nielsr HF Staff commited on
Commit
3bc5253
·
verified ·
1 Parent(s): 72c8246

Add descriptive tags to InternVL3_5-14B-Instruct model card

Browse files

Hi there,

I've updated the model card for `InternVL3_5-14B-Instruct` to include more descriptive tags in the metadata. These new tags (`multimodal`, `reasoning`, `agentic-tasks`, `gui-interaction`, `embodied-agency`) are directly derived from the paper's abstract, which highlights the model's capabilities in these areas.

Adding these tags will improve the model's discoverability on the Hugging Face Hub, making it easier for researchers to find models relevant to multimodal understanding, complex reasoning, agentic tasks, GUI interaction, and embodied agency.

The existing content, sample usage, paper link, GitHub link, project page, library name, pipeline tag, and license information are already excellent and have been preserved as-is.

Files changed (1) hide show
  1. README.md +117 -32
README.md CHANGED
@@ -1,18 +1,23 @@
1
  ---
2
- license: apache-2.0
3
- pipeline_tag: image-text-to-text
4
- library_name: transformers
5
  base_model:
6
- - OpenGVLab/InternVL3_5-14B-Pretrained
7
- base_model_relation: finetune
8
  datasets:
9
- - OpenGVLab/MMPR-v1.2
10
- - OpenGVLab/MMPR-Tiny
11
  language:
12
- - multilingual
 
 
 
13
  tags:
14
- - internvl
15
- - custom_code
 
 
 
 
 
 
16
  ---
17
 
18
  # InternVL3_5-14B-Instruct
@@ -27,7 +32,7 @@ tags:
27
 
28
  ## Introduction
29
 
30
- We introduce *InternVL3.5*, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the *Cascade Reinforcement Learning (Cascade RL)* framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a *Visual Resolution Router (ViR)* that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled *Vision-Language Deployment (DvD)* strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0\% gain in overall reasoning performance and a 4.05 \\(\times\\) inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.
31
 
32
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance.jpg)
33
 
@@ -141,7 +146,7 @@ Compared to InternVL3.5, InternVL3.5-Flash further integrates the *Visual Resolu
141
  Specifically, in InternVL3.5, each image patch is initially represented as 1024 visual tokens for the vision encoder, which are then compressed into 256 tokens via a pixel shuffle module before being passed to the Large Language Model (LLM).
142
  In InternVL3.5-Flash, as shown in the Figure below, an additional pixel shuffle module with a higher compression rate is included, enabling the compression of visual tokens down to 64 tokens.
143
  For each patch, the patch router determines the appropriate compression rate by assessing its semantic richness, and routes it to the corresponding pixel shuffle module accordingly.
144
- Benefiting from this patch-aware compression mechanism, InternVL3.5-Flash is able to reduce the number of visual tokens by 50\% while maintaining nearly 100\% of the performance of InternVL3.5.
145
 
146
 
147
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/architecture.jpg)
@@ -529,40 +534,50 @@ generation_config = dict(max_new_tokens=1024, do_sample=True)
529
  # pure-text conversation (纯文本���话)
530
  question = 'Hello, who are you?'
531
  response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
532
- print(f'User: {question}\nAssistant: {response}')
 
533
 
534
  question = 'Can you tell me a story?'
535
  response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
536
- print(f'User: {question}\nAssistant: {response}')
 
537
 
538
  # single-image single-round conversation (单图单轮对话)
539
- question = '<image>\nPlease describe the image shortly.'
 
540
  response = model.chat(tokenizer, pixel_values, question, generation_config)
541
- print(f'User: {question}\nAssistant: {response}')
 
542
 
543
  # single-image multi-round conversation (单图多轮对话)
544
- question = '<image>\nPlease describe the image in detail.'
 
545
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
546
- print(f'User: {question}\nAssistant: {response}')
 
547
 
548
  question = 'Please write a poem according to the image.'
549
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
550
- print(f'User: {question}\nAssistant: {response}')
 
551
 
552
  # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
553
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
554
  pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
555
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
556
 
557
- question = '<image>\nDescribe the two images in detail.'
 
558
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
559
  history=None, return_history=True)
560
- print(f'User: {question}\nAssistant: {response}')
 
561
 
562
  question = 'What are the similarities and differences between these two images.'
563
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
564
  history=history, return_history=True)
565
- print(f'User: {question}\nAssistant: {response}')
 
566
 
567
  # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
568
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
@@ -570,17 +585,21 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1
570
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
571
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
572
 
573
- question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
 
 
574
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
575
  num_patches_list=num_patches_list,
576
  history=None, return_history=True)
577
- print(f'User: {question}\nAssistant: {response}')
 
578
 
579
  question = 'What are the similarities and differences between these two images.'
580
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
581
  num_patches_list=num_patches_list,
582
  history=history, return_history=True)
583
- print(f'User: {question}\nAssistant: {response}')
 
584
 
585
  # batch inference, single image per sample (单图批处理)
586
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
@@ -588,13 +607,15 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1
588
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
589
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
590
 
591
- questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
 
592
  responses = model.batch_chat(tokenizer, pixel_values,
593
  num_patches_list=num_patches_list,
594
  questions=questions,
595
  generation_config=generation_config)
596
  for question, response in zip(questions, responses):
597
- print(f'User: {question}\nAssistant: {response}')
 
598
 
599
  # video multi-round conversation (视频多轮对话)
600
  def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
@@ -632,17 +653,24 @@ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=3
632
  video_path = './examples/red-panda.mp4'
633
  pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
634
  pixel_values = pixel_values.to(torch.bfloat16).cuda()
635
- video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
 
636
  question = video_prefix + 'What is the red panda doing?'
637
- # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
 
 
 
 
638
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
639
  num_patches_list=num_patches_list, history=None, return_history=True)
640
- print(f'User: {question}\nAssistant: {response}')
 
641
 
642
  question = 'Describe this video in detail.'
643
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
644
  num_patches_list=num_patches_list, history=history, return_history=True)
645
- print(f'User: {question}\nAssistant: {response}')
 
646
  ```
647
 
648
  #### Streaming Output
@@ -726,7 +754,9 @@ image_urls=[
726
 
727
  images = [load_image(img_url) for img_url in image_urls]
728
  # Numbering images improves multi-image conversations
729
- response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
 
 
730
  print(response.text)
731
  ```
732
 
@@ -828,4 +858,59 @@ If you find this project useful in your research, please consider citing:
828
  journal={arXiv preprint arXiv:2508.18265},
829
  year={2025}
830
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
831
  ```
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model:
3
+ - OpenGVLab/InternVL3_5-14B-Pretrained
 
4
  datasets:
5
+ - OpenGVLab/MMPR-v1.2
6
+ - OpenGVLab/MMPR-Tiny
7
  language:
8
+ - multilingual
9
+ library_name: transformers
10
+ license: apache-2.0
11
+ pipeline_tag: image-text-to-text
12
  tags:
13
+ - internvl
14
+ - custom_code
15
+ - multimodal
16
+ - reasoning
17
+ - agentic-tasks
18
+ - gui-interaction
19
+ - embodied-agency
20
+ base_model_relation: finetune
21
  ---
22
 
23
  # InternVL3_5-14B-Instruct
 
32
 
33
  ## Introduction
34
 
35
+ We introduce *InternVL3.5*, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the *Cascade Reinforcement Learning (Cascade RL)* framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a *Visual Resolution Router (ViR)* that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled *Vision-Language Deployment (DvD)* strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 \\(\times\\) inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.
36
 
37
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance.jpg)
38
 
 
146
  Specifically, in InternVL3.5, each image patch is initially represented as 1024 visual tokens for the vision encoder, which are then compressed into 256 tokens via a pixel shuffle module before being passed to the Large Language Model (LLM).
147
  In InternVL3.5-Flash, as shown in the Figure below, an additional pixel shuffle module with a higher compression rate is included, enabling the compression of visual tokens down to 64 tokens.
148
  For each patch, the patch router determines the appropriate compression rate by assessing its semantic richness, and routes it to the corresponding pixel shuffle module accordingly.
149
+ Benefiting from this patch-aware compression mechanism, InternVL3.5-Flash is able to reduce the number of visual tokens by 50% while maintaining nearly 100% of the performance of InternVL3.5.
150
 
151
 
152
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/architecture.jpg)
 
534
  # pure-text conversation (纯文本���话)
535
  question = 'Hello, who are you?'
536
  response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
537
+ print(f'User: {question}
538
+ Assistant: {response}')
539
 
540
  question = 'Can you tell me a story?'
541
  response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
542
+ print(f'User: {question}
543
+ Assistant: {response}')
544
 
545
  # single-image single-round conversation (单图单轮对话)
546
+ question = '<image>
547
+ Please describe the image shortly.'
548
  response = model.chat(tokenizer, pixel_values, question, generation_config)
549
+ print(f'User: {question}
550
+ Assistant: {response}')
551
 
552
  # single-image multi-round conversation (单图多轮对话)
553
+ question = '<image>
554
+ Please describe the image in detail.'
555
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
556
+ print(f'User: {question}
557
+ Assistant: {response}')
558
 
559
  question = 'Please write a poem according to the image.'
560
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
561
+ print(f'User: {question}
562
+ Assistant: {response}')
563
 
564
  # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
565
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
566
  pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
567
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
568
 
569
+ question = '<image>
570
+ Describe the two images in detail.'
571
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
572
  history=None, return_history=True)
573
+ print(f'User: {question}
574
+ Assistant: {response}')
575
 
576
  question = 'What are the similarities and differences between these two images.'
577
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
578
  history=history, return_history=True)
579
+ print(f'User: {question}
580
+ Assistant: {response}')
581
 
582
  # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
583
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
 
585
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
586
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
587
 
588
+ question = 'Image-1: <image>
589
+ Image-2: <image>
590
+ Describe the two images in detail.'
591
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
592
  num_patches_list=num_patches_list,
593
  history=None, return_history=True)
594
+ print(f'User: {question}
595
+ Assistant: {response}')
596
 
597
  question = 'What are the similarities and differences between these two images.'
598
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
599
  num_patches_list=num_patches_list,
600
  history=history, return_history=True)
601
+ print(f'User: {question}
602
+ Assistant: {response}')
603
 
604
  # batch inference, single image per sample (单图批处理)
605
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
 
607
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
608
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
609
 
610
+ questions = ['<image>
611
+ Describe the image in detail.'] * len(num_patches_list)
612
  responses = model.batch_chat(tokenizer, pixel_values,
613
  num_patches_list=num_patches_list,
614
  questions=questions,
615
  generation_config=generation_config)
616
  for question, response in zip(questions, responses):
617
+ print(f'User: {question}
618
+ Assistant: {response}')
619
 
620
  # video multi-round conversation (视频多轮对话)
621
  def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
 
653
  video_path = './examples/red-panda.mp4'
654
  pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
655
  pixel_values = pixel_values.to(torch.bfloat16).cuda()
656
+ video_prefix = ''.join([f'Frame{i+1}: <image>
657
+ ' for i in range(len(num_patches_list))])
658
  question = video_prefix + 'What is the red panda doing?'
659
+ # Frame1: <image>
660
+ Frame2: <image>
661
+ ...
662
+ Frame8: <image>
663
+ {question}
664
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
665
  num_patches_list=num_patches_list, history=None, return_history=True)
666
+ print(f'User: {question}
667
+ Assistant: {response}')
668
 
669
  question = 'Describe this video in detail.'
670
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
671
  num_patches_list=num_patches_list, history=history, return_history=True)
672
+ print(f'User: {question}
673
+ Assistant: {response}')
674
  ```
675
 
676
  #### Streaming Output
 
754
 
755
  images = [load_image(img_url) for img_url in image_urls]
756
  # Numbering images improves multi-image conversations
757
+ response = pipe((f'Image-1: {IMAGE_TOKEN}
758
+ Image-2: {IMAGE_TOKEN}
759
+ describe these two images', images))
760
  print(response.text)
761
  ```
762
 
 
858
  journal={arXiv preprint arXiv:2508.18265},
859
  year={2025}
860
  }
861
+ @article{zhu2025internvl3,
862
+ title={Internvl3: Exploring advanced training and test-time recipes for open-source multimodal models},
863
+ author={Zhu, Jinguo and Wang, Weiyun and Chen, Zhe and Liu, Zhaoyang and Ye, Shenglong and Gu, Lixin and Tian, Hao and Duan, Yuchen and Su, Weijie and Shao, Jie and others},
864
+ journal={arXiv preprint arXiv:2504.10479},
865
+ year={2025}
866
+ }
867
+ @article{chen2024expanding,
868
+ title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
869
+ author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
870
+ journal={arXiv preprint arXiv:2412.05271},
871
+ year={2024}
872
+ }
873
+ @article{wang2024mpo,
874
+ title={Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization},
875
+ author={Wang, Weiyun and Chen, Zhe and Wang, Wenhai and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Zhu, Jinguo and Zhu, Xizhou and Lu, Lewei and Qiao, Yu and Dai, Jifeng},
876
+ journal={arXiv preprint arXiv:2411.10442},
877
+ year={2024}
878
+ }
879
+ @article{gao2024mini,
880
+ title={Mini-InternVL: a flexible-transfer pocket multi-modal model with 5% parameters and 90% performance},
881
+ author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
882
+ journal={Visual Intelligence},
883
+ volume={2},
884
+ number={1},
885
+ pages={1--17},
886
+ year={2024},
887
+ publisher={Springer}
888
+ }
889
+ @article{chen2024far,
890
+ title={How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites},
891
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
892
+ journal={Science China Information Sciences},
893
+ volume={67},
894
+ number={12},
895
+ pages={220101},
896
+ year={2024},
897
+ publisher={Springer}
898
+ }
899
+ @inproceedings{chen2024internvl,
900
+ title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
901
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
902
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
903
+ pages={24185--24198},
904
+ year={2024}
905
+ }
906
  ```
907
+
908
+ ## Acknowledgement
909
+
910
+ InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!
911
+
912
+ ______________________________________________________________________
913
+
914
+ Scan the following QR Code, join our WeChat group.
915
+
916
+ <p align="center"><img width="300" alt="image" src="https://github.com/user-attachments/assets/f776df09-ebba-4fd5-80c2-fec4ff1518be"></p>