Add descriptive tags to the model card
Browse filesThis PR enhances the model card by adding more descriptive tags to improve discoverability and categorization on the Hugging Face Hub. Based on the paper abstract and model architecture, the following tags have been added: `multimodal`, `vlm`, `reasoning`, `agent`, and `qwen3`. These tags reflect the model's nature as an open-source multimodal vision-language model, its focus on reasoning and agentic tasks, and its reliance on the Qwen3 language model.
README.md
CHANGED
@@ -1,18 +1,23 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
-
pipeline_tag: image-text-to-text
|
4 |
-
library_name: transformers
|
5 |
base_model:
|
6 |
-
|
7 |
-
base_model_relation: finetune
|
8 |
datasets:
|
9 |
-
|
10 |
-
|
11 |
language:
|
12 |
-
|
|
|
|
|
|
|
13 |
tags:
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
---
|
17 |
|
18 |
# InternVL3_5-2B-Instruct
|
@@ -27,7 +32,7 @@ tags:
|
|
27 |
|
28 |
## Introduction
|
29 |
|
30 |
-
We introduce *InternVL3.5*, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the *Cascade Reinforcement Learning (Cascade RL)* framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a *Visual Resolution Router (ViR)* that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled *Vision-Language Deployment (DvD)* strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0\% gain in overall reasoning performance and a 4.05 \\(\times\\) inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks
|
31 |
|
32 |

|
33 |
|
@@ -529,40 +534,50 @@ generation_config = dict(max_new_tokens=1024, do_sample=True)
|
|
529 |
# pure-text conversation (纯文本对话)
|
530 |
question = 'Hello, who are you?'
|
531 |
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
532 |
-
print(f'User: {question}
|
|
|
533 |
|
534 |
question = 'Can you tell me a story?'
|
535 |
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
|
536 |
-
print(f'User: {question}
|
|
|
537 |
|
538 |
# single-image single-round conversation (单图单轮对话)
|
539 |
-
question = '<image
|
|
|
540 |
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
541 |
-
print(f'User: {question}
|
|
|
542 |
|
543 |
# single-image multi-round conversation (单图多轮对话)
|
544 |
-
question = '<image
|
|
|
545 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
546 |
-
print(f'User: {question}
|
|
|
547 |
|
548 |
question = 'Please write a poem according to the image.'
|
549 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
550 |
-
print(f'User: {question}
|
|
|
551 |
|
552 |
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
553 |
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
554 |
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
555 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
556 |
|
557 |
-
question = '<image
|
|
|
558 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
559 |
history=None, return_history=True)
|
560 |
-
print(f'User: {question}
|
|
|
561 |
|
562 |
question = 'What are the similarities and differences between these two images.'
|
563 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
564 |
history=history, return_history=True)
|
565 |
-
print(f'User: {question}
|
|
|
566 |
|
567 |
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
568 |
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
@@ -570,17 +585,20 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1
|
|
570 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
571 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
572 |
|
573 |
-
question = 'Image-1: <image
|
|
|
|
|
574 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
575 |
num_patches_list=num_patches_list,
|
576 |
history=None, return_history=True)
|
577 |
-
print(f'User: {question}
|
|
|
578 |
|
579 |
question = 'What are the similarities and differences between these two images.'
|
580 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
581 |
-
num_patches_list=num_patches_list,
|
582 |
-
|
583 |
-
|
584 |
|
585 |
# batch inference, single image per sample (单图批处理)
|
586 |
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
@@ -588,13 +606,15 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1
|
|
588 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
589 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
590 |
|
591 |
-
questions = ['<image
|
|
|
592 |
responses = model.batch_chat(tokenizer, pixel_values,
|
593 |
num_patches_list=num_patches_list,
|
594 |
questions=questions,
|
595 |
generation_config=generation_config)
|
596 |
for question, response in zip(questions, responses):
|
597 |
-
print(f'User: {question}
|
|
|
598 |
|
599 |
# video multi-round conversation (视频多轮对话)
|
600 |
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
@@ -632,17 +652,24 @@ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=3
|
|
632 |
video_path = './examples/red-panda.mp4'
|
633 |
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
|
634 |
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
635 |
-
video_prefix = ''.join([f'Frame{i+1}: <image
|
|
|
636 |
question = video_prefix + 'What is the red panda doing?'
|
637 |
-
# Frame1: <image
|
|
|
|
|
|
|
|
|
638 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
639 |
num_patches_list=num_patches_list, history=None, return_history=True)
|
640 |
-
print(f'User: {question}
|
|
|
641 |
|
642 |
question = 'Describe this video in detail.'
|
643 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
644 |
num_patches_list=num_patches_list, history=history, return_history=True)
|
645 |
-
print(f'User: {question}
|
|
|
646 |
```
|
647 |
|
648 |
#### Streaming Output
|
@@ -726,7 +753,9 @@ image_urls=[
|
|
726 |
|
727 |
images = [load_image(img_url) for img_url in image_urls]
|
728 |
# Numbering images improves multi-image conversations
|
729 |
-
response = pipe((f'Image-1: {IMAGE_TOKEN}
|
|
|
|
|
730 |
print(response.text)
|
731 |
```
|
732 |
|
@@ -829,3 +858,14 @@ If you find this project useful in your research, please consider citing:
|
|
829 |
year={2025}
|
830 |
}
|
831 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
base_model:
|
3 |
+
- OpenGVLab/InternVL3_5-2B-Pretrained
|
|
|
4 |
datasets:
|
5 |
+
- OpenGVLab/MMPR-v1.2
|
6 |
+
- OpenGVLab/MMPR-Tiny
|
7 |
language:
|
8 |
+
- multilingual
|
9 |
+
library_name: transformers
|
10 |
+
license: apache-2.0
|
11 |
+
pipeline_tag: image-text-to-text
|
12 |
tags:
|
13 |
+
- internvl
|
14 |
+
- custom_code
|
15 |
+
- multimodal
|
16 |
+
- vlm
|
17 |
+
- reasoning
|
18 |
+
- agent
|
19 |
+
- qwen3
|
20 |
+
base_model_relation: finetune
|
21 |
---
|
22 |
|
23 |
# InternVL3_5-2B-Instruct
|
|
|
32 |
|
33 |
## Introduction
|
34 |
|
35 |
+
We introduce *InternVL3.5*, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the *Cascade Reinforcement Learning (Cascade RL)* framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a *Visual Resolution Router (ViR)* that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled *Vision-Language Deployment (DvD)* strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0\% gain in overall reasoning performance and a 4.05 \\(\times\\) inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks -- narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.
|
36 |
|
37 |

|
38 |
|
|
|
534 |
# pure-text conversation (纯文本对话)
|
535 |
question = 'Hello, who are you?'
|
536 |
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
537 |
+
print(f'User: {question}
|
538 |
+
Assistant: {response}')
|
539 |
|
540 |
question = 'Can you tell me a story?'
|
541 |
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
|
542 |
+
print(f'User: {question}
|
543 |
+
Assistant: {response}')
|
544 |
|
545 |
# single-image single-round conversation (单图单轮对话)
|
546 |
+
question = '<image>
|
547 |
+
Please describe the image shortly.'
|
548 |
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
549 |
+
print(f'User: {question}
|
550 |
+
Assistant: {response}')
|
551 |
|
552 |
# single-image multi-round conversation (单图多轮对话)
|
553 |
+
question = '<image>
|
554 |
+
Please describe the image in detail.'
|
555 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
556 |
+
print(f'User: {question}
|
557 |
+
Assistant: {response}')
|
558 |
|
559 |
question = 'Please write a poem according to the image.'
|
560 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
561 |
+
print(f'User: {question}
|
562 |
+
Assistant: {response}')
|
563 |
|
564 |
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
565 |
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
566 |
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
567 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
568 |
|
569 |
+
question = '<image>
|
570 |
+
Describe the two images in detail.'
|
571 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
572 |
history=None, return_history=True)
|
573 |
+
print(f'User: {question}
|
574 |
+
Assistant: {response}')
|
575 |
|
576 |
question = 'What are the similarities and differences between these two images.'
|
577 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
578 |
history=history, return_history=True)
|
579 |
+
print(f'User: {question}
|
580 |
+
Assistant: {response}')
|
581 |
|
582 |
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
583 |
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
|
|
585 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
586 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
587 |
|
588 |
+
question = 'Image-1: <image>
|
589 |
+
Image-2: <image>
|
590 |
+
Describe the two images in detail.'
|
591 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
592 |
num_patches_list=num_patches_list,
|
593 |
history=None, return_history=True)
|
594 |
+
print(f'User: {question}
|
595 |
+
Assistant: {response}')
|
596 |
|
597 |
question = 'What are the similarities and differences between these two images.'
|
598 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
599 |
+
num_patches_list=num_patches_list, history=history, return_history=True)
|
600 |
+
print(f'User: {question}
|
601 |
+
Assistant: {response}')
|
602 |
|
603 |
# batch inference, single image per sample (单图批处理)
|
604 |
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
|
|
606 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
607 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
608 |
|
609 |
+
questions = ['<image>
|
610 |
+
Describe the image in detail.'] * len(num_patches_list)
|
611 |
responses = model.batch_chat(tokenizer, pixel_values,
|
612 |
num_patches_list=num_patches_list,
|
613 |
questions=questions,
|
614 |
generation_config=generation_config)
|
615 |
for question, response in zip(questions, responses):
|
616 |
+
print(f'User: {question}
|
617 |
+
Assistant: {response}')
|
618 |
|
619 |
# video multi-round conversation (视频多轮对话)
|
620 |
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
|
|
652 |
video_path = './examples/red-panda.mp4'
|
653 |
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
|
654 |
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
655 |
+
video_prefix = ''.join([f'Frame{i+1}: <image>
|
656 |
+
' for i in range(len(num_patches_list))])
|
657 |
question = video_prefix + 'What is the red panda doing?'
|
658 |
+
# Frame1: <image>
|
659 |
+
Frame2: <image>
|
660 |
+
...
|
661 |
+
Frame8: <image>
|
662 |
+
{question}
|
663 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
664 |
num_patches_list=num_patches_list, history=None, return_history=True)
|
665 |
+
print(f'User: {question}
|
666 |
+
Assistant: {response}')
|
667 |
|
668 |
question = 'Describe this video in detail.'
|
669 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
670 |
num_patches_list=num_patches_list, history=history, return_history=True)
|
671 |
+
print(f'User: {question}
|
672 |
+
Assistant: {response}')
|
673 |
```
|
674 |
|
675 |
#### Streaming Output
|
|
|
753 |
|
754 |
images = [load_image(img_url) for img_url in image_urls]
|
755 |
# Numbering images improves multi-image conversations
|
756 |
+
response = pipe((f'Image-1: {IMAGE_TOKEN}
|
757 |
+
Image-2: {IMAGE_TOKEN}
|
758 |
+
describe these two images', images))
|
759 |
print(response.text)
|
760 |
```
|
761 |
|
|
|
858 |
year={2025}
|
859 |
}
|
860 |
```
|
861 |
+
|
862 |
+
|
863 |
+
## Acknowledgement
|
864 |
+
|
865 |
+
InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!
|
866 |
+
|
867 |
+
______________________________________________________________________
|
868 |
+
|
869 |
+
Scan the following QR Code, join our WeChat group.
|
870 |
+
|
871 |
+
<p align="center"><img width="300" alt="image" src="https://github.com/user-attachments/assets/f776df09-ebba-4fd5-80c2-fec4ff1518be"></p>
|