nielsr HF Staff commited on
Commit
f2c935f
·
verified ·
1 Parent(s): d25d3fc

Correct license to MIT

Browse files

This PR corrects the license information for the model card. The project's GitHub repository explicitly states that the project is released under the MIT license. This change updates the metadata and the corresponding statement in the model card content to reflect the correct MIT license. The mention of the Qwen3 component being Apache-2.0 is retained for full transparency.

Files changed (1) hide show
  1. README.md +112 -32
README.md CHANGED
@@ -1,19 +1,19 @@
1
  ---
2
- license: apache-2.0
3
- pipeline_tag: image-text-to-text
4
- library_name: transformers
5
  base_model:
6
- - OpenGVLab/InternViT-6B-448px-V2_5
7
- - Qwen/Qwen3-235B-A22B
8
- base_model_relation: merge
9
  datasets:
10
- - OpenGVLab/MMPR-v1.2
11
- - OpenGVLab/MMPR-Tiny
12
  language:
13
- - multilingual
 
 
 
14
  tags:
15
- - internvl
16
- - custom_code
 
17
  ---
18
 
19
  # InternVL3_5-241B-A28B-Pretrained
@@ -530,40 +530,50 @@ generation_config = dict(max_new_tokens=1024, do_sample=True)
530
  # pure-text conversation (纯文本对话)
531
  question = 'Hello, who are you?'
532
  response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
533
- print(f'User: {question}\nAssistant: {response}')
 
534
 
535
  question = 'Can you tell me a story?'
536
  response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
537
- print(f'User: {question}\nAssistant: {response}')
 
538
 
539
  # single-image single-round conversation (单图单轮对话)
540
- question = '<image>\nPlease describe the image shortly.'
 
541
  response = model.chat(tokenizer, pixel_values, question, generation_config)
542
- print(f'User: {question}\nAssistant: {response}')
 
543
 
544
  # single-image multi-round conversation (单图多轮对话)
545
- question = '<image>\nPlease describe the image in detail.'
 
546
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
547
- print(f'User: {question}\nAssistant: {response}')
 
548
 
549
  question = 'Please write a poem according to the image.'
550
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
551
- print(f'User: {question}\nAssistant: {response}')
 
552
 
553
  # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
554
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
555
  pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
556
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
557
 
558
- question = '<image>\nDescribe the two images in detail.'
 
559
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
560
  history=None, return_history=True)
561
- print(f'User: {question}\nAssistant: {response}')
 
562
 
563
  question = 'What are the similarities and differences between these two images.'
564
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
565
  history=history, return_history=True)
566
- print(f'User: {question}\nAssistant: {response}')
 
567
 
568
  # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
569
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
@@ -571,17 +581,21 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1
571
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
572
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
573
 
574
- question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
 
 
575
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
576
  num_patches_list=num_patches_list,
577
  history=None, return_history=True)
578
- print(f'User: {question}\nAssistant: {response}')
 
579
 
580
  question = 'What are the similarities and differences between these two images.'
581
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
582
  num_patches_list=num_patches_list,
583
  history=history, return_history=True)
584
- print(f'User: {question}\nAssistant: {response}')
 
585
 
586
  # batch inference, single image per sample (单图批处理)
587
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
@@ -589,13 +603,15 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1
589
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
590
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
591
 
592
- questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
 
593
  responses = model.batch_chat(tokenizer, pixel_values,
594
  num_patches_list=num_patches_list,
595
  questions=questions,
596
  generation_config=generation_config)
597
  for question, response in zip(questions, responses):
598
- print(f'User: {question}\nAssistant: {response}')
 
599
 
600
  # video multi-round conversation (视频多轮对话)
601
  def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
@@ -633,17 +649,24 @@ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=3
633
  video_path = './examples/red-panda.mp4'
634
  pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
635
  pixel_values = pixel_values.to(torch.bfloat16).cuda()
636
- video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
 
637
  question = video_prefix + 'What is the red panda doing?'
638
- # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
 
 
 
 
639
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
640
  num_patches_list=num_patches_list, history=None, return_history=True)
641
- print(f'User: {question}\nAssistant: {response}')
 
642
 
643
  question = 'Describe this video in detail.'
644
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
645
  num_patches_list=num_patches_list, history=history, return_history=True)
646
- print(f'User: {question}\nAssistant: {response}')
 
647
  ```
648
 
649
  #### Streaming Output
@@ -727,7 +750,9 @@ image_urls=[
727
 
728
  images = [load_image(img_url) for img_url in image_urls]
729
  # Numbering images improves multi-image conversations
730
- response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
 
 
731
  print(response.text)
732
  ```
733
 
@@ -816,7 +841,7 @@ print(response)
816
 
817
  ## License
818
 
819
- This project is released under the apache-2.0 License. This project uses the pre-trained Qwen3 as a component, which is licensed under the apache-2.0 License.
820
 
821
  ## Citation
822
 
@@ -829,4 +854,59 @@ If you find this project useful in your research, please consider citing:
829
  journal={arXiv preprint arXiv:2508.18265},
830
  year={2025}
831
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
832
  ```
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model:
3
+ - OpenGVLab/InternViT-6B-448px-V2_5
4
+ - Qwen/Qwen3-235B-A22B
 
5
  datasets:
6
+ - OpenGVLab/MMPR-v1.2
7
+ - OpenGVLab/MMPR-Tiny
8
  language:
9
+ - multilingual
10
+ library_name: transformers
11
+ license: mit
12
+ pipeline_tag: image-text-to-text
13
  tags:
14
+ - internvl
15
+ - custom_code
16
+ base_model_relation: merge
17
  ---
18
 
19
  # InternVL3_5-241B-A28B-Pretrained
 
530
  # pure-text conversation (纯文本对话)
531
  question = 'Hello, who are you?'
532
  response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
533
+ print(f'User: {question}
534
+ Assistant: {response}')
535
 
536
  question = 'Can you tell me a story?'
537
  response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
538
+ print(f'User: {question}
539
+ Assistant: {response}')
540
 
541
  # single-image single-round conversation (单图单轮对话)
542
+ question = '<image>
543
+ Please describe the image shortly.'
544
  response = model.chat(tokenizer, pixel_values, question, generation_config)
545
+ print(f'User: {question}
546
+ Assistant: {response}')
547
 
548
  # single-image multi-round conversation (单图多轮对话)
549
+ question = '<image>
550
+ Please describe the image in detail.'
551
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
552
+ print(f'User: {question}
553
+ Assistant: {response}')
554
 
555
  question = 'Please write a poem according to the image.'
556
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
557
+ print(f'User: {question}
558
+ Assistant: {response}')
559
 
560
  # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
561
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
562
  pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
563
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
564
 
565
+ question = '<image>
566
+ Describe the two images in detail.'
567
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
568
  history=None, return_history=True)
569
+ print(f'User: {question}
570
+ Assistant: {response}')
571
 
572
  question = 'What are the similarities and differences between these two images.'
573
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
574
  history=history, return_history=True)
575
+ print(f'User: {question}
576
+ Assistant: {response}')
577
 
578
  # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
579
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
 
581
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
582
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
583
 
584
+ question = 'Image-1: <image>
585
+ Image-2: <image>
586
+ Describe the two images in detail.'
587
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
588
  num_patches_list=num_patches_list,
589
  history=None, return_history=True)
590
+ print(f'User: {question}
591
+ Assistant: {response}')
592
 
593
  question = 'What are the similarities and differences between these two images.'
594
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
595
  num_patches_list=num_patches_list,
596
  history=history, return_history=True)
597
+ print(f'User: {question}
598
+ Assistant: {response}')
599
 
600
  # batch inference, single image per sample (单图批处理)
601
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
 
603
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
604
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
605
 
606
+ questions = ['<image>
607
+ Describe the image in detail.'] * len(num_patches_list)
608
  responses = model.batch_chat(tokenizer, pixel_values,
609
  num_patches_list=num_patches_list,
610
  questions=questions,
611
  generation_config=generation_config)
612
  for question, response in zip(questions, responses):
613
+ print(f'User: {question}
614
+ Assistant: {response}')
615
 
616
  # video multi-round conversation (视频多轮对话)
617
  def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
 
649
  video_path = './examples/red-panda.mp4'
650
  pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
651
  pixel_values = pixel_values.to(torch.bfloat16).cuda()
652
+ video_prefix = ''.join([f'Frame{i+1}: <image>
653
+ ' for i in range(len(num_patches_list))])
654
  question = video_prefix + 'What is the red panda doing?'
655
+ # Frame1: <image>
656
+ Frame2: <image>
657
+ ...
658
+ Frame8: <image>
659
+ {question}
660
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
661
  num_patches_list=num_patches_list, history=None, return_history=True)
662
+ print(f'User: {question}
663
+ Assistant: {response}')
664
 
665
  question = 'Describe this video in detail.'
666
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
667
  num_patches_list=num_patches_list, history=history, return_history=True)
668
+ print(f'User: {question}
669
+ Assistant: {response}')
670
  ```
671
 
672
  #### Streaming Output
 
750
 
751
  images = [load_image(img_url) for img_url in image_urls]
752
  # Numbering images improves multi-image conversations
753
+ response = pipe((f'Image-1: {IMAGE_TOKEN}
754
+ Image-2: {IMAGE_TOKEN}
755
+ describe these two images', images))
756
  print(response.text)
757
  ```
758
 
 
841
 
842
  ## License
843
 
844
+ This project is released under the MIT License. It uses the pre-trained Qwen3 as a component, which is licensed under the apache-2.0 License.
845
 
846
  ## Citation
847
 
 
854
  journal={arXiv preprint arXiv:2508.18265},
855
  year={2025}
856
  }
857
+ @article{zhu2025internvl3,
858
+ title={Internvl3: Exploring advanced training and test-time recipes for open-source multimodal models},
859
+ author={Zhu, Jinguo and Wang, Weiyun and Chen, Zhe and Liu, Zhaoyang and Ye, Shenglong and Gu, Lixin and Tian, Hao and Duan, Yuchen and Su, Weijie and Shao, Jie and others},
860
+ journal={arXiv preprint arXiv:2504.10479},
861
+ year={2025}
862
+ }
863
+ @article{chen2024expanding,
864
+ title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
865
+ author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
866
+ journal={arXiv preprint arXiv:2412.05271},
867
+ year={2024}
868
+ }
869
+ @article{wang2024mpo,
870
+ title={Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization},
871
+ author={Wang, Weiyun and Chen, Zhe and Wang, Wenhai and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Zhu, Jinguo and Zhu, Xizhou and Lu, Lewei and Qiao, Yu and Dai, Jifeng},
872
+ journal={arXiv preprint arXiv:2411.10442},
873
+ year={2024}
874
+ }
875
+ @article{gao2024mini,
876
+ title={Mini-InternVL: a flexible-transfer pocket multi-modal model with 5\% parameters and 90\% performance},
877
+ author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
878
+ journal={Visual Intelligence},
879
+ volume={2},
880
+ number={1},
881
+ pages={1--17},
882
+ year={2024},
883
+ publisher={Springer}
884
+ }
885
+ @article{chen2024far,
886
+ title={How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites},
887
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
888
+ journal={Science China Information Sciences},
889
+ volume={67},
890
+ number={12},
891
+ pages={220101},
892
+ year={2024},
893
+ publisher={Springer}
894
+ }
895
+ @inproceedings{chen2024internvl,
896
+ title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
897
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
898
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
899
+ pages={24185--24198},
900
+ year={2024}
901
+ }
902
  ```
903
+
904
+ ## Acknowledgement
905
+
906
+ InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!
907
+
908
+ ______________________________________________________________________
909
+
910
+ Scan the following QR Code, join our WeChat group.
911
+
912
+ <p align="center"><img width="300" alt="image" src="https://github.com/user-attachments/assets/f776df09-ebba-4fd5-80c2-fec4ff1518be"></p>