Weiyun1025 commited on
Commit
a498436
·
verified ·
1 Parent(s): ed5d600

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +353 -0
  3. added_tokens.json +37 -0
  4. config.json +210 -0
  5. configuration.json +1 -0
  6. configuration_intern_vit.py +119 -0
  7. configuration_internvl_chat.py +115 -0
  8. conversation.py +391 -0
  9. generation_config.json +4 -0
  10. layer-0-ep-0-of-1.safetensors +3 -0
  11. layer-1-ep-0-of-1.safetensors +3 -0
  12. layer-10-ep-0-of-1.safetensors +3 -0
  13. layer-11-ep-0-of-1.safetensors +3 -0
  14. layer-12-ep-0-of-1.safetensors +3 -0
  15. layer-13-ep-0-of-1.safetensors +3 -0
  16. layer-14-ep-0-of-1.safetensors +3 -0
  17. layer-15-ep-0-of-1.safetensors +3 -0
  18. layer-16-ep-0-of-1.safetensors +3 -0
  19. layer-17-ep-0-of-1.safetensors +3 -0
  20. layer-18-ep-0-of-1.safetensors +3 -0
  21. layer-19-ep-0-of-1.safetensors +3 -0
  22. layer-2-ep-0-of-1.safetensors +3 -0
  23. layer-20-ep-0-of-1.safetensors +3 -0
  24. layer-21-ep-0-of-1.safetensors +3 -0
  25. layer-22-ep-0-of-1.safetensors +3 -0
  26. layer-23-ep-0-of-1.safetensors +3 -0
  27. layer-24-ep-0-of-1.safetensors +3 -0
  28. layer-25-ep-0-of-1.safetensors +3 -0
  29. layer-26-ep-0-of-1.safetensors +3 -0
  30. layer-27-ep-0-of-1.safetensors +3 -0
  31. layer-28-ep-0-of-1.safetensors +3 -0
  32. layer-29-ep-0-of-1.safetensors +3 -0
  33. layer-3-ep-0-of-1.safetensors +3 -0
  34. layer-30-ep-0-of-1.safetensors +3 -0
  35. layer-31-ep-0-of-1.safetensors +3 -0
  36. layer-32-ep-0-of-1.safetensors +3 -0
  37. layer-33-ep-0-of-1.safetensors +3 -0
  38. layer-34-ep-0-of-1.safetensors +3 -0
  39. layer-35-ep-0-of-1.safetensors +3 -0
  40. layer-36-ep-0-of-1.safetensors +3 -0
  41. layer-37-ep-0-of-1.safetensors +3 -0
  42. layer-38-ep-0-of-1.safetensors +3 -0
  43. layer-39-ep-0-of-1.safetensors +3 -0
  44. layer-4-ep-0-of-1.safetensors +3 -0
  45. layer-40-ep-0-of-1.safetensors +3 -0
  46. layer-41-ep-0-of-1.safetensors +3 -0
  47. layer-42-ep-0-of-1.safetensors +3 -0
  48. layer-43-ep-0-of-1.safetensors +3 -0
  49. layer-44-ep-0-of-1.safetensors +3 -0
  50. layer-45-ep-0-of-1.safetensors +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ license_link: https://huggingface.co/Qwen/Qwen3-235B-A22B/blob/main/LICENSE
5
+ pipeline_tag: text-generation
6
+ ---
7
+
8
+ # Qwen3-235B-A22B
9
+ <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
10
+ <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
11
+ </a>
12
+
13
+ ## Qwen3 Highlights
14
+
15
+ Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:
16
+
17
+ - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios.
18
+ - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
19
+ - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
20
+ - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
21
+ - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**.
22
+
23
+ ## Model Overview
24
+
25
+ **Qwen3-235B-A22B** has the following features:
26
+ - Type: Causal Language Models
27
+ - Training Stage: Pretraining & Post-training
28
+ - Number of Parameters: 235B in total and 22B activated
29
+ - Number of Paramaters (Non-Embedding): 234B
30
+ - Number of Layers: 94
31
+ - Number of Attention Heads (GQA): 64 for Q and 4 for KV
32
+ - Number of Experts: 128
33
+ - Number of Activated Experts: 8
34
+ - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts).
35
+
36
+ For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
37
+
38
+ ## Quickstart
39
+
40
+ The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
41
+
42
+ With `transformers<4.51.0`, you will encounter the following error:
43
+ ```
44
+ KeyError: 'qwen3_moe'
45
+ ```
46
+
47
+ The following contains a code snippet illustrating how to use the model generate content based on given inputs.
48
+ ```python
49
+ from transformers import AutoModelForCausalLM, AutoTokenizer
50
+
51
+ model_name = "Qwen/Qwen3-235B-A22B"
52
+
53
+ # load the tokenizer and the model
54
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
55
+ model = AutoModelForCausalLM.from_pretrained(
56
+ model_name,
57
+ torch_dtype="auto",
58
+ device_map="auto"
59
+ )
60
+
61
+ # prepare the model input
62
+ prompt = "Give me a short introduction to large language model."
63
+ messages = [
64
+ {"role": "user", "content": prompt}
65
+ ]
66
+ text = tokenizer.apply_chat_template(
67
+ messages,
68
+ tokenize=False,
69
+ add_generation_prompt=True,
70
+ enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
71
+ )
72
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
73
+
74
+ # conduct text completion
75
+ generated_ids = model.generate(
76
+ **model_inputs,
77
+ max_new_tokens=32768
78
+ )
79
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
80
+
81
+ # parsing thinking content
82
+ try:
83
+ # rindex finding 151668 (</think>)
84
+ index = len(output_ids) - output_ids[::-1].index(151668)
85
+ except ValueError:
86
+ index = 0
87
+
88
+ thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
89
+ content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
90
+
91
+ print("thinking content:", thinking_content)
92
+ print("content:", content)
93
+ ```
94
+
95
+ For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
96
+ - SGLang:
97
+ ```shell
98
+ python -m sglang.launch_server --model-path Qwen/Qwen3-235B-A22B --reasoning-parser qwen3 --tp 8
99
+ ```
100
+ - vLLM:
101
+ ```shell
102
+ vllm serve Qwen/Qwen3-235B-A22B --enable-reasoning --reasoning-parser deepseek_r1
103
+ ```
104
+
105
+ For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
106
+
107
+ ## Switching Between Thinking and Non-Thinking Mode
108
+
109
+ > [!TIP]
110
+ > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM.
111
+ > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users.
112
+
113
+ ### `enable_thinking=True`
114
+
115
+ By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode.
116
+
117
+ ```python
118
+ text = tokenizer.apply_chat_template(
119
+ messages,
120
+ tokenize=False,
121
+ add_generation_prompt=True,
122
+ enable_thinking=True # True is the default value for enable_thinking
123
+ )
124
+ ```
125
+
126
+ In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response.
127
+
128
+ > [!NOTE]
129
+ > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
130
+
131
+
132
+ ### `enable_thinking=False`
133
+
134
+ We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency.
135
+
136
+ ```python
137
+ text = tokenizer.apply_chat_template(
138
+ messages,
139
+ tokenize=False,
140
+ add_generation_prompt=True,
141
+ enable_thinking=False # Setting enable_thinking=False disables thinking mode
142
+ )
143
+ ```
144
+
145
+ In this mode, the model will not generate any think content and will not include a `<think>...</think>` block.
146
+
147
+ > [!NOTE]
148
+ > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
149
+
150
+ ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input
151
+
152
+ We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations.
153
+
154
+ Here is an example of a multi-turn conversation:
155
+
156
+ ```python
157
+ from transformers import AutoModelForCausalLM, AutoTokenizer
158
+
159
+ class QwenChatbot:
160
+ def __init__(self, model_name="Qwen/Qwen3-235B-A22B"):
161
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
162
+ self.model = AutoModelForCausalLM.from_pretrained(model_name)
163
+ self.history = []
164
+
165
+ def generate_response(self, user_input):
166
+ messages = self.history + [{"role": "user", "content": user_input}]
167
+
168
+ text = self.tokenizer.apply_chat_template(
169
+ messages,
170
+ tokenize=False,
171
+ add_generation_prompt=True
172
+ )
173
+
174
+ inputs = self.tokenizer(text, return_tensors="pt")
175
+ response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
176
+ response = self.tokenizer.decode(response_ids, skip_special_tokens=True)
177
+
178
+ # Update history
179
+ self.history.append({"role": "user", "content": user_input})
180
+ self.history.append({"role": "assistant", "content": response})
181
+
182
+ return response
183
+
184
+ # Example Usage
185
+ if __name__ == "__main__":
186
+ chatbot = QwenChatbot()
187
+
188
+ # First input (without /think or /no_think tags, thinking mode is enabled by default)
189
+ user_input_1 = "How many r's in strawberries?"
190
+ print(f"User: {user_input_1}")
191
+ response_1 = chatbot.generate_response(user_input_1)
192
+ print(f"Bot: {response_1}")
193
+ print("----------------------")
194
+
195
+ # Second input with /no_think
196
+ user_input_2 = "Then, how many r's in blueberries? /no_think"
197
+ print(f"User: {user_input_2}")
198
+ response_2 = chatbot.generate_response(user_input_2)
199
+ print(f"Bot: {response_2}")
200
+ print("----------------------")
201
+
202
+ # Third input with /think
203
+ user_input_3 = "Really? /think"
204
+ print(f"User: {user_input_3}")
205
+ response_3 = chatbot.generate_response(user_input_3)
206
+ print(f"Bot: {response_3}")
207
+ ```
208
+
209
+ > [!NOTE]
210
+ > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled.
211
+ > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block.
212
+
213
+ ## Agentic Use
214
+
215
+ Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
216
+
217
+ To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
218
+ ```python
219
+ from qwen_agent.agents import Assistant
220
+
221
+ # Define LLM
222
+ llm_cfg = {
223
+ 'model': 'Qwen3-235B-A22B',
224
+
225
+ # Use the endpoint provided by Alibaba Model Studio:
226
+ # 'model_type': 'qwen_dashscope',
227
+ # 'api_key': os.getenv('DASHSCOPE_API_KEY'),
228
+
229
+ # Use a custom endpoint compatible with OpenAI API:
230
+ 'model_server': 'http://localhost:8000/v1', # api_base
231
+ 'api_key': 'EMPTY',
232
+
233
+ # Other parameters:
234
+ # 'generate_cfg': {
235
+ # # Add: When the response content is `<think>this is the thought</think>this is the answer;
236
+ # # Do not add: When the response has been separated by reasoning_content and content.
237
+ # 'thought_in_content': True,
238
+ # },
239
+ }
240
+
241
+ # Define Tools
242
+ tools = [
243
+ {'mcpServers': { # You can specify the MCP configuration file
244
+ 'time': {
245
+ 'command': 'uvx',
246
+ 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
247
+ },
248
+ "fetch": {
249
+ "command": "uvx",
250
+ "args": ["mcp-server-fetch"]
251
+ }
252
+ }
253
+ },
254
+ 'code_interpreter', # Built-in tools
255
+ ]
256
+
257
+ # Define Agent
258
+ bot = Assistant(llm=llm_cfg, function_list=tools)
259
+
260
+ # Streaming generation
261
+ messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
262
+ for responses in bot.run(messages=messages):
263
+ pass
264
+ print(responses)
265
+ ```
266
+
267
+ ## Processing Long Texts
268
+
269
+ Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method.
270
+
271
+ YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks:
272
+
273
+ - Modifying the model files:
274
+ In the `config.json` file, add the `rope_scaling` fields:
275
+ ```json
276
+ {
277
+ ...,
278
+ "rope_scaling": {
279
+ "rope_type": "yarn",
280
+ "factor": 4.0,
281
+ "original_max_position_embeddings": 32768
282
+ }
283
+ }
284
+ ```
285
+ For `llama.cpp`, you need to regenerate the GGUF file after the modification.
286
+
287
+ - Passing command line arguments:
288
+
289
+ For `vllm`, you can use
290
+ ```shell
291
+ vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072
292
+ ```
293
+
294
+ For `sglang`, you can use
295
+ ```shell
296
+ python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}'
297
+ ```
298
+
299
+ For `llama-server` from `llama.cpp`, you can use
300
+ ```shell
301
+ llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768
302
+ ```
303
+
304
+ > [!IMPORTANT]
305
+ > If you encounter the following warning
306
+ > ```
307
+ > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'}
308
+ > ```
309
+ > please upgrade `transformers>=4.51.0`.
310
+
311
+ > [!NOTE]
312
+ > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.**
313
+ > We advise adding the `rope_scaling` configuration only when processing long contexts is required.
314
+ > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0.
315
+
316
+ > [!NOTE]
317
+ > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance.
318
+
319
+ > [!TIP]
320
+ > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed.
321
+
322
+ ## Best Practices
323
+
324
+ To achieve optimal performance, we recommend the following settings:
325
+
326
+ 1. **Sampling Parameters**:
327
+ - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions.
328
+ - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
329
+ - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
330
+
331
+ 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.
332
+
333
+ 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
334
+ - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
335
+ - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
336
+
337
+ 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.
338
+
339
+ ### Citation
340
+
341
+ If you find our work helpful, feel free to give us a cite.
342
+
343
+ ```
344
+ @misc{qwen3technicalreport,
345
+ title={Qwen3 Technical Report},
346
+ author={Qwen Team},
347
+ year={2025},
348
+ eprint={2505.09388},
349
+ archivePrefix={arXiv},
350
+ primaryClass={cs.CL},
351
+ url={https://arxiv.org/abs/2505.09388},
352
+ }
353
+ ```
added_tokens.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151677,
3
+ "</img>": 151670,
4
+ "</quad>": 151673,
5
+ "</ref>": 151675,
6
+ "</think>": 151668,
7
+ "</tool_call>": 151658,
8
+ "</tool_response>": 151666,
9
+ "<IMG_CONTEXT>": 151671,
10
+ "<box>": 151676,
11
+ "<img>": 151669,
12
+ "<quad>": 151672,
13
+ "<ref>": 151674,
14
+ "<think>": 151667,
15
+ "<tool_call>": 151657,
16
+ "<tool_response>": 151665,
17
+ "<|box_end|>": 151649,
18
+ "<|box_start|>": 151648,
19
+ "<|endoftext|>": 151643,
20
+ "<|file_sep|>": 151664,
21
+ "<|fim_middle|>": 151660,
22
+ "<|fim_pad|>": 151662,
23
+ "<|fim_prefix|>": 151659,
24
+ "<|fim_suffix|>": 151661,
25
+ "<|im_end|>": 151645,
26
+ "<|im_start|>": 151644,
27
+ "<|image_pad|>": 151655,
28
+ "<|object_ref_end|>": 151647,
29
+ "<|object_ref_start|>": 151646,
30
+ "<|quad_end|>": 151651,
31
+ "<|quad_start|>": 151650,
32
+ "<|repo_name|>": 151663,
33
+ "<|video_pad|>": 151656,
34
+ "<|vision_end|>": 151653,
35
+ "<|vision_pad|>": 151654,
36
+ "<|vision_start|>": 151652
37
+ }
config.json ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "InternVLChatModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
8
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
9
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
10
+ },
11
+ "downsample_ratio": 0.5,
12
+ "dynamic_image_size": true,
13
+ "force_image_size": 448,
14
+ "llm_config": {
15
+ "_attn_implementation_autoset": false,
16
+ "_name_or_path": "/root/codespace/checkpoints/Qwen3-235B-A22B",
17
+ "add_cross_attention": false,
18
+ "architectures": [
19
+ "Qwen3MoeForCausalLM"
20
+ ],
21
+ "attention_bias": false,
22
+ "attention_dropout": 0.0,
23
+ "bad_words_ids": null,
24
+ "begin_suppress_tokens": null,
25
+ "bos_token_id": 151643,
26
+ "chunk_size_feed_forward": 0,
27
+ "cross_attention_hidden_size": null,
28
+ "decoder_sparse_step": 1,
29
+ "decoder_start_token_id": null,
30
+ "diversity_penalty": 0.0,
31
+ "do_sample": false,
32
+ "early_stopping": false,
33
+ "encoder_no_repeat_ngram_size": 0,
34
+ "eos_token_id": 151645,
35
+ "exponential_decay_length_penalty": null,
36
+ "finetuning_task": null,
37
+ "forced_bos_token_id": null,
38
+ "forced_eos_token_id": null,
39
+ "head_dim": 128,
40
+ "hidden_act": "silu",
41
+ "hidden_size": 4096,
42
+ "id2label": {
43
+ "0": "LABEL_0",
44
+ "1": "LABEL_1"
45
+ },
46
+ "initializer_range": 0.02,
47
+ "intermediate_size": 12288,
48
+ "is_decoder": false,
49
+ "is_encoder_decoder": false,
50
+ "label2id": {
51
+ "LABEL_0": 0,
52
+ "LABEL_1": 1
53
+ },
54
+ "length_penalty": 1.0,
55
+ "max_length": 20,
56
+ "max_position_embeddings": 40960,
57
+ "max_window_layers": 94,
58
+ "min_length": 0,
59
+ "mlp_only_layers": [],
60
+ "model_type": "qwen3_moe",
61
+ "moe_intermediate_size": 1536,
62
+ "no_repeat_ngram_size": 0,
63
+ "norm_topk_prob": true,
64
+ "num_attention_heads": 64,
65
+ "num_beam_groups": 1,
66
+ "num_beams": 1,
67
+ "num_experts": 128,
68
+ "num_experts_per_tok": 8,
69
+ "num_hidden_layers": 94,
70
+ "num_key_value_heads": 4,
71
+ "num_return_sequences": 1,
72
+ "output_attentions": false,
73
+ "output_hidden_states": false,
74
+ "output_router_logits": false,
75
+ "output_scores": false,
76
+ "pad_token_id": null,
77
+ "prefix": null,
78
+ "problem_type": null,
79
+ "pruned_heads": {},
80
+ "remove_invalid_values": false,
81
+ "repetition_penalty": 1.0,
82
+ "return_dict": true,
83
+ "return_dict_in_generate": false,
84
+ "rms_norm_eps": 1e-06,
85
+ "rope_scaling": null,
86
+ "rope_theta": 1000000.0,
87
+ "router_aux_loss_coef": 0.001,
88
+ "sep_token_id": null,
89
+ "sliding_window": null,
90
+ "suppress_tokens": null,
91
+ "task_specific_params": null,
92
+ "temperature": 1.0,
93
+ "tf_legacy_loss": false,
94
+ "tie_encoder_decoder": false,
95
+ "tie_word_embeddings": false,
96
+ "tokenizer_class": null,
97
+ "top_k": 50,
98
+ "top_p": 1.0,
99
+ "torch_dtype": "bfloat16",
100
+ "torchscript": false,
101
+ "transformers_version": "4.51.1",
102
+ "typical_p": 1.0,
103
+ "use_bfloat16": false,
104
+ "use_cache": true,
105
+ "use_sliding_window": false,
106
+ "vocab_size": 151936
107
+ },
108
+ "max_dynamic_patch": 12,
109
+ "min_dynamic_patch": 1,
110
+ "model_type": "internvl_chat",
111
+ "pad2square": false,
112
+ "ps_version": "v2",
113
+ "select_layer": -1,
114
+ "template": "internvl2_5",
115
+ "tie_word_embeddings": false,
116
+ "torch_dtype": "bfloat16",
117
+ "transformers_version": null,
118
+ "use_backbone_lora": 0,
119
+ "use_llm_lora": 0,
120
+ "use_thumbnail": true,
121
+ "vision_config": {
122
+ "_attn_implementation_autoset": false,
123
+ "_name_or_path": "OpenGVLab/InternViT-6B-448px-V2_5",
124
+ "add_cross_attention": false,
125
+ "architectures": [
126
+ "InternVisionModel"
127
+ ],
128
+ "attention_dropout": 0.0,
129
+ "auto_map": {
130
+ "AutoConfig": "configuration_intern_vit.InternVisionConfig",
131
+ "AutoModel": "modeling_intern_vit.InternVisionModel"
132
+ },
133
+ "bad_words_ids": null,
134
+ "begin_suppress_tokens": null,
135
+ "bos_token_id": null,
136
+ "chunk_size_feed_forward": 0,
137
+ "cross_attention_hidden_size": null,
138
+ "decoder_start_token_id": null,
139
+ "diversity_penalty": 0.0,
140
+ "do_sample": false,
141
+ "drop_path_rate": 0.1,
142
+ "dropout": 0.0,
143
+ "early_stopping": false,
144
+ "encoder_no_repeat_ngram_size": 0,
145
+ "eos_token_id": null,
146
+ "exponential_decay_length_penalty": null,
147
+ "finetuning_task": null,
148
+ "forced_bos_token_id": null,
149
+ "forced_eos_token_id": null,
150
+ "hidden_act": "gelu",
151
+ "hidden_size": 3200,
152
+ "id2label": {
153
+ "0": "LABEL_0",
154
+ "1": "LABEL_1"
155
+ },
156
+ "image_size": 448,
157
+ "initializer_factor": 0.1,
158
+ "initializer_range": 1e-10,
159
+ "intermediate_size": 12800,
160
+ "is_decoder": false,
161
+ "is_encoder_decoder": false,
162
+ "label2id": {
163
+ "LABEL_0": 0,
164
+ "LABEL_1": 1
165
+ },
166
+ "layer_norm_eps": 1e-06,
167
+ "length_penalty": 1.0,
168
+ "max_length": 20,
169
+ "min_length": 0,
170
+ "model_type": "intern_vit_6b",
171
+ "no_repeat_ngram_size": 0,
172
+ "norm_type": "rms_norm",
173
+ "num_attention_heads": 25,
174
+ "num_beam_groups": 1,
175
+ "num_beams": 1,
176
+ "num_channels": 3,
177
+ "num_hidden_layers": 45,
178
+ "num_return_sequences": 1,
179
+ "output_attentions": false,
180
+ "output_hidden_states": false,
181
+ "output_scores": false,
182
+ "pad_token_id": null,
183
+ "patch_size": 14,
184
+ "prefix": null,
185
+ "problem_type": null,
186
+ "pruned_heads": {},
187
+ "qk_normalization": true,
188
+ "qkv_bias": false,
189
+ "remove_invalid_values": false,
190
+ "repetition_penalty": 1.0,
191
+ "return_dict": true,
192
+ "return_dict_in_generate": false,
193
+ "sep_token_id": null,
194
+ "suppress_tokens": null,
195
+ "task_specific_params": null,
196
+ "temperature": 1.0,
197
+ "tf_legacy_loss": false,
198
+ "tie_encoder_decoder": false,
199
+ "tie_word_embeddings": true,
200
+ "tokenizer_class": null,
201
+ "top_k": 50,
202
+ "top_p": 1.0,
203
+ "torch_dtype": "bfloat16",
204
+ "torchscript": false,
205
+ "transformers_version": "4.51.1",
206
+ "typical_p": 1.0,
207
+ "use_bfloat16": true,
208
+ "use_flash_attn": true
209
+ }
210
+ }
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"framework": "pytorch", "task": "others", "allow_remote": true}
configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
configuration_internvl_chat.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+ from typing import Dict, Any, Optional
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+
18
+ class InternVLChatConfig(PretrainedConfig):
19
+ model_type = 'internvl_chat'
20
+ is_composition = True
21
+
22
+ def __init__(
23
+ self,
24
+ vision_config: Optional[Dict[str, Any]] = None,
25
+ llm_config: Optional[Dict[str, Any]] = None,
26
+ use_backbone_lora=0,
27
+ use_llm_lora=0,
28
+ select_layer=-1,
29
+ force_image_size=None,
30
+ downsample_ratio=0.5,
31
+ template=None,
32
+ dynamic_image_size=False,
33
+ use_thumbnail=False,
34
+ ps_version="v1",
35
+ min_dynamic_patch=1,
36
+ max_dynamic_patch=6,
37
+ **kwargs,
38
+ ):
39
+ super().__init__(**kwargs)
40
+
41
+ if vision_config is None:
42
+ vision_config = {'architectures': ['InternVisionModel']}
43
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
44
+
45
+ if llm_config is None:
46
+ llm_config = {'architectures': ['Qwen2ForCausalLM']}
47
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
48
+ assert 'architectures' in llm_config, "Should specify architecture in llm_config"
49
+
50
+ if isinstance(vision_config, dict):
51
+ self.vision_config = InternVisionConfig(**vision_config)
52
+ else:
53
+ self.vision_config = vision_config
54
+
55
+ if isinstance(llm_config, dict):
56
+ architecture: str = llm_config['architectures'][0]
57
+ if architecture == 'LlamaForCausalLM':
58
+ from transformers import LlamaConfig
59
+ self.llm_config = LlamaConfig(**llm_config)
60
+ elif architecture == 'Qwen2ForCausalLM':
61
+ from transformers import Qwen2Config
62
+ self.llm_config = Qwen2Config(**llm_config)
63
+ elif architecture == 'Qwen3MoeForCausalLM':
64
+ from transformers import Qwen3MoeConfig
65
+ self.llm_config = Qwen3MoeConfig(**llm_config)
66
+ elif architecture == 'Qwen3ForCausalLM':
67
+ from transformers import Qwen3Config
68
+ self.llm_config = Qwen3Config(**llm_config)
69
+ else:
70
+ raise ValueError('Unsupported architecture: {}'.format(architecture))
71
+ else:
72
+ self.llm_config = llm_config
73
+
74
+ self.use_backbone_lora = use_backbone_lora
75
+ self.use_llm_lora = use_llm_lora
76
+ self.select_layer = select_layer
77
+ self.force_image_size = force_image_size
78
+ self.downsample_ratio = downsample_ratio
79
+ self.template = template
80
+ self.dynamic_image_size = dynamic_image_size
81
+ self.use_thumbnail = use_thumbnail
82
+ self.ps_version = ps_version # pixel shuffle version
83
+ self.min_dynamic_patch = min_dynamic_patch
84
+ self.max_dynamic_patch = max_dynamic_patch
85
+ self.tie_word_embeddings = self.llm_config.tie_word_embeddings
86
+
87
+ logger.info(f'vision_select_layer: {self.select_layer}')
88
+ logger.info(f'ps_version: {self.ps_version}')
89
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
90
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
91
+
92
+ def to_dict(self):
93
+ """
94
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
95
+
96
+ Returns:
97
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
98
+ """
99
+ output = copy.deepcopy(self.__dict__)
100
+ output['vision_config'] = self.vision_config.to_dict()
101
+ output['llm_config'] = self.llm_config.to_dict()
102
+ output['model_type'] = self.__class__.model_type
103
+ output['use_backbone_lora'] = self.use_backbone_lora
104
+ output['use_llm_lora'] = self.use_llm_lora
105
+ output['select_layer'] = self.select_layer
106
+ output['force_image_size'] = self.force_image_size
107
+ output['downsample_ratio'] = self.downsample_ratio
108
+ output['template'] = self.template
109
+ output['dynamic_image_size'] = self.dynamic_image_size
110
+ output['use_thumbnail'] = self.use_thumbnail
111
+ output['ps_version'] = self.ps_version
112
+ output['min_dynamic_patch'] = self.min_dynamic_patch
113
+ output['max_dynamic_patch'] = self.max_dynamic_patch
114
+
115
+ return output
conversation.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+
7
+ Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
8
+ """
9
+
10
+ import dataclasses
11
+ from enum import IntEnum, auto
12
+ from typing import Dict, List, Tuple, Union
13
+
14
+
15
+ class SeparatorStyle(IntEnum):
16
+ """Separator styles."""
17
+
18
+ ADD_COLON_SINGLE = auto()
19
+ ADD_COLON_TWO = auto()
20
+ ADD_COLON_SPACE_SINGLE = auto()
21
+ NO_COLON_SINGLE = auto()
22
+ NO_COLON_TWO = auto()
23
+ ADD_NEW_LINE_SINGLE = auto()
24
+ LLAMA2 = auto()
25
+ CHATGLM = auto()
26
+ CHATML = auto()
27
+ CHATINTERN = auto()
28
+ DOLLY = auto()
29
+ RWKV = auto()
30
+ PHOENIX = auto()
31
+ ROBIN = auto()
32
+ FALCON_CHAT = auto()
33
+ CHATGLM3 = auto()
34
+ INTERNVL_ZH = auto()
35
+ MPT = auto()
36
+
37
+
38
+ @dataclasses.dataclass
39
+ class Conversation:
40
+ """A class that manages prompt templates and keeps all conversation history."""
41
+
42
+ # The name of this template
43
+ name: str
44
+ # The template of the system prompt
45
+ system_template: str = '{system_message}'
46
+ # The system message
47
+ system_message: str = ''
48
+ # The names of two roles
49
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
50
+ # All messages. Each item is (role, message).
51
+ messages: List[List[str]] = ()
52
+ # The number of few shot examples
53
+ offset: int = 0
54
+ # The separator style and configurations
55
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
56
+ sep: str = '\n'
57
+ sep2: str = None
58
+ # Stop criteria (the default one is EOS token)
59
+ stop_str: Union[str, List[str]] = None
60
+ # Stops generation if meeting any token in this list
61
+ stop_token_ids: List[int] = None
62
+
63
+ def get_prompt(self) -> str:
64
+ """Get the prompt for generation."""
65
+ system_prompt = self.system_template.format(system_message=self.system_message)
66
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
67
+ ret = system_prompt + self.sep
68
+ for role, message in self.messages:
69
+ if message:
70
+ ret += role + ': ' + message + self.sep
71
+ else:
72
+ ret += role + ':'
73
+ return ret
74
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
75
+ seps = [self.sep, self.sep2]
76
+ ret = system_prompt + seps[0]
77
+ for i, (role, message) in enumerate(self.messages):
78
+ if message:
79
+ ret += role + ': ' + message + seps[i % 2]
80
+ else:
81
+ ret += role + ':'
82
+ return ret
83
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
84
+ ret = system_prompt + self.sep
85
+ for role, message in self.messages:
86
+ if message:
87
+ ret += role + ': ' + message + self.sep
88
+ else:
89
+ ret += role + ': ' # must be end with a space
90
+ return ret
91
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
92
+ ret = '' if system_prompt == '' else system_prompt + self.sep
93
+ for role, message in self.messages:
94
+ if message:
95
+ ret += role + '\n' + message + self.sep
96
+ else:
97
+ ret += role + '\n'
98
+ return ret
99
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
100
+ ret = system_prompt
101
+ for role, message in self.messages:
102
+ if message:
103
+ ret += role + message + self.sep
104
+ else:
105
+ ret += role
106
+ return ret
107
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
108
+ seps = [self.sep, self.sep2]
109
+ ret = system_prompt
110
+ for i, (role, message) in enumerate(self.messages):
111
+ if message:
112
+ ret += role + message + seps[i % 2]
113
+ else:
114
+ ret += role
115
+ return ret
116
+ elif self.sep_style == SeparatorStyle.RWKV:
117
+ ret = system_prompt
118
+ for i, (role, message) in enumerate(self.messages):
119
+ if message:
120
+ ret += (
121
+ role
122
+ + ': '
123
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
124
+ )
125
+ ret += '\n\n'
126
+ else:
127
+ ret += role + ':'
128
+ return ret
129
+ elif self.sep_style == SeparatorStyle.LLAMA2:
130
+ seps = [self.sep, self.sep2]
131
+ if self.system_message:
132
+ ret = system_prompt
133
+ else:
134
+ ret = '[INST] '
135
+ for i, (role, message) in enumerate(self.messages):
136
+ tag = self.roles[i % 2]
137
+ if message:
138
+ if i == 0:
139
+ ret += message + ' '
140
+ else:
141
+ ret += tag + ' ' + message + seps[i % 2]
142
+ else:
143
+ ret += tag
144
+ return ret
145
+ elif self.sep_style == SeparatorStyle.CHATGLM:
146
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
147
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
148
+ round_add_n = 1 if self.name == 'chatglm2' else 0
149
+ if system_prompt:
150
+ ret = system_prompt + self.sep
151
+ else:
152
+ ret = ''
153
+
154
+ for i, (role, message) in enumerate(self.messages):
155
+ if i % 2 == 0:
156
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
157
+
158
+ if message:
159
+ ret += f'{role}:{message}{self.sep}'
160
+ else:
161
+ ret += f'{role}:'
162
+ return ret
163
+ elif self.sep_style == SeparatorStyle.CHATML:
164
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
165
+ for role, message in self.messages:
166
+ if message:
167
+ ret += role + '\n' + message + self.sep + '\n'
168
+ else:
169
+ ret += role + '\n'
170
+ return ret
171
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
172
+ ret = ''
173
+ if self.system_message:
174
+ ret += system_prompt
175
+ for role, message in self.messages:
176
+ if message:
177
+ ret += role + '\n' + ' ' + message
178
+ else:
179
+ ret += role
180
+ return ret
181
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
182
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
183
+ seps = [self.sep, self.sep2]
184
+ ret = system_prompt
185
+ for i, (role, message) in enumerate(self.messages):
186
+ # if i % 2 == 0:
187
+ # ret += "<s>"
188
+ if message:
189
+ ret += role + ':' + message + seps[i % 2] + '\n'
190
+ else:
191
+ ret += role + ':'
192
+ return ret
193
+ elif self.sep_style == SeparatorStyle.DOLLY:
194
+ seps = [self.sep, self.sep2]
195
+ ret = system_prompt
196
+ for i, (role, message) in enumerate(self.messages):
197
+ if message:
198
+ ret += role + ':\n' + message + seps[i % 2]
199
+ if i % 2 == 1:
200
+ ret += '\n\n'
201
+ else:
202
+ ret += role + ':\n'
203
+ return ret
204
+ elif self.sep_style == SeparatorStyle.PHOENIX:
205
+ ret = system_prompt
206
+ for role, message in self.messages:
207
+ if message:
208
+ ret += role + ': ' + '<s>' + message + '</s>'
209
+ else:
210
+ ret += role + ': ' + '<s>'
211
+ return ret
212
+ elif self.sep_style == SeparatorStyle.ROBIN:
213
+ ret = system_prompt + self.sep
214
+ for role, message in self.messages:
215
+ if message:
216
+ ret += role + ':\n' + message + self.sep
217
+ else:
218
+ ret += role + ':\n'
219
+ return ret
220
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
221
+ ret = ''
222
+ if self.system_message:
223
+ ret += system_prompt + self.sep
224
+ for role, message in self.messages:
225
+ if message:
226
+ ret += role + ': ' + message + self.sep
227
+ else:
228
+ ret += role + ':'
229
+
230
+ return ret
231
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
232
+ seps = [self.sep, self.sep2]
233
+ ret = self.system_message + seps[0]
234
+ for i, (role, message) in enumerate(self.messages):
235
+ if message:
236
+ ret += role + ': ' + message + seps[i % 2]
237
+ else:
238
+ ret += role + ':'
239
+ return ret
240
+ elif self.sep_style == SeparatorStyle.MPT:
241
+ ret = system_prompt + self.sep
242
+ for role, message in self.messages:
243
+ if message:
244
+ if type(message) is tuple:
245
+ message, _, _ = message
246
+ ret += role + message + self.sep
247
+ else:
248
+ ret += role
249
+ return ret
250
+ else:
251
+ raise ValueError(f'Invalid style: {self.sep_style}')
252
+
253
+ def set_system_message(self, system_message: str):
254
+ """Set the system message."""
255
+ self.system_message = system_message
256
+
257
+ def append_message(self, role: str, message: str):
258
+ """Append a new message."""
259
+ self.messages.append([role, message])
260
+
261
+ def update_last_message(self, message: str):
262
+ """Update the last output.
263
+
264
+ The last message is typically set to be None when constructing the prompt,
265
+ so we need to update it in-place after getting the response from a model.
266
+ """
267
+ self.messages[-1][1] = message
268
+
269
+ def to_gradio_chatbot(self):
270
+ """Convert the conversation to gradio chatbot format."""
271
+ ret = []
272
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
273
+ if i % 2 == 0:
274
+ ret.append([msg, None])
275
+ else:
276
+ ret[-1][-1] = msg
277
+ return ret
278
+
279
+ def to_openai_api_messages(self):
280
+ """Convert the conversation to OpenAI chat completion format."""
281
+ ret = [{'role': 'system', 'content': self.system_message}]
282
+
283
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
284
+ if i % 2 == 0:
285
+ ret.append({'role': 'user', 'content': msg})
286
+ else:
287
+ if msg is not None:
288
+ ret.append({'role': 'assistant', 'content': msg})
289
+ return ret
290
+
291
+ def copy(self):
292
+ return Conversation(
293
+ name=self.name,
294
+ system_template=self.system_template,
295
+ system_message=self.system_message,
296
+ roles=self.roles,
297
+ messages=[[x, y] for x, y in self.messages],
298
+ offset=self.offset,
299
+ sep_style=self.sep_style,
300
+ sep=self.sep,
301
+ sep2=self.sep2,
302
+ stop_str=self.stop_str,
303
+ stop_token_ids=self.stop_token_ids,
304
+ )
305
+
306
+ def dict(self):
307
+ return {
308
+ 'template_name': self.name,
309
+ 'system_message': self.system_message,
310
+ 'roles': self.roles,
311
+ 'messages': self.messages,
312
+ 'offset': self.offset,
313
+ }
314
+
315
+
316
+ # A global registry for all conversation templates
317
+ conv_templates: Dict[str, Conversation] = {}
318
+
319
+
320
+ def register_conv_template(template: Conversation, override: bool = False):
321
+ """Register a new conversation template."""
322
+ if not override:
323
+ assert (
324
+ template.name not in conv_templates
325
+ ), f'{template.name} has been registered.'
326
+
327
+ conv_templates[template.name] = template
328
+
329
+
330
+ def get_conv_template(name: str) -> Conversation:
331
+ """Get a conversation template."""
332
+ return conv_templates[name].copy()
333
+
334
+
335
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
336
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
337
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
338
+ # Therefore, they are completely equivalent during inference.
339
+ register_conv_template(
340
+ Conversation(
341
+ name='Hermes-2',
342
+ system_template='<|im_start|>system\n{system_message}',
343
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
344
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
345
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
346
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
347
+ sep_style=SeparatorStyle.MPT,
348
+ sep='<|im_end|>',
349
+ stop_str='<|endoftext|>',
350
+ )
351
+ )
352
+
353
+
354
+ register_conv_template(
355
+ Conversation(
356
+ name='internlm2-chat',
357
+ system_template='<|im_start|>system\n{system_message}',
358
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
359
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
360
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
361
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
362
+ sep_style=SeparatorStyle.MPT,
363
+ sep='<|im_end|>',
364
+ )
365
+ )
366
+
367
+
368
+ register_conv_template(
369
+ Conversation(
370
+ name='phi3-chat',
371
+ system_template='<|system|>\n{system_message}',
372
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
373
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
374
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
375
+ roles=('<|user|>\n', '<|assistant|>\n'),
376
+ sep_style=SeparatorStyle.MPT,
377
+ sep='<|end|>',
378
+ )
379
+ )
380
+
381
+
382
+ register_conv_template(
383
+ Conversation(
384
+ name='internvl2_5',
385
+ system_template='<|im_start|>system\n{system_message}',
386
+ system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
387
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
388
+ sep_style=SeparatorStyle.MPT,
389
+ sep='<|im_end|>\n',
390
+ )
391
+ )
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.52.1"
4
+ }
layer-0-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1c5964ec3bc0d9269e0900f12e15e8f3e885c472eb5d6999fa465f21928da72
3
+ size 4975564552
layer-1-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c62856d71fcafa428dc1270afb37b7777ac78af7448284ac2ca51a5b4d21d68
3
+ size 4975564552
layer-10-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bd0fa7bc3c228cd0522ea36f310f78afedad0998cfb7a4a3ba6584adaca3e25
3
+ size 4975564952
layer-11-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcd7f6f4c5fcb25a23eb32edaf226075c6b256d0c5248945ea810c49d8d516a8
3
+ size 4975564952
layer-12-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:063aed583e53fd4cf2cff704da0f083bf265ad8e88e80b417e3ef3a2af911fce
3
+ size 4975564952
layer-13-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad8363413511f1c82d94a796d6d3a0c93d5a2f48c7439cd18eb17124567dc811
3
+ size 4975564952
layer-14-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:901f6ee47fcbd810636be20dca0365d66257a1f72a055b721fee4ad0cb137738
3
+ size 4975564952
layer-15-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:341403e4368e395de88e3238c7cb5b5b65a992d54d2ca8dd1e1b283bb6592b99
3
+ size 4975564952
layer-16-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9aa39f30fbfcba591a3cf9240414725b6571e29a60c9b8e672e5128a91922013
3
+ size 4975564952
layer-17-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0b67d485c9aa9eddca515deae727ce8becf0f2b6ac82324e75743c104577389
3
+ size 4975564952
layer-18-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f91998b9b14357214019f776963a361acabff49ff0e288245c921231093091d
3
+ size 4975564952
layer-19-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f97ca57d677295ac26e8d1490ee0d33ec2f43ce38b69da611e20fef97e29c842
3
+ size 4975564952
layer-2-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f751618fa9175b204e0e5d7c171f6c6d9312ecb3647d8bf12c8706acef2925a0
3
+ size 4975564552
layer-20-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a05c91f079ca268cabd090ded0203b4959d02daab20f409a3182eac600b91947
3
+ size 4975564952
layer-21-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8631b4153de1c67aff0f520314034ad798c0f496b796f61afa4493619ef2424b
3
+ size 4975564952
layer-22-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28760e3ad8671cde11a94214f6d4aa901b4db54b39d7d531bf3d4b3c00c17353
3
+ size 4975564952
layer-23-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce50e31e8eb7d60784ccabebbe757c317119b22a7541730d7962e999ac23a9ad
3
+ size 4975564952
layer-24-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0513527296bd05d547b99b1443d2333ae5a28419617c26ab14dc03c6fec5c140
3
+ size 4975564952
layer-25-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c576038ee80cd68494ae9a9b56a855631976d3a4cc87df1f43809bb296a3141
3
+ size 4975564952
layer-26-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e426c1ce0eab46760b5dd4513ae5f0f703c8574a0991422609c6a7a389bfffde
3
+ size 4975564952
layer-27-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64652ac15aca6bd110897f6141d1d10245f892acfc4c23dd8c495c757e2e0e6e
3
+ size 4975564952
layer-28-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:673291af4d7dfd0e95d52ac8eb8354ab560108b68f833b7aff23f201a588b0e7
3
+ size 4975564952
layer-29-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:381c6d89de9cb840a8897b2d21361bb54fd6f702fbe11dece7219714012679c9
3
+ size 4975564952
layer-3-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00e14da6e4387e58f9c869f72387789dadbc05f0e9b5c4603bfeae73e6c3543c
3
+ size 4975564552
layer-30-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:094bf526a4d82dda4a8697c9fe0bb6b126512f73dad90bcd038c034d12b2a215
3
+ size 4975564952
layer-31-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2302adfd6d5c0e066404a205bb4ed5e1b0dfb6f29db55ace99c06e2376893c34
3
+ size 4975564952
layer-32-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:060f7eb84619b648ed5c678e8d04909943dc767723d1649f6301454f8ae9762b
3
+ size 4975564952
layer-33-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad4b71d14f235f93a38d1dbf9ae64978489fac23f2fd03309aebd3efc12ab0b6
3
+ size 4975564952
layer-34-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a64ab52f93bec2d37ac4e20bce66f059c1aafa342428cea45d609ebbc4ba26aa
3
+ size 4975564952
layer-35-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6342df0293fe08610756f496fa236f33650967f55912a06fd3fe495e92496fcc
3
+ size 4975564952
layer-36-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42a78a18a35bab2bbb9b41d067734c1cc02f84d84c17f373642f66eece1a8a09
3
+ size 4975564952
layer-37-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:742a350713313c1b44a794413325028829e8c99197db8ac0df44b386bd164039
3
+ size 4975564952
layer-38-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19aa3fecbd18b3b72a6c95895417c12e8b1456a7cdba06886ceb969c1057da08
3
+ size 4975564952
layer-39-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a562868996299db5c731715930db1cf720d69c1161eebf262834a5e73e0946cf
3
+ size 4975564952
layer-4-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f2994d243f5be74ec14aec95bb17861a9b21e69c9daa0e6d854c922b1bbc9f6
3
+ size 4975564552
layer-40-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6a77b7fa59facaa6b00d7a26f0d238d2475da77a2d3dfcb4496397b4b122589
3
+ size 4975564952
layer-41-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6454066901f8a88cc422702031ad76d75d5a586198a70abf7d655e346a0f4aa9
3
+ size 4975564952
layer-42-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06ff8f4a32fc69a721cb277ab4ef60cb001865add25568544c0ebeb3502d9807
3
+ size 4975564952
layer-43-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5706652e4a3c8815b0f3284b48cdfeaa2275a03f4e3feb91fa020a74f259665
3
+ size 4975564952
layer-44-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ff006160dccf446077ef1d50260ae1cb7ae4885be6aa7f5eea95e924c668960
3
+ size 4975564952
layer-45-ep-0-of-1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57dcf30fd0e448253f0995c2ef0363b1ac99e26d46406efb0377ce3ea305e9b4
3
+ size 4975564952