File size: 16,844 Bytes
5671375 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from typing import Any, List, Optional, Tuple, Union
from PIL import Image, ImageDraw
from io import BytesIO
import requests
import torch.distributed as dist
import torch.utils.checkpoint
from .modeling_internlm2 import InternLM2ForCausalLM
from peft import LoraConfig, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
LlamaTokenizer, Qwen2ForCausalLM)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from .conversation import get_conv_template
from .configuration_internvl_chat import InternVLChatConfig
from .modeling_intern_vit import InternVisionModel
from .modeling_internvl_chat import InternVLChatModel
from .configuration_internvl_audio_chat import InternVLChatAudioConfig
from .modeling_whisper import AudioWhisperModel
from .conversation import get_conv_template
def load_audio(audio_file, audio_processor):
audio_values, _ = librosa.load(audio_file, sr=16000) # sample rate should be 16000
audio_process_values = audio_processor(audio_values, sampling_rate=16000, return_tensors="pt")
input_features = audio_process_values['input_features']
audio_len_after_cnn = audio_process_values['audio_len_after_cnn']
audio_token_num = audio_process_values['audio_token_num']
audio_input = {'audio_values': input_features,
'audio_len_after_cnn': audio_len_after_cnn,
'audio_token_num': audio_token_num,
}
return audio_input
class InternVLChatAudioModel(InternVLChatModel):
def __init__(self, config: InternVLChatAudioConfig, vision_model=None, language_model=None, audio_model=None):
super().__init__(config, vision_model, language_model)
if audio_model is not None:
self.audio_model = audio_model
else:
self.audio_model = AudioWhisperModel(config.audio_config)
audio_hidden_size = config.audio_config.d_model
llm_hidden_size = config.llm_config.hidden_size
self.mlp2 = nn.Sequential(
nn.LayerNorm(audio_hidden_size),
nn.Linear(audio_hidden_size, llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size)
) # mlp2: audio feature mapping
self.audio_context_token_id = None
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def extract_audio_feature(self, audio_values, audio_len_after_cnn):
audio_values = audio_values.squeeze(1)
#TODO: construct audio padding_mask in loader
max_len_in_batch = int(torch.max(audio_len_after_cnn).item())
padding_mask = torch.ones([audio_values.size(0), max_len_in_batch]).to(dtype=audio_values.dtype,
device=audio_values.device)
for index in range(len(audio_values)):
padding_mask[index, :int(audio_len_after_cnn[index].item())] = 0
last_hidden_state = self.audio_model(audio_values, padding_mask, audio_len_after_cnn) # (bs, max_token_num, 1280)
audio_embeds = self.mlp2(last_hidden_state)
return audio_embeds
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
audio_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
audio_flags: Optional[torch.LongTensor] = None,
audio_len_after_cnn: Optional[torch.LongTensor] = None,
audio_token_num: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
statistics: Optional[torch.LongTensor] = None,
loss_weight: Optional[List] = None,
loss_reduction_all_gather: Optional[bool] = False,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
image_flags = image_flags.squeeze(-1)
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
vit_embeds = self.extract_feature(pixel_values)
vit_embeds = vit_embeds[image_flags == 1]
vit_batch_size = pixel_values.shape[0]
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
if statistics is not None:
num_samples, num_padding_tokens, num_padding_images = statistics.tolist()
self.num_samples += num_samples
print(f'total_samples={self.num_samples}, {num_samples=}, {num_padding_tokens=}, {num_padding_images=}')
input_ids = input_ids.reshape(B * N)
img_selected = (input_ids == self.img_context_token_id)
try:
input_embeds[img_selected] = input_embeds[img_selected] * 0.0 + vit_embeds.reshape(-1, C)
ignore_flag = False
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, input_embeds[img_selected].shape={input_embeds[img_selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}')
n_token = img_selected.sum()
input_embeds[img_selected] = input_embeds[img_selected] * 0.0 + vit_embeds[:n_token]
ignore_flag = True
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
audio_batch_size = audio_values.shape[0]
print(f'audio batch size: {audio_batch_size}, audios per sample: {audio_batch_size / B}')
audio_embeds = self.extract_audio_feature(audio_values, audio_len_after_cnn) # (audio_num, n_frame, C)
output_audios = []
for i in range(len(audio_token_num)):
if audio_flags[i] > 0:
token_num = int(audio_token_num[i].item())
audio = audio_embeds[i][:token_num] # 提取有效的token
output_audios.append(audio)
if len(output_audios):
output_audios = torch.cat(output_audios, dim=0)
audio_selected = (input_ids == self.audio_context_token_id)
input_embeds[audio_selected] = input_embeds[audio_selected] * 0.0 + output_audios.reshape(-1, C)
input_embeds = input_embeds.reshape(B, N, C)
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None and loss_weight is not None:
loss_weight = torch.tensor(loss_weight,
dtype=torch.float32,
device=labels.device)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_weights = loss_weight[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(reduction='none')
shift_logits = shift_logits.view(
-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
shift_weights = shift_weights.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
shift_weights = shift_weights.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
shift_weights_sum = shift_weights.sum()
if loss_reduction_all_gather:
dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG)
loss = loss * shift_weights
loss = loss.sum() / shift_weights_sum
if ignore_flag:
loss = loss * 0.0
elif labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if ignore_flag:
loss = loss * 0.0
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def Audio_chat(self, tokenizer, pixel_values, audio, question, generation_config, history=None, return_history=False,num_patches_list=None,
IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',AUDIO_START_TOKEN='<audio>',AUDIO_END_TOKEN='</audio>',
AUDIO_CONTEXT_TOKEN='<AUDIO_CONTEXT>',verbose=None):
if history is None and audio is not None:
if question is None:
question = '<audio>\n'
else:
question = '<audio>\n' + question
if history is None and pixel_values is not None:
if question is None:
question = '<image>\n'
else:
question = '<image>\n' + question
if num_patches_list is None:
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
audio_context_token_id = tokenizer.convert_tokens_to_ids(AUDIO_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
self.audio_context_token_id = audio_context_token_id
template = get_conv_template(self.template)
template.system_message = self.system_message
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
history = [] if history is None else history
for (old_question, old_answer) in history:
template.append_message(template.roles[0], old_question)
template.append_message(template.roles[1], old_answer)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
for num_patches in num_patches_list:
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('<image>', image_tokens, 1)
if audio is not None:
audio_tokens = AUDIO_START_TOKEN + AUDIO_CONTEXT_TOKEN * audio['audio_token_num'] + AUDIO_END_TOKEN
query = query.replace('<audio>', audio_tokens, 1)
model_inputs = tokenizer(query, return_tensors='pt')
input_ids = model_inputs['input_ids'].to(self.device)
attention_mask = model_inputs['attention_mask'].to(self.device)
generation_config['eos_token_id'] = eos_token_id
audio['audio_len_after_cnn'] = torch.tensor([audio['audio_len_after_cnn']])
audio['audio_token_num'] = torch.tensor([audio['audio_token_num']])
generation_output = self.generate(
pixel_values=pixel_values,
audio_values=audio['audio_values'].to(self.device, dtype=self.dtype),
audio_len_after_cnn=audio['audio_len_after_cnn'],
audio_token_num=audio['audio_token_num'],
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config
)
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
response = response.split(template.sep.strip())[0].strip()
history.append((question, response))
if return_history:
return response, history
else:
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
query_to_print = query.replace(AUDIO_CONTEXT_TOKEN, '')
query_to_print = query_to_print.replace(f'{AUDIO_START_TOKEN}{AUDIO_END_TOKEN}', '<audio>')
if verbose:
print(query_to_print, response)
return response
@torch.no_grad()
def generate(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.FloatTensor,
attention_mask: torch.LongTensor,
visual_features: Optional[torch.FloatTensor] = None,
audio_values: Optional[torch.FloatTensor] = None,
audio_len_after_cnn: Optional[bool] = None,
audio_token_num: Optional[bool] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**generate_kwargs,
) -> torch.LongTensor:
# assert self.img_context_token_id is not None
# assert self.audio_context_token_id is not None
vit_embeds = None
if visual_features is not None:
vit_embeds = visual_features
elif pixel_values is not None:
vit_embeds = self.extract_feature(pixel_values)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
if vit_embeds is not None:
selected = (input_ids == self.img_context_token_id)
input_embeds[selected] = vit_embeds.reshape(-1, C)
if audio_values is not None and audio_len_after_cnn is not None and audio_token_num is not None:
audio_embeds = self.extract_audio_feature(audio_values, audio_len_after_cnn)
output_audios = []
for i in range(len(audio_token_num)):
token_num = int(audio_token_num[i].item())
audio = audio_embeds[i][:token_num]
output_audios.append(audio)
output_audios = torch.cat(output_audios, dim=0)
selected = (input_ids == self.audio_context_token_id)
input_embeds[selected] = output_audios.reshape(-1, C)
input_embeds = input_embeds.reshape(B, N, C)
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
use_cache=True,
**generate_kwargs,
)
return outputs |