensors",
574
+ "vision_tower.encoder.layer.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
575
+ "vision_tower.encoder.layer.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
576
+ "vision_tower.encoder.layer.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
577
+ "vision_tower.encoder.layer.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
578
+ "vision_tower.encoder.layer.17.attention.k_proj.bias": "model-00001-of-00002.safetensors",
579
+ "vision_tower.encoder.layer.17.attention.k_proj.weight": "model-00001-of-00002.safetensors",
580
+ "vision_tower.encoder.layer.17.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
581
+ "vision_tower.encoder.layer.17.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
582
+ "vision_tower.encoder.layer.17.attention.q_proj.bias": "model-00001-of-00002.safetensors",
583
+ "vision_tower.encoder.layer.17.attention.q_proj.weight": "model-00001-of-00002.safetensors",
584
+ "vision_tower.encoder.layer.17.attention.v_proj.bias": "model-00001-of-00002.safetensors",
585
+ "vision_tower.encoder.layer.17.attention.v_proj.weight": "model-00001-of-00002.safetensors",
586
+ "vision_tower.encoder.layer.17.lambda_1": "model-00001-of-00002.safetensors",
587
+ "vision_tower.encoder.layer.17.lambda_2": "model-00001-of-00002.safetensors",
588
+ "vision_tower.encoder.layer.17.layernorm_after.bias": "model-00001-of-00002.safetensors",
589
+ "vision_tower.encoder.layer.17.layernorm_after.weight": "model-00001-of-00002.safetensors",
590
+ "vision_tower.encoder.layer.17.layernorm_before.bias": "model-00001-of-00002.safetensors",
591
+ "vision_tower.encoder.layer.17.layernorm_before.weight": "model-00001-of-00002.safetensors",
592
+ "vision_tower.encoder.layer.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
593
+ "vision_tower.encoder.layer.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
594
+ "vision_tower.encoder.layer.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
595
+ "vision_tower.encoder.layer.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
596
+ "vision_tower.encoder.layer.18.attention.k_proj.bias": "model-00001-of-00002.safetensors",
597
+ "vision_tower.encoder.layer.18.attention.k_proj.weight": "model-00001-of-00002.safetensors",
598
+ "vision_tower.encoder.layer.18.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
599
+ "vision_tower.encoder.layer.18.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
600
+ "vision_tower.encoder.layer.18.attention.q_proj.bias": "model-00001-of-00002.safetensors",
601
+ "vision_tower.encoder.layer.18.attention.q_proj.weight": "model-00001-of-00002.safetensors",
602
+ "vision_tower.encoder.layer.18.attention.v_proj.bias": "model-00001-of-00002.safetensors",
603
+ "vision_tower.encoder.layer.18.attention.v_proj.weight": "model-00001-of-00002.safetensors",
604
+ "vision_tower.encoder.layer.18.lambda_1": "model-00001-of-00002.safetensors",
605
+ "vision_tower.encoder.layer.18.lambda_2": "model-00001-of-00002.safetensors",
606
+ "vision_tower.encoder.layer.18.layernorm_after.bias": "model-00001-of-00002.safetensors",
607
+ "vision_tower.encoder.layer.18.layernorm_after.weight": "model-00001-of-00002.safetensors",
608
+ "vision_tower.encoder.layer.18.layernorm_before.bias": "model-00001-of-00002.safetensors",
609
+ "vision_tower.encoder.layer.18.layernorm_before.weight": "model-00001-of-00002.safetensors",
610
+ "vision_tower.encoder.layer.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
611
+ "vision_tower.encoder.layer.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
612
+ "vision_tower.encoder.layer.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
613
+ "vision_tower.encoder.layer.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
614
+ "vision_tower.encoder.layer.19.attention.k_proj.bias": "model-00001-of-00002.safetensors",
615
+ "vision_tower.encoder.layer.19.attention.k_proj.weight": "model-00001-of-00002.safetensors",
616
+ "vision_tower.encoder.layer.19.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
617
+ "vision_tower.encoder.layer.19.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
618
+ "vision_tower.encoder.layer.19.attention.q_proj.bias": "model-00001-of-00002.safetensors",
619
+ "vision_tower.encoder.layer.19.attention.q_proj.weight": "model-00001-of-00002.safetensors",
620
+ "vision_tower.encoder.layer.19.attention.v_proj.bias": "model-00001-of-00002.safetensors",
621
+ "vision_tower.encoder.layer.19.attention.v_proj.weight": "model-00001-of-00002.safetensors",
622
+ "vision_tower.encoder.layer.19.lambda_1": "model-00001-of-00002.safetensors",
623
+ "vision_tower.encoder.layer.19.lambda_2": "model-00001-of-00002.safetensors",
624
+ "vision_tower.encoder.layer.19.layernorm_after.bias": "model-00001-of-00002.safetensors",
625
+ "vision_tower.encoder.layer.19.layernorm_after.weight": "model-00001-of-00002.safetensors",
626
+ "vision_tower.encoder.layer.19.layernorm_before.bias": "model-00001-of-00002.safetensors",
627
+ "vision_tower.encoder.layer.19.layernorm_before.weight": "model-00001-of-00002.safetensors",
628
+ "vision_tower.encoder.layer.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
629
+ "vision_tower.encoder.layer.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
630
+ "vision_tower.encoder.layer.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
631
+ "vision_tower.encoder.layer.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
632
+ "vision_tower.encoder.layer.2.attention.k_proj.bias": "model-00001-of-00002.safetensors",
633
+ "vision_tower.encoder.layer.2.attention.k_proj.weight": "model-00001-of-00002.safetensors",
634
+ "vision_tower.encoder.layer.2.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
635
+ "vision_tower.encoder.layer.2.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
636
+ "vision_tower.encoder.layer.2.attention.q_proj.bias": "model-00001-of-00002.safetensors",
637
+ "vision_tower.encoder.layer.2.attention.q_proj.weight": "model-00001-of-00002.safetensors",
638
+ "vision_tower.encoder.layer.2.attention.v_proj.bias": "model-00001-of-00002.safetensors",
639
+ "vision_tower.encoder.layer.2.attention.v_proj.weight": "model-00001-of-00002.safetensors",
640
+ "vision_tower.encoder.layer.2.lambda_1": "model-00001-of-00002.safetensors",
641
+ "vision_tower.encoder.layer.2.lambda_2": "model-00001-of-00002.safetensors",
642
+ "vision_tower.encoder.layer.2.layernorm_after.bias": "model-00001-of-00002.safetensors",
643
+ "vision_tower.encoder.layer.2.layernorm_after.weight": "model-00001-of-00002.safetensors",
644
+ "vision_tower.encoder.layer.2.layernorm_before.bias": "model-00001-of-00002.safetensors",
645
+ "vision_tower.encoder.layer.2.layernorm_before.weight": "model-00001-of-00002.safetensors",
646
+ "vision_tower.encoder.layer.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
647
+ "vision_tower.encoder.layer.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
648
+ "vision_tower.encoder.layer.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
649
+ "vision_tower.encoder.layer.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
650
+ "vision_tower.encoder.layer.20.attention.k_proj.bias": "model-00001-of-00002.safetensors",
651
+ "vision_tower.encoder.layer.20.attention.k_proj.weight": "model-00001-of-00002.safetensors",
652
+ "vision_tower.encoder.layer.20.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
653
+ "vision_tower.encoder.layer.20.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
654
+ "vision_tower.encoder.layer.20.attention.q_proj.bias": "model-00001-of-00002.safetensors",
655
+ "vision_tower.encoder.layer.20.attention.q_proj.weight": "model-00001-of-00002.safetensors",
656
+ "vision_tower.encoder.layer.20.attention.v_proj.bias": "model-00001-of-00002.safetensors",
657
+ "vision_tower.encoder.layer.20.attention.v_proj.weight": "model-00001-of-00002.safetensors",
658
+ "vision_tower.encoder.layer.20.lambda_1": "model-00001-of-00002.safetensors",
659
+ "vision_tower.encoder.layer.20.lambda_2": "model-00001-of-00002.safetensors",
660
+ "vision_tower.encoder.layer.20.layernorm_after.bias": "model-00001-of-00002.safetensors",
661
+ "vision_tower.encoder.layer.20.layernorm_after.weight": "model-00001-of-00002.safetensors",
662
+ "vision_tower.encoder.layer.20.layernorm_before.bias": "model-00001-of-00002.safetensors",
663
+ "vision_tower.encoder.layer.20.layernorm_before.weight": "model-00001-of-00002.safetensors",
664
+ "vision_tower.encoder.layer.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
665
+ "vision_tower.encoder.layer.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
666
+ "vision_tower.encoder.layer.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
667
+ "vision_tower.encoder.layer.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
668
+ "vision_tower.encoder.layer.21.attention.k_proj.bias": "model-00001-of-00002.safetensors",
669
+ "vision_tower.encoder.layer.21.attention.k_proj.weight": "model-00001-of-00002.safetensors",
670
+ "vision_tower.encoder.layer.21.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
671
+ "vision_tower.encoder.layer.21.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
672
+ "vision_tower.encoder.layer.21.attention.q_proj.bias": "model-00001-of-00002.safetensors",
673
+ "vision_tower.encoder.layer.21.attention.q_proj.weight": "model-00001-of-00002.safetensors",
674
+ "vision_tower.encoder.layer.21.attention.v_proj.bias": "model-00001-of-00002.safetensors",
675
+ "vision_tower.encoder.layer.21.attention.v_proj.weight": "model-00001-of-00002.safetensors",
676
+ "vision_tower.encoder.layer.21.lambda_1": "model-00001-of-00002.safetensors",
677
+ "vision_tower.encoder.layer.21.lambda_2": "model-00001-of-00002.safetensors",
678
+ "vision_tower.encoder.layer.21.layernorm_after.bias": "model-00001-of-00002.safetensors",
679
+ "vision_tower.encoder.layer.21.layernorm_after.weight": "model-00001-of-00002.safetensors",
680
+ "vision_tower.encoder.layer.21.layernorm_before.bias": "model-00001-of-00002.safetensors",
681
+ "vision_tower.encoder.layer.21.layernorm_before.weight": "model-00001-of-00002.safetensors",
682
+ "vision_tower.encoder.layer.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
683
+ "vision_tower.encoder.layer.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
684
+ "vision_tower.encoder.layer.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
685
+ "vision_tower.encoder.layer.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
686
+ "vision_tower.encoder.layer.22.attention.k_proj.bias": "model-00001-of-00002.safetensors",
687
+ "vision_tower.encoder.layer.22.attention.k_proj.weight": "model-00001-of-00002.safetensors",
688
+ "vision_tower.encoder.layer.22.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
689
+ "vision_tower.encoder.layer.22.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
690
+ "vision_tower.encoder.layer.22.attention.q_proj.bias": "model-00001-of-00002.safetensors",
691
+ "vision_tower.encoder.layer.22.attention.q_proj.weight": "model-00001-of-00002.safetensors",
692
+ "vision_tower.encoder.layer.22.attention.v_proj.bias": "model-00001-of-00002.safetensors",
693
+ "vision_tower.encoder.layer.22.attention.v_proj.weight": "model-00001-of-00002.safetensors",
694
+ "vision_tower.encoder.layer.22.lambda_1": "model-00001-of-00002.safetensors",
695
+ "vision_tower.encoder.layer.22.lambda_2": "model-00001-of-00002.safetensors",
696
+ "vision_tower.encoder.layer.22.layernorm_after.bias": "model-00001-of-00002.safetensors",
697
+ "vision_tower.encoder.layer.22.layernorm_after.weight": "model-00001-of-00002.safetensors",
698
+ "vision_tower.encoder.layer.22.layernorm_before.bias": "model-00001-of-00002.safetensors",
699
+ "vision_tower.encoder.layer.22.layernorm_before.weight": "model-00001-of-00002.safetensors",
700
+ "vision_tower.encoder.layer.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
701
+ "vision_tower.encoder.layer.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
702
+ "vision_tower.encoder.layer.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
703
+ "vision_tower.encoder.layer.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
704
+ "vision_tower.encoder.layer.23.attention.k_proj.bias": "model-00001-of-00002.safetensors",
705
+ "vision_tower.encoder.layer.23.attention.k_proj.weight": "model-00001-of-00002.safetensors",
706
+ "vision_tower.encoder.layer.23.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
707
+ "vision_tower.encoder.layer.23.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
708
+ "vision_tower.encoder.layer.23.attention.q_proj.bias": "model-00001-of-00002.safetensors",
709
+ "vision_tower.encoder.layer.23.attention.q_proj.weight": "model-00001-of-00002.safetensors",
710
+ "vision_tower.encoder.layer.23.attention.v_proj.bias": "model-00001-of-00002.safetensors",
711
+ "vision_tower.encoder.layer.23.attention.v_proj.weight": "model-00001-of-00002.safetensors",
712
+ "vision_tower.encoder.layer.23.lambda_1": "model-00001-of-00002.safetensors",
713
+ "vision_tower.encoder.layer.23.lambda_2": "model-00001-of-00002.safetensors",
714
+ "vision_tower.encoder.layer.23.layernorm_after.bias": "model-00001-of-00002.safetensors",
715
+ "vision_tower.encoder.layer.23.layernorm_after.weight": "model-00001-of-00002.safetensors",
716
+ "vision_tower.encoder.layer.23.layernorm_before.bias": "model-00001-of-00002.safetensors",
717
+ "vision_tower.encoder.layer.23.layernorm_before.weight": "model-00001-of-00002.safetensors",
718
+ "vision_tower.encoder.layer.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
719
+ "vision_tower.encoder.layer.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
720
+ "vision_tower.encoder.layer.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
721
+ "vision_tower.encoder.layer.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
722
+ "vision_tower.encoder.layer.3.attention.k_proj.bias": "model-00001-of-00002.safetensors",
723
+ "vision_tower.encoder.layer.3.attention.k_proj.weight": "model-00001-of-00002.safetensors",
724
+ "vision_tower.encoder.layer.3.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
725
+ "vision_tower.encoder.layer.3.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
726
+ "vision_tower.encoder.layer.3.attention.q_proj.bias": "model-00001-of-00002.safetensors",
727
+ "vision_tower.encoder.layer.3.attention.q_proj.weight": "model-00001-of-00002.safetensors",
728
+ "vision_tower.encoder.layer.3.attention.v_proj.bias": "model-00001-of-00002.safetensors",
729
+ "vision_tower.encoder.layer.3.attention.v_proj.weight": "model-00001-of-00002.safetensors",
730
+ "vision_tower.encoder.layer.3.lambda_1": "model-00001-of-00002.safetensors",
731
+ "vision_tower.encoder.layer.3.lambda_2": "model-00001-of-00002.safetensors",
732
+ "vision_tower.encoder.layer.3.layernorm_after.bias": "model-00001-of-00002.safetensors",
733
+ "vision_tower.encoder.layer.3.layernorm_after.weight": "model-00001-of-00002.safetensors",
734
+ "vision_tower.encoder.layer.3.layernorm_before.bias": "model-00001-of-00002.safetensors",
735
+ "vision_tower.encoder.layer.3.layernorm_before.weight": "model-00001-of-00002.safetensors",
736
+ "vision_tower.encoder.layer.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
737
+ "vision_tower.encoder.layer.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
738
+ "vision_tower.encoder.layer.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
739
+ "vision_tower.encoder.layer.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
740
+ "vision_tower.encoder.layer.4.attention.k_proj.bias": "model-00001-of-00002.safetensors",
741
+ "vision_tower.encoder.layer.4.attention.k_proj.weight": "model-00001-of-00002.safetensors",
742
+ "vision_tower.encoder.layer.4.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
743
+ "vision_tower.encoder.layer.4.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
744
+ "vision_tower.encoder.layer.4.attention.q_proj.bias": "model-00001-of-00002.safetensors",
745
+ "vision_tower.encoder.layer.4.attention.q_proj.weight": "model-00001-of-00002.safetensors",
746
+ "vision_tower.encoder.layer.4.attention.v_proj.bias": "model-00001-of-00002.safetensors",
747
+ "vision_tower.encoder.layer.4.attention.v_proj.weight": "model-00001-of-00002.safetensors",
748
+ "vision_tower.encoder.layer.4.lambda_1": "model-00001-of-00002.safetensors",
749
+ "vision_tower.encoder.layer.4.lambda_2": "model-00001-of-00002.safetensors",
750
+ "vision_tower.encoder.layer.4.layernorm_after.bias": "model-00001-of-00002.safetensors",
751
+ "vision_tower.encoder.layer.4.layernorm_after.weight": "model-00001-of-00002.safetensors",
752
+ "vision_tower.encoder.layer.4.layernorm_before.bias": "model-00001-of-00002.safetensors",
753
+ "vision_tower.encoder.layer.4.layernorm_before.weight": "model-00001-of-00002.safetensors",
754
+ "vision_tower.encoder.layer.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
755
+ "vision_tower.encoder.layer.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
756
+ "vision_tower.encoder.layer.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
757
+ "vision_tower.encoder.layer.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
758
+ "vision_tower.encoder.layer.5.attention.k_proj.bias": "model-00001-of-00002.safetensors",
759
+ "vision_tower.encoder.layer.5.attention.k_proj.weight": "model-00001-of-00002.safetensors",
760
+ "vision_tower.encoder.layer.5.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
761
+ "vision_tower.encoder.layer.5.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
762
+ "vision_tower.encoder.layer.5.attention.q_proj.bias": "model-00001-of-00002.safetensors",
763
+ "vision_tower.encoder.layer.5.attention.q_proj.weight": "model-00001-of-00002.safetensors",
764
+ "vision_tower.encoder.layer.5.attention.v_proj.bias": "model-00001-of-00002.safetensors",
765
+ "vision_tower.encoder.layer.5.attention.v_proj.weight": "model-00001-of-00002.safetensors",
766
+ "vision_tower.encoder.layer.5.lambda_1": "model-00001-of-00002.safetensors",
767
+ "vision_tower.encoder.layer.5.lambda_2": "model-00001-of-00002.safetensors",
768
+ "vision_tower.encoder.layer.5.layernorm_after.bias": "model-00001-of-00002.safetensors",
769
+ "vision_tower.encoder.layer.5.layernorm_after.weight": "model-00001-of-00002.safetensors",
770
+ "vision_tower.encoder.layer.5.layernorm_before.bias": "model-00001-of-00002.safetensors",
771
+ "vision_tower.encoder.layer.5.layernorm_before.weight": "model-00001-of-00002.safetensors",
772
+ "vision_tower.encoder.layer.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
773
+ "vision_tower.encoder.layer.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
774
+ "vision_tower.encoder.layer.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
775
+ "vision_tower.encoder.layer.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
776
+ "vision_tower.encoder.layer.6.attention.k_proj.bias": "model-00001-of-00002.safetensors",
777
+ "vision_tower.encoder.layer.6.attention.k_proj.weight": "model-00001-of-00002.safetensors",
778
+ "vision_tower.encoder.layer.6.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
779
+ "vision_tower.encoder.layer.6.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
780
+ "vision_tower.encoder.layer.6.attention.q_proj.bias": "model-00001-of-00002.safetensors",
781
+ "vision_tower.encoder.layer.6.attention.q_proj.weight": "model-00001-of-00002.safetensors",
782
+ "vision_tower.encoder.layer.6.attention.v_proj.bias": "model-00001-of-00002.safetensors",
783
+ "vision_tower.encoder.layer.6.attention.v_proj.weight": "model-00001-of-00002.safetensors",
784
+ "vision_tower.encoder.layer.6.lambda_1": "model-00001-of-00002.safetensors",
785
+ "vision_tower.encoder.layer.6.lambda_2": "model-00001-of-00002.safetensors",
786
+ "vision_tower.encoder.layer.6.layernorm_after.bias": "model-00001-of-00002.safetensors",
787
+ "vision_tower.encoder.layer.6.layernorm_after.weight": "model-00001-of-00002.safetensors",
788
+ "vision_tower.encoder.layer.6.layernorm_before.bias": "model-00001-of-00002.safetensors",
789
+ "vision_tower.encoder.layer.6.layernorm_before.weight": "model-00001-of-00002.safetensors",
790
+ "vision_tower.encoder.layer.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
791
+ "vision_tower.encoder.layer.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
792
+ "vision_tower.encoder.layer.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
793
+ "vision_tower.encoder.layer.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
794
+ "vision_tower.encoder.layer.7.attention.k_proj.bias": "model-00001-of-00002.safetensors",
795
+ "vision_tower.encoder.layer.7.attention.k_proj.weight": "model-00001-of-00002.safetensors",
796
+ "vision_tower.encoder.layer.7.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
797
+ "vision_tower.encoder.layer.7.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
798
+ "vision_tower.encoder.layer.7.attention.q_proj.bias": "model-00001-of-00002.safetensors",
799
+ "vision_tower.encoder.layer.7.attention.q_proj.weight": "model-00001-of-00002.safetensors",
800
+ "vision_tower.encoder.layer.7.attention.v_proj.bias": "model-00001-of-00002.safetensors",
801
+ "vision_tower.encoder.layer.7.attention.v_proj.weight": "model-00001-of-00002.safetensors",
802
+ "vision_tower.encoder.layer.7.lambda_1": "model-00001-of-00002.safetensors",
803
+ "vision_tower.encoder.layer.7.lambda_2": "model-00001-of-00002.safetensors",
804
+ "vision_tower.encoder.layer.7.layernorm_after.bias": "model-00001-of-00002.safetensors",
805
+ "vision_tower.encoder.layer.7.layernorm_after.weight": "model-00001-of-00002.safetensors",
806
+ "vision_tower.encoder.layer.7.layernorm_before.bias": "model-00001-of-00002.safetensors",
807
+ "vision_tower.encoder.layer.7.layernorm_before.weight": "model-00001-of-00002.safetensors",
808
+ "vision_tower.encoder.layer.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
809
+ "vision_tower.encoder.layer.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
810
+ "vision_tower.encoder.layer.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
811
+ "vision_tower.encoder.layer.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
812
+ "vision_tower.encoder.layer.8.attention.k_proj.bias": "model-00001-of-00002.safetensors",
813
+ "vision_tower.encoder.layer.8.attention.k_proj.weight": "model-00001-of-00002.safetensors",
814
+ "vision_tower.encoder.layer.8.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
815
+ "vision_tower.encoder.layer.8.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
816
+ "vision_tower.encoder.layer.8.attention.q_proj.bias": "model-00001-of-00002.safetensors",
817
+ "vision_tower.encoder.layer.8.attention.q_proj.weight": "model-00001-of-00002.safetensors",
818
+ "vision_tower.encoder.layer.8.attention.v_proj.bias": "model-00001-of-00002.safetensors",
819
+ "vision_tower.encoder.layer.8.attention.v_proj.weight": "model-00001-of-00002.safetensors",
820
+ "vision_tower.encoder.layer.8.lambda_1": "model-00001-of-00002.safetensors",
821
+ "vision_tower.encoder.layer.8.lambda_2": "model-00001-of-00002.safetensors",
822
+ "vision_tower.encoder.layer.8.layernorm_after.bias": "model-00001-of-00002.safetensors",
823
+ "vision_tower.encoder.layer.8.layernorm_after.weight": "model-00001-of-00002.safetensors",
824
+ "vision_tower.encoder.layer.8.layernorm_before.bias": "model-00001-of-00002.safetensors",
825
+ "vision_tower.encoder.layer.8.layernorm_before.weight": "model-00001-of-00002.safetensors",
826
+ "vision_tower.encoder.layer.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
827
+ "vision_tower.encoder.layer.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
828
+ "vision_tower.encoder.layer.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
829
+ "vision_tower.encoder.layer.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
830
+ "vision_tower.encoder.layer.9.attention.k_proj.bias": "model-00001-of-00002.safetensors",
831
+ "vision_tower.encoder.layer.9.attention.k_proj.weight": "model-00001-of-00002.safetensors",
832
+ "vision_tower.encoder.layer.9.attention.projection_layer.bias": "model-00001-of-00002.safetensors",
833
+ "vision_tower.encoder.layer.9.attention.projection_layer.weight": "model-00001-of-00002.safetensors",
834
+ "vision_tower.encoder.layer.9.attention.q_proj.bias": "model-00001-of-00002.safetensors",
835
+ "vision_tower.encoder.layer.9.attention.q_proj.weight": "model-00001-of-00002.safetensors",
836
+ "vision_tower.encoder.layer.9.attention.v_proj.bias": "model-00001-of-00002.safetensors",
837
+ "vision_tower.encoder.layer.9.attention.v_proj.weight": "model-00001-of-00002.safetensors",
838
+ "vision_tower.encoder.layer.9.lambda_1": "model-00001-of-00002.safetensors",
839
+ "vision_tower.encoder.layer.9.lambda_2": "model-00001-of-00002.safetensors",
840
+ "vision_tower.encoder.layer.9.layernorm_after.bias": "model-00001-of-00002.safetensors",
841
+ "vision_tower.encoder.layer.9.layernorm_after.weight": "model-00001-of-00002.safetensors",
842
+ "vision_tower.encoder.layer.9.layernorm_before.bias": "model-00001-of-00002.safetensors",
843
+ "vision_tower.encoder.layer.9.layernorm_before.weight": "model-00001-of-00002.safetensors",
844
+ "vision_tower.encoder.layer.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
845
+ "vision_tower.encoder.layer.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
846
+ "vision_tower.encoder.layer.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
847
+ "vision_tower.encoder.layer.9.mlp.fc2.weight": "model-00001-of-00002.safetensors"
848
+ }
849
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": null,
3
+ "crop_to_patches": false,
4
+ "data_format": "channels_first",
5
+ "default_to_square": true,
6
+ "device": null,
7
+ "do_center_crop": null,
8
+ "do_convert_rgb": true,
9
+ "do_normalize": true,
10
+ "do_rescale": true,
11
+ "do_resize": true,
12
+ "image_mean": [
13
+ 0.485,
14
+ 0.456,
15
+ 0.406
16
+ ],
17
+ "image_processor_type": "GotOcr2ImageProcessorFast",
18
+ "image_std": [
19
+ 0.229,
20
+ 0.224,
21
+ 0.225
22
+ ],
23
+ "input_data_format": null,
24
+ "max_patches": 12,
25
+ "min_patches": 1,
26
+ "processor_class": "InternVLProcessor",
27
+ "resample": 3,
28
+ "rescale_factor": 0.00392156862745098,
29
+ "return_tensors": null,
30
+ "size": {
31
+ "height": 448,
32
+ "width": 448
33
+ }
34
+ }
processor_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "image_seq_length": 256,
3
+ "processor_class": "InternVLProcessor"
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>",
16
+ "<img>",
17
+ "</img>",
18
+ "<IMG_CONTEXT>",
19
+ "<quad>",
20
+ "</quad>",
21
+ "<ref>",
22
+ "</ref>",
23
+ "<box>",
24
+ "</box>"
25
+ ],
26
+ "context_image_token": "<IMG_CONTEXT>",
27
+ "end_image_token": "</img>",
28
+ "eos_token": {
29
+ "content": "<|im_end|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ },
35
+ "pad_token": {
36
+ "content": "<|endoftext|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false
41
+ },
42
+ "start_image_token": "<img>",
43
+ "video_token": "<video>"
44
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b9d18660f656ae5a87df2d5d6ed990e80f292d3473c1a35cae8259a5d28cd67
3
+ size 11424484
tokenizer_config.json ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|im_start|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "151645": {
23
+ "content": "<|im_end|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "151646": {
31
+ "content": "<|object_ref_start|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|object_ref_end|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "151648": {
47
+ "content": "<|box_start|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "151649": {
55
+ "content": "<|box_end|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "151665": {
183
+ "content": "<tool_response>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "151666": {
191
+ "content": "</tool_response>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "151667": {
199
+ "content": "<think>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "151668": {
207
+ "content": "</think>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "151669": {
215
+ "content": "<img>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "151670": {
223
+ "content": "</img>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "151671": {
231
+ "content": "<IMG_CONTEXT>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "151672": {
239
+ "content": "<quad>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "151673": {
247
+ "content": "</quad>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": true
253
+ },
254
+ "151674": {
255
+ "content": "<ref>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": false,
259
+ "single_word": false,
260
+ "special": true
261
+ },
262
+ "151675": {
263
+ "content": "</ref>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": false,
267
+ "single_word": false,
268
+ "special": true
269
+ },
270
+ "151676": {
271
+ "content": "<box>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": false,
275
+ "single_word": false,
276
+ "special": true
277
+ },
278
+ "151677": {
279
+ "content": "</box>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": false,
283
+ "single_word": false,
284
+ "special": true
285
+ },
286
+ "151678": {
287
+ "content": "<video>",
288
+ "lstrip": false,
289
+ "normalized": false,
290
+ "rstrip": false,
291
+ "single_word": false,
292
+ "special": true
293
+ }
294
+ },
295
+ "additional_special_tokens": [
296
+ "<|im_start|>",
297
+ "<|im_end|>",
298
+ "<|object_ref_start|>",
299
+ "<|object_ref_end|>",
300
+ "<|box_start|>",
301
+ "<|box_end|>",
302
+ "<|quad_start|>",
303
+ "<|quad_end|>",
304
+ "<|vision_start|>",
305
+ "<|vision_end|>",
306
+ "<|vision_pad|>",
307
+ "<|image_pad|>",
308
+ "<|video_pad|>",
309
+ "<img>",
310
+ "</img>",
311
+ "<IMG_CONTEXT>",
312
+ "<quad>",
313
+ "</quad>",
314
+ "<ref>",
315
+ "</ref>",
316
+ "<box>",
317
+ "</box>"
318
+ ],
319
+ "bos_token": null,
320
+ "clean_up_tokenization_spaces": false,
321
+ "context_image_token": "<IMG_CONTEXT>",
322
+ "end_image_token": "</img>",
323
+ "eos_token": "<|im_end|>",
324
+ "errors": "replace",
325
+ "extra_special_tokens": {
326
+ "context_image_token": "<IMG_CONTEXT>",
327
+ "end_image_token": "</img>",
328
+ "start_image_token": "<img>",
329
+ "video_token": "<video>"
330
+ },
331
+ "model_max_length": 40960,
332
+ "pad_token": "<|endoftext|>",
333
+ "processor_class": "InternVLProcessor",
334
+ "split_special_tokens": false,
335
+ "start_image_token": "<img>",
336
+ "tokenizer_class": "Qwen2Tokenizer",
337
+ "unk_token": null,
338
+ "video_token": "<video>"
339
+ }
video_preprocessor_config.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_kwargs_names": [
3
+ "do_convert_rgb",
4
+ "do_resize",
5
+ "size",
6
+ "size_divisor",
7
+ "default_to_square",
8
+ "resample",
9
+ "do_rescale",
10
+ "rescale_factor",
11
+ "do_normalize",
12
+ "image_mean",
13
+ "image_std",
14
+ "do_pad",
15
+ "do_center_crop",
16
+ "crop_size",
17
+ "data_format",
18
+ "input_data_format",
19
+ "device"
20
+ ],
21
+ "crop_size": null,
22
+ "data_format": "channels_first",
23
+ "default_to_square": true,
24
+ "device": null,
25
+ "do_center_crop": null,
26
+ "do_convert_rgb": true,
27
+ "do_normalize": true,
28
+ "do_pad": null,
29
+ "do_rescale": true,
30
+ "do_resize": true,
31
+ "image_mean": [
32
+ 0.48145466,
33
+ 0.4578275,
34
+ 0.40821073
35
+ ],
36
+ "image_std": [
37
+ 0.26862954,
38
+ 0.26130258,
39
+ 0.27577711
40
+ ],
41
+ "input_data_format": null,
42
+ "model_valid_processing_keys": [
43
+ "do_convert_rgb",
44
+ "do_resize",
45
+ "size",
46
+ "size_divisor",
47
+ "default_to_square",
48
+ "resample",
49
+ "do_rescale",
50
+ "rescale_factor",
51
+ "do_normalize",
52
+ "image_mean",
53
+ "image_std",
54
+ "do_pad",
55
+ "do_center_crop",
56
+ "crop_size",
57
+ "data_format",
58
+ "input_data_format",
59
+ "device"
60
+ ],
61
+ "processor_class": "InternVLProcessor",
62
+ "resample": 3,
63
+ "rescale_factor": 0.00392156862745098,
64
+ "size": {
65
+ "height": 384,
66
+ "width": 384
67
+ },
68
+ "size_divisor": null,
69
+ "video_processor_type": "InternVLVideoProcessor"
70
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff