File size: 16,844 Bytes
5671375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from typing import Any, List, Optional, Tuple, Union
from PIL import Image, ImageDraw
from io import BytesIO
import requests
import torch.distributed as dist
import torch.utils.checkpoint
from .modeling_internlm2 import InternLM2ForCausalLM
from peft import LoraConfig, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
                          LlamaTokenizer, Qwen2ForCausalLM)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from .conversation import get_conv_template
from .configuration_internvl_chat import InternVLChatConfig
from .modeling_intern_vit import InternVisionModel
from .modeling_internvl_chat import InternVLChatModel
from .configuration_internvl_audio_chat import InternVLChatAudioConfig
from .modeling_whisper import AudioWhisperModel
from .conversation import get_conv_template



def load_audio(audio_file, audio_processor):
    audio_values, _ = librosa.load(audio_file, sr=16000) # sample rate should be 16000
    
    audio_process_values = audio_processor(audio_values, sampling_rate=16000, return_tensors="pt")
    input_features = audio_process_values['input_features']
    audio_len_after_cnn = audio_process_values['audio_len_after_cnn']
    audio_token_num = audio_process_values['audio_token_num']
                

    audio_input = {'audio_values': input_features,
                   'audio_len_after_cnn': audio_len_after_cnn,
                   'audio_token_num': audio_token_num,
                   }
    return audio_input


class InternVLChatAudioModel(InternVLChatModel):

    def __init__(self, config: InternVLChatAudioConfig, vision_model=None, language_model=None, audio_model=None):
        super().__init__(config, vision_model, language_model)
        if audio_model is not None:
            self.audio_model = audio_model
        else:
            self.audio_model = AudioWhisperModel(config.audio_config)

        audio_hidden_size = config.audio_config.d_model
        llm_hidden_size = config.llm_config.hidden_size
        self.mlp2 = nn.Sequential(
                nn.LayerNorm(audio_hidden_size),
                nn.Linear(audio_hidden_size, llm_hidden_size),
                nn.GELU(),
                nn.Linear(llm_hidden_size, llm_hidden_size)
            )   # mlp2: audio feature mapping

        self.audio_context_token_id = None

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if hasattr(module, "bias") and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    def extract_audio_feature(self, audio_values, audio_len_after_cnn):

        audio_values = audio_values.squeeze(1)

        #TODO: construct audio padding_mask in loader
        max_len_in_batch = int(torch.max(audio_len_after_cnn).item())

        padding_mask = torch.ones([audio_values.size(0), max_len_in_batch]).to(dtype=audio_values.dtype,
                                                                               device=audio_values.device)

        for index in range(len(audio_values)):
            padding_mask[index, :int(audio_len_after_cnn[index].item())] = 0

        last_hidden_state = self.audio_model(audio_values, padding_mask, audio_len_after_cnn)  # (bs, max_token_num, 1280)

        audio_embeds = self.mlp2(last_hidden_state)

        return audio_embeds


    def forward(
            self,
            pixel_values: torch.FloatTensor,
            input_ids: torch.LongTensor = None,
            audio_values: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            image_flags: Optional[torch.LongTensor] = None,
            audio_flags: Optional[torch.LongTensor] = None,
            audio_len_after_cnn: Optional[torch.LongTensor] = None,
            audio_token_num: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            statistics: Optional[torch.LongTensor] = None,
            loss_weight: Optional[List] = None,
            loss_reduction_all_gather: Optional[bool] = False,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        image_flags = image_flags.squeeze(-1)
        input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()

        vit_embeds = self.extract_feature(pixel_values)
        vit_embeds = vit_embeds[image_flags == 1]
        vit_batch_size = pixel_values.shape[0]

        B, N, C = input_embeds.shape
        input_embeds = input_embeds.reshape(B * N, C)

        if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
            print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
            if statistics is not None:
                num_samples, num_padding_tokens, num_padding_images = statistics.tolist()
                self.num_samples += num_samples
                print(f'total_samples={self.num_samples}, {num_samples=}, {num_padding_tokens=}, {num_padding_images=}')


        input_ids = input_ids.reshape(B * N)
        img_selected = (input_ids == self.img_context_token_id)
        try:
            input_embeds[img_selected] = input_embeds[img_selected] * 0.0 + vit_embeds.reshape(-1, C)
            ignore_flag = False
        except Exception as e:
            vit_embeds = vit_embeds.reshape(-1, C)
            print(f'warning: {e}, input_embeds[img_selected].shape={input_embeds[img_selected].shape}, '
                  f'vit_embeds.shape={vit_embeds.shape}')
            n_token = img_selected.sum()
            input_embeds[img_selected] = input_embeds[img_selected] * 0.0 + vit_embeds[:n_token]
            ignore_flag = True



        if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
            audio_batch_size = audio_values.shape[0]
            print(f'audio batch size: {audio_batch_size}, audios per sample: {audio_batch_size / B}')

        audio_embeds = self.extract_audio_feature(audio_values, audio_len_after_cnn)  # (audio_num, n_frame, C)

        output_audios = []
        for i in range(len(audio_token_num)):
            if audio_flags[i] > 0:
                token_num = int(audio_token_num[i].item())
                audio = audio_embeds[i][:token_num]   # 提取有效的token
                output_audios.append(audio)

        if len(output_audios):
            output_audios = torch.cat(output_audios, dim=0)
            audio_selected = (input_ids == self.audio_context_token_id)
            input_embeds[audio_selected] = input_embeds[audio_selected] * 0.0 + output_audios.reshape(-1, C)


        input_embeds = input_embeds.reshape(B, N, C)

        outputs = self.language_model(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits

        loss = None
        if labels is not None and loss_weight is not None:
            loss_weight = torch.tensor(loss_weight,
                                       dtype=torch.float32,
                                       device=labels.device)
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            shift_weights = loss_weight[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(reduction='none')
            shift_logits = shift_logits.view(
                -1, self.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            shift_weights = shift_weights.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            shift_weights = shift_weights.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

            shift_weights_sum = shift_weights.sum()
            if loss_reduction_all_gather:
                dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG)

            loss = loss * shift_weights
            loss = loss.sum() / shift_weights_sum
            if ignore_flag:
                loss = loss * 0.0
        elif labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)
            if ignore_flag:
                loss = loss * 0.0

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


    def Audio_chat(self, tokenizer, pixel_values, audio,  question, generation_config, history=None, return_history=False,num_patches_list=None, 
                   IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',AUDIO_START_TOKEN='<audio>',AUDIO_END_TOKEN='</audio>',
                   AUDIO_CONTEXT_TOKEN='<AUDIO_CONTEXT>',verbose=None):

        if history is None and audio is not None:
            if question is None:
                question = '<audio>\n'
            else:
                question = '<audio>\n' + question
                
        if history is None and pixel_values is not None:
            if question is None:
                question = '<image>\n'
            else:
                question = '<image>\n' + question
            
        if num_patches_list is None:
            num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
        assert pixel_values is None or len(pixel_values) == sum(num_patches_list)

        img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
        audio_context_token_id = tokenizer.convert_tokens_to_ids(AUDIO_CONTEXT_TOKEN)
        self.img_context_token_id = img_context_token_id
        self.audio_context_token_id = audio_context_token_id

        template = get_conv_template(self.template)
        template.system_message = self.system_message
        eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())

        history = [] if history is None else history
        for (old_question, old_answer) in history:
            template.append_message(template.roles[0], old_question)
            template.append_message(template.roles[1], old_answer)
        template.append_message(template.roles[0], question)
        template.append_message(template.roles[1], None)
        query = template.get_prompt()

        if verbose and pixel_values is not None:
            image_bs = pixel_values.shape[0]
            print(f'dynamic ViT batch size: {image_bs}')

        for num_patches in num_patches_list:
            image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
            query = query.replace('<image>', image_tokens, 1)
        if audio is not None:
            audio_tokens = AUDIO_START_TOKEN + AUDIO_CONTEXT_TOKEN * audio['audio_token_num'] + AUDIO_END_TOKEN
            query = query.replace('<audio>', audio_tokens, 1)

        model_inputs = tokenizer(query, return_tensors='pt')
        input_ids = model_inputs['input_ids'].to(self.device)
        attention_mask = model_inputs['attention_mask'].to(self.device)
        generation_config['eos_token_id'] = eos_token_id
        audio['audio_len_after_cnn'] = torch.tensor([audio['audio_len_after_cnn']])
        audio['audio_token_num'] = torch.tensor([audio['audio_token_num']])
        generation_output = self.generate(
            pixel_values=pixel_values,
            audio_values=audio['audio_values'].to(self.device, dtype=self.dtype),
            audio_len_after_cnn=audio['audio_len_after_cnn'],
            audio_token_num=audio['audio_token_num'],
            input_ids=input_ids,
            attention_mask=attention_mask,
            **generation_config
        )
        response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
        response = response.split(template.sep.strip())[0].strip()
        history.append((question, response))
        if return_history:
            return response, history
        else:
            query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
            query_to_print = query.replace(AUDIO_CONTEXT_TOKEN, '')
            query_to_print = query_to_print.replace(f'{AUDIO_START_TOKEN}{AUDIO_END_TOKEN}', '<audio>')
            if verbose:
                print(query_to_print, response)
            return response

    @torch.no_grad()
    def generate(
            self,
            pixel_values: torch.FloatTensor,
            input_ids: torch.FloatTensor,
            attention_mask: torch.LongTensor,
            visual_features: Optional[torch.FloatTensor] = None,
            audio_values: Optional[torch.FloatTensor] = None,
            audio_len_after_cnn: Optional[bool] = None,
            audio_token_num: Optional[bool] = None,
            generation_config: Optional[GenerationConfig] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            **generate_kwargs,
    ) -> torch.LongTensor:

        # assert self.img_context_token_id is not None
        # assert self.audio_context_token_id is not None

        vit_embeds = None
        if visual_features is not None:
            vit_embeds = visual_features
        elif pixel_values is not None:
            vit_embeds = self.extract_feature(pixel_values)

        input_embeds = self.language_model.get_input_embeddings()(input_ids)
        B, N, C = input_embeds.shape
        input_embeds = input_embeds.reshape(B * N, C)

        input_ids = input_ids.reshape(B * N)

        if vit_embeds is not None:
            selected = (input_ids == self.img_context_token_id)
            input_embeds[selected] = vit_embeds.reshape(-1, C)

        if audio_values is not None and audio_len_after_cnn is not None and audio_token_num is not None:
            audio_embeds = self.extract_audio_feature(audio_values, audio_len_after_cnn)
            output_audios = []
            for i in range(len(audio_token_num)):
                token_num = int(audio_token_num[i].item())
                audio = audio_embeds[i][:token_num]
                output_audios.append(audio)
            output_audios = torch.cat(output_audios, dim=0)
            selected = (input_ids == self.audio_context_token_id)
            input_embeds[selected] = output_audios.reshape(-1, C)

        input_embeds = input_embeds.reshape(B, N, C)

        outputs = self.language_model.generate(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            generation_config=generation_config,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            use_cache=True,
            **generate_kwargs,
        )

        return outputs