Onegafer commited on
Commit
3d88a3f
·
1 Parent(s): 2cd1191

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - vision
5
+ - image-segmentation
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: segformer-v-mesh-0
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # segformer-v-mesh-0
16
+
17
+ This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the Onegafer/vehicle_segmentation dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0513
20
+ - Mean Iou: 0.4015
21
+ - Mean Accuracy: 0.8030
22
+ - Overall Accuracy: 0.8030
23
+ - Accuracy No: nan
24
+ - Accuracy Yes: 0.8030
25
+ - Iou No: 0.0
26
+ - Iou Yes: 0.8030
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 6e-05
46
+ - train_batch_size: 2
47
+ - eval_batch_size: 2
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 1
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy No | Accuracy Yes | Iou No | Iou Yes |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------:|:------------:|:------:|:-------:|
57
+ | 0.2362 | 0.16 | 20 | 0.2073 | 0.2925 | 0.5849 | 0.5849 | nan | 0.5849 | 0.0 | 0.5849 |
58
+ | 0.1487 | 0.31 | 40 | 0.1029 | 0.3193 | 0.6386 | 0.6386 | nan | 0.6386 | 0.0 | 0.6386 |
59
+ | 0.0993 | 0.47 | 60 | 0.0861 | 0.4281 | 0.8562 | 0.8562 | nan | 0.8562 | 0.0 | 0.8562 |
60
+ | 0.1559 | 0.62 | 80 | 0.0603 | 0.3784 | 0.7568 | 0.7568 | nan | 0.7568 | 0.0 | 0.7568 |
61
+ | 0.0675 | 0.78 | 100 | 0.0536 | 0.3889 | 0.7777 | 0.7777 | nan | 0.7777 | 0.0 | 0.7777 |
62
+ | 0.0826 | 0.94 | 120 | 0.0513 | 0.4015 | 0.8030 | 0.8030 | nan | 0.8030 | 0.0 | 0.8030 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.28.1
68
+ - Pytorch 2.0.0+cu118
69
+ - Datasets 2.11.0
70
+ - Tokenizers 0.13.3