OliP commited on
Commit
73756d5
·
1 Parent(s): 117a3d4

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1731.38 +/- 167.58
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b09e93aff2ba3a1e45011da3926dd0a02200663e4bcc32ed4c865db7931c1028
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7feda17fb310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feda17fb3a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feda17fb430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feda17fb4c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7feda17fb550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7feda17fb5e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7feda17fb670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feda17fb700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7feda17fb790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feda17fb820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feda17fb8b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7feda17fb940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7feda1871f30>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 1000000,
63
+ "_total_timesteps": 1000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1676113286178092936,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAISGET8ZgFW/kCUjPkbt6j95vBW/O3nLv99cUT78ynS/QcdPP0Sbl7x/9VM/a32iv37iP7/7Otk/vOxHve2+Cj9+Hgq/+//SP8MCQz+okNq9avS2PtVeyz46Erg/fzExQFxQq78LruM+6ATaPivFr782gba/ROI2QJA+bsDdoIO/NPWqvO+Voz12aqC+M0mKPESQC7/JQFu8bsoZvxIB67yb2MC/Q1XkOmBbXD86aZ08NOOuv4pqTzzYlFo/whOBu6E/pb737Cw9afTMvmRB37xMRj8/C67jPugE2j7cbDo/M4uYvMVIC0ALv5C/AQQgP1wySb9XhQtADsEzv8uptL+R6be+ZiEcP7U6Sz9lDjE+bfLAv3o2Dj11HTM/4xmzPvKnjr50J3a/fuhgPxLLsr2rt1C/L078PXCjg755iTw/TEY/Pwuu4z7oBNo+K8Wvv64zGj8ik4K+Gj/KPjURoz+Ivpm+gNcQwPybcj6thTK/HKhQP4vrRb1+G2s/oDjOv52cfr8ULZQ/pMelvqkQQ76qsAC+f6D2P2mr3D6jTWe+hwzHvsYHGz8Z/Qk/F+YhQExGPz8LruM+6ATaPivFr7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAIf+k2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5Ua5vAAAAAB0k+C/AAAAAEAr4T0AAAAASMrePwAAAAApqfM9AAAAAAyE3T8AAAAAVXKCvQAAAADsi/O/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+/oONgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNrr1j0AAAAAdgXgvwAAAACChqe7AAAAALmP9j8AAAAA/Qa2PQAAAABItvU/AAAAALt99r0AAAAAdZHnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH8jiLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAgHa+9AAAAAOSW2b8AAAAAHx92vQAAAACCO98/AAAAAI7x970AAAAAPEvxPwAAAAD8/K89AAAAADBR6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcKhk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6ziNOwAAAADqfeO/AAAAAGRMnT0AAAAAMKkAQAAAAAB0eAo+AAAAAHnv4D8AAAAAMw7IPQAAAADRofu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ7CN9c8kliMAWyUTegDjAF0lEdApi+5WzWwvHV9lChoBkdAoCgG/L1VYWgHTegDaAhHQKYwNlEJBxB1fZQoaAZHQKGLMZOSGJxoB03oA2gIR0CmMXDMeOn3dX2UKGgGR0CfgbHJcPe6aAdN6ANoCEdApjdGhysCDHV9lChoBkdAoMzBreqJdmgHTegDaAhHQKY+gcFQl8h1fZQoaAZHQKAkbBsQ/X5oB03oA2gIR0CmP0bqQiiZdX2UKGgGR0ChYgcf3evZaAdN6ANoCEdApkExDmbLEHV9lChoBkdAnGZd0zTF2mgHTegDaAhHQKZHfhw2l2x1fZQoaAZHQKBh29Net0VoB03oA2gIR0CmTPaUzKs/dX2UKGgGR0Cb6H5N47iiaAdN6ANoCEdApk119Dx9X3V9lChoBkdAnPYLFbVz62gHTegDaAhHQKZOrkq+ajN1fZQoaAZHQJgXJD3M6iloB03oA2gIR0CmVJkk0JnhdX2UKGgGR0CKz3QyhzvJaAdN6ANoCEdAplwBJVbRnnV9lChoBkdAk1Apq20AtGgHTegDaAhHQKZcyP1ct5F1fZQoaAZHQIcp+ZuyeI5oB03oA2gIR0CmXp8s+V1PdX2UKGgGR0CQpZwmVqveaAdN6ANoCEdApmSzPUrkKnV9lChoBkdAk3vV50KZ2WgHTegDaAhHQKZqJB9kSVZ1fZQoaAZHQJeEufg75mBoB03oA2gIR0CmaqZA6dUbdX2UKGgGR0CZ1iRO1v2oaAdN6ANoCEdApmvVN8E3bXV9lChoBkdAlLFtZ/0/W2gHTegDaAhHQKZxqLiMo+h1fZQoaAZHQI9uXUMG5c1oB03oA2gIR0CmeKNayKNydX2UKGgGR0CRSiC1Z1V6aAdN6ANoCEdApnlnuZ1FIHV9lChoBkdAmJQcNtqHoGgHTegDaAhHQKZ7Qlnh86V1fZQoaAZHQJ6dZe6Zpi9oB03oA2gIR0Cmgbq508vFdX2UKGgGR0CbEoBfKISEaAdN6ANoCEdApocgwh4dIXV9lChoBkdAnrAFPSDyv2gHTegDaAhHQKaHpHZsbed1fZQoaAZHQJr/aNIbwSdoB03oA2gIR0CmiNwKa5PNdX2UKGgGR0CeUDVXV9WqaAdN6ANoCEdApo6quB+WnnV9lChoBkdAoBedLnLaEmgHTegDaAhHQKaVqpz90ih1fZQoaAZHQJ98RWZJCjVoB03oA2gIR0CmlnPa11GLdX2UKGgGR0Cg3dApazNVaAdN6ANoCEdApphZmAbyY3V9lChoBkdAoON61stTUGgHTegDaAhHQKae4s3hn8N1fZQoaAZHQKAcIxX4j8loB03oA2gIR0CmpF2IoE0SdX2UKGgGR0CX8qy2QXANaAdN6ANoCEdApqTdg+hXbXV9lChoBkdAoik2o99tuWgHTegDaAhHQKamElwcYIl1fZQoaAZHQKBx7T3qRlpoB03oA2gIR0Cmq+kEcKgJdX2UKGgGR0CdOXtbLU1AaAdN6ANoCEdAprK+aYu01XV9lChoBkdAoA8v9ehPCWgHTegDaAhHQKazhKGtZFJ1fZQoaAZHQKCD8znA6+5oB03oA2gIR0CmtWZPuXu3dX2UKGgGR0CfZeIvJzT4aAdN6ANoCEdAprwoVXV9W3V9lChoBkdAoMFw80UGmmgHTegDaAhHQKbBpRJEpiJ1fZQoaAZHQKB6GQjlgc9oB03oA2gIR0CmwiExZdOZdX2UKGgGR0CgenvzvqkeaAdN6ANoCEdApsNX0Gu9vnV9lChoBkdAnBw0BCD28WgHTegDaAhHQKbJIBKcurZ1fZQoaAZHQJB6XC/GlyloB03oA2gIR0Cmz9ueJ53UdX2UKGgGR0CQG1dYGMXKaAdN6ANoCEdAptCdopQUH3V9lChoBkdAnc1V2icoY2gHTegDaAhHQKbSe0D2alV1fZQoaAZHQJtt7rjYI0JoB03oA2gIR0Cm2T+YMOPOdX2UKGgGR0Cc1E3IdU83aAdN6ANoCEdApt6++0w8GXV9lChoBkdAoJjArUb1iGgHTegDaAhHQKbfRKyv9tN1fZQoaAZHQJnQD6Hj6vdoB03oA2gIR0Cm4HTbN8mbdX2UKGgGR0CchR2ZRbbDaAdN6ANoCEdApuZkYGdI5HV9lChoBkdAoJ62AEt/WmgHTegDaAhHQKbs/9Wp6yB1fZQoaAZHQKFRFbg0j1RoB03oA2gIR0Cm7c7MgU1ydX2UKGgGR0Cg8nvFFUhnaAdN6ANoCEdApu+o/TsponV9lChoBkdAoITDMgU1ymgHTegDaAhHQKb2clzltCR1fZQoaAZHQKCkAGFi8WdoB03oA2gIR0Cm+/Ag5imVdX2UKGgGR0CW7+54GD+SaAdN6ANoCEdApvx3AVO9FnV9lChoBkdAoO7rT2FnI2gHTegDaAhHQKb9rJ7LMcJ1fZQoaAZHQJ6mruqm0mdoB03oA2gIR0CnA3k5ZKWcdX2UKGgGR0CdIVzSThYOaAdN6ANoCEdApwowZydWhnV9lChoBkdAnN1BvWH1vmgHTegDaAhHQKcK+asIVud1fZQoaAZHQJpxKDXe3x5oB03oA2gIR0CnDN/xUedTdX2UKGgGR0CaT2MBIWgwaAdN6ANoCEdApxO+DYh+v3V9lChoBkdAm4G0u+RHPWgHTegDaAhHQKcZRw1ivxJ1fZQoaAZHQKBLML74zrNoB03oA2gIR0CnGceaScLCdX2UKGgGR0Celx3w1BMSaAdN6ANoCEdApxr7Tx5LRXV9lChoBkdAnIi+rZJ04mgHTegDaAhHQKcg3nFo+Oh1fZQoaAZHQJ2OAyj59E1oB03oA2gIR0CnJ1p/XoTxdX2UKGgGR0CeQxD+R5kcaAdN6ANoCEdApygcpRXOnnV9lChoBkdAnwmMujASF2gHTegDaAhHQKcp7Okcjqx1fZQoaAZHQJ+rwzP8hs9oB03oA2gIR0CnMOToEB8ydX2UKGgGR0CZkWde6ZpjaAdN6ANoCEdApzZ6xzJZGXV9lChoBkdAmm1HwgDA8GgHTegDaAhHQKc2+Ei+tbN1fZQoaAZHQJ5n60KJEYxoB03oA2gIR0CnOC7ROUMYdX2UKGgGR0Cc+mkDIRywaAdN6ANoCEdApz3r2zv7WXV9lChoBkdAnOfBzRx95WgHTegDaAhHQKdEbYyO7xx1fZQoaAZHQJdQeVyFPBVoB03oA2gIR0CnRTEjX4CZdX2UKGgGR0CbdQY+0PYnaAdN6ANoCEdAp0cWEug6EXV9lChoBkdAiK+qRuCPIWgHTegDaAhHQKdOD5dnkDJ1fZQoaAZHQJuEVuaWom5oB03oA2gIR0CnU2wAMlTndX2UKGgGR0CcQuHryDqXaAdN6ANoCEdAp1Poxi5NGnV9lChoBkdAm5kN38n/k2gHTegDaAhHQKdVFd8Aq/d1fZQoaAZHQJ10MdNnGsFoB03oA2gIR0CnWt9ytFKDdX2UKGgGR0CZ/2Zjx0+1aAdN6ANoCEdAp2EbxmTTv3V9lChoBkdAl9K88xKxs2gHTegDaAhHQKdh0U9pyp91fZQoaAZHQJzUB0aIeo1oB03oA2gIR0CnY67di2DydX2UKGgGR0Cd3ilXA/LUaAdN6ANoCEdAp2rtpudf9nV9lChoBkdAnjD5WFN+LGgHTegDaAhHQKdwWSuhbnp1fZQoaAZHQJ8PSwljVhFoB03oA2gIR0CncNziCJ40dX2UKGgGR0CfoGfBN21VaAdN6ANoCEdAp3Ii2nbZe3V9lChoBkdAn69OARTS9mgHTegDaAhHQKd4DHwPRRd1fZQoaAZHQJ9yl1mrbQFoB03oA2gIR0Cnfjfe1rqMdX2UKGgGR0CgY3TVDrquaAdN6ANoCEdAp37wWFev6nV9lChoBkdAoFHw35vcamgHTegDaAhHQKeA1D1Gsmx1fZQoaAZHQJ/sHTlT3qRoB03oA2gIR0CniCnKnvUjdX2UKGgGR0Cf6fOxSpBHaAdN6ANoCEdAp42vO4XoDHV9lChoBkdAoCen7WNFSmgHTegDaAhHQKeOL8/D+BJ1fZQoaAZHQJ8ZitihFmZoB03oA2gIR0Cnj3BRIjGDdX2UKGgGR0CgZNqagElmaAdN6ANoCEdAp5U6C8OCoXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 44733,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55f7503b8f3517785d0e3471c43bd53dc8dcec2cb2004e9b8521026a00ba562d
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6931958660a4eacf6d142a681ba4d27ecd8baacfb63cc24be20831f3915c3877
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7feda17fb310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feda17fb3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feda17fb430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feda17fb4c0>", "_build": "<function ActorCriticPolicy._build at 0x7feda17fb550>", "forward": "<function ActorCriticPolicy.forward at 0x7feda17fb5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7feda17fb670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feda17fb700>", "_predict": "<function ActorCriticPolicy._predict at 0x7feda17fb790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feda17fb820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feda17fb8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7feda17fb940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7feda1871f30>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676113286178092936, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAISGET8ZgFW/kCUjPkbt6j95vBW/O3nLv99cUT78ynS/QcdPP0Sbl7x/9VM/a32iv37iP7/7Otk/vOxHve2+Cj9+Hgq/+//SP8MCQz+okNq9avS2PtVeyz46Erg/fzExQFxQq78LruM+6ATaPivFr782gba/ROI2QJA+bsDdoIO/NPWqvO+Voz12aqC+M0mKPESQC7/JQFu8bsoZvxIB67yb2MC/Q1XkOmBbXD86aZ08NOOuv4pqTzzYlFo/whOBu6E/pb737Cw9afTMvmRB37xMRj8/C67jPugE2j7cbDo/M4uYvMVIC0ALv5C/AQQgP1wySb9XhQtADsEzv8uptL+R6be+ZiEcP7U6Sz9lDjE+bfLAv3o2Dj11HTM/4xmzPvKnjr50J3a/fuhgPxLLsr2rt1C/L078PXCjg755iTw/TEY/Pwuu4z7oBNo+K8Wvv64zGj8ik4K+Gj/KPjURoz+Ivpm+gNcQwPybcj6thTK/HKhQP4vrRb1+G2s/oDjOv52cfr8ULZQ/pMelvqkQQ76qsAC+f6D2P2mr3D6jTWe+hwzHvsYHGz8Z/Qk/F+YhQExGPz8LruM+6ATaPivFr7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAIf+k2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5Ua5vAAAAAB0k+C/AAAAAEAr4T0AAAAASMrePwAAAAApqfM9AAAAAAyE3T8AAAAAVXKCvQAAAADsi/O/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+/oONgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNrr1j0AAAAAdgXgvwAAAACChqe7AAAAALmP9j8AAAAA/Qa2PQAAAABItvU/AAAAALt99r0AAAAAdZHnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH8jiLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAgHa+9AAAAAOSW2b8AAAAAHx92vQAAAACCO98/AAAAAI7x970AAAAAPEvxPwAAAAD8/K89AAAAADBR6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcKhk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6ziNOwAAAADqfeO/AAAAAGRMnT0AAAAAMKkAQAAAAAB0eAo+AAAAAHnv4D8AAAAAMw7IPQAAAADRofu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ7CN9c8kliMAWyUTegDjAF0lEdApi+5WzWwvHV9lChoBkdAoCgG/L1VYWgHTegDaAhHQKYwNlEJBxB1fZQoaAZHQKGLMZOSGJxoB03oA2gIR0CmMXDMeOn3dX2UKGgGR0CfgbHJcPe6aAdN6ANoCEdApjdGhysCDHV9lChoBkdAoMzBreqJdmgHTegDaAhHQKY+gcFQl8h1fZQoaAZHQKAkbBsQ/X5oB03oA2gIR0CmP0bqQiiZdX2UKGgGR0ChYgcf3evZaAdN6ANoCEdApkExDmbLEHV9lChoBkdAnGZd0zTF2mgHTegDaAhHQKZHfhw2l2x1fZQoaAZHQKBh29Net0VoB03oA2gIR0CmTPaUzKs/dX2UKGgGR0Cb6H5N47iiaAdN6ANoCEdApk119Dx9X3V9lChoBkdAnPYLFbVz62gHTegDaAhHQKZOrkq+ajN1fZQoaAZHQJgXJD3M6iloB03oA2gIR0CmVJkk0JnhdX2UKGgGR0CKz3QyhzvJaAdN6ANoCEdAplwBJVbRnnV9lChoBkdAk1Apq20AtGgHTegDaAhHQKZcyP1ct5F1fZQoaAZHQIcp+ZuyeI5oB03oA2gIR0CmXp8s+V1PdX2UKGgGR0CQpZwmVqveaAdN6ANoCEdApmSzPUrkKnV9lChoBkdAk3vV50KZ2WgHTegDaAhHQKZqJB9kSVZ1fZQoaAZHQJeEufg75mBoB03oA2gIR0CmaqZA6dUbdX2UKGgGR0CZ1iRO1v2oaAdN6ANoCEdApmvVN8E3bXV9lChoBkdAlLFtZ/0/W2gHTegDaAhHQKZxqLiMo+h1fZQoaAZHQI9uXUMG5c1oB03oA2gIR0CmeKNayKNydX2UKGgGR0CRSiC1Z1V6aAdN6ANoCEdApnlnuZ1FIHV9lChoBkdAmJQcNtqHoGgHTegDaAhHQKZ7Qlnh86V1fZQoaAZHQJ6dZe6Zpi9oB03oA2gIR0Cmgbq508vFdX2UKGgGR0CbEoBfKISEaAdN6ANoCEdApocgwh4dIXV9lChoBkdAnrAFPSDyv2gHTegDaAhHQKaHpHZsbed1fZQoaAZHQJr/aNIbwSdoB03oA2gIR0CmiNwKa5PNdX2UKGgGR0CeUDVXV9WqaAdN6ANoCEdApo6quB+WnnV9lChoBkdAoBedLnLaEmgHTegDaAhHQKaVqpz90ih1fZQoaAZHQJ98RWZJCjVoB03oA2gIR0CmlnPa11GLdX2UKGgGR0Cg3dApazNVaAdN6ANoCEdApphZmAbyY3V9lChoBkdAoON61stTUGgHTegDaAhHQKae4s3hn8N1fZQoaAZHQKAcIxX4j8loB03oA2gIR0CmpF2IoE0SdX2UKGgGR0CX8qy2QXANaAdN6ANoCEdApqTdg+hXbXV9lChoBkdAoik2o99tuWgHTegDaAhHQKamElwcYIl1fZQoaAZHQKBx7T3qRlpoB03oA2gIR0Cmq+kEcKgJdX2UKGgGR0CdOXtbLU1AaAdN6ANoCEdAprK+aYu01XV9lChoBkdAoA8v9ehPCWgHTegDaAhHQKazhKGtZFJ1fZQoaAZHQKCD8znA6+5oB03oA2gIR0CmtWZPuXu3dX2UKGgGR0CfZeIvJzT4aAdN6ANoCEdAprwoVXV9W3V9lChoBkdAoMFw80UGmmgHTegDaAhHQKbBpRJEpiJ1fZQoaAZHQKB6GQjlgc9oB03oA2gIR0CmwiExZdOZdX2UKGgGR0CgenvzvqkeaAdN6ANoCEdApsNX0Gu9vnV9lChoBkdAnBw0BCD28WgHTegDaAhHQKbJIBKcurZ1fZQoaAZHQJB6XC/GlyloB03oA2gIR0Cmz9ueJ53UdX2UKGgGR0CQG1dYGMXKaAdN6ANoCEdAptCdopQUH3V9lChoBkdAnc1V2icoY2gHTegDaAhHQKbSe0D2alV1fZQoaAZHQJtt7rjYI0JoB03oA2gIR0Cm2T+YMOPOdX2UKGgGR0Cc1E3IdU83aAdN6ANoCEdApt6++0w8GXV9lChoBkdAoJjArUb1iGgHTegDaAhHQKbfRKyv9tN1fZQoaAZHQJnQD6Hj6vdoB03oA2gIR0Cm4HTbN8mbdX2UKGgGR0CchR2ZRbbDaAdN6ANoCEdApuZkYGdI5HV9lChoBkdAoJ62AEt/WmgHTegDaAhHQKbs/9Wp6yB1fZQoaAZHQKFRFbg0j1RoB03oA2gIR0Cm7c7MgU1ydX2UKGgGR0Cg8nvFFUhnaAdN6ANoCEdApu+o/TsponV9lChoBkdAoITDMgU1ymgHTegDaAhHQKb2clzltCR1fZQoaAZHQKCkAGFi8WdoB03oA2gIR0Cm+/Ag5imVdX2UKGgGR0CW7+54GD+SaAdN6ANoCEdApvx3AVO9FnV9lChoBkdAoO7rT2FnI2gHTegDaAhHQKb9rJ7LMcJ1fZQoaAZHQJ6mruqm0mdoB03oA2gIR0CnA3k5ZKWcdX2UKGgGR0CdIVzSThYOaAdN6ANoCEdApwowZydWhnV9lChoBkdAnN1BvWH1vmgHTegDaAhHQKcK+asIVud1fZQoaAZHQJpxKDXe3x5oB03oA2gIR0CnDN/xUedTdX2UKGgGR0CaT2MBIWgwaAdN6ANoCEdApxO+DYh+v3V9lChoBkdAm4G0u+RHPWgHTegDaAhHQKcZRw1ivxJ1fZQoaAZHQKBLML74zrNoB03oA2gIR0CnGceaScLCdX2UKGgGR0Celx3w1BMSaAdN6ANoCEdApxr7Tx5LRXV9lChoBkdAnIi+rZJ04mgHTegDaAhHQKcg3nFo+Oh1fZQoaAZHQJ2OAyj59E1oB03oA2gIR0CnJ1p/XoTxdX2UKGgGR0CeQxD+R5kcaAdN6ANoCEdApygcpRXOnnV9lChoBkdAnwmMujASF2gHTegDaAhHQKcp7Okcjqx1fZQoaAZHQJ+rwzP8hs9oB03oA2gIR0CnMOToEB8ydX2UKGgGR0CZkWde6ZpjaAdN6ANoCEdApzZ6xzJZGXV9lChoBkdAmm1HwgDA8GgHTegDaAhHQKc2+Ei+tbN1fZQoaAZHQJ5n60KJEYxoB03oA2gIR0CnOC7ROUMYdX2UKGgGR0Cc+mkDIRywaAdN6ANoCEdApz3r2zv7WXV9lChoBkdAnOfBzRx95WgHTegDaAhHQKdEbYyO7xx1fZQoaAZHQJdQeVyFPBVoB03oA2gIR0CnRTEjX4CZdX2UKGgGR0CbdQY+0PYnaAdN6ANoCEdAp0cWEug6EXV9lChoBkdAiK+qRuCPIWgHTegDaAhHQKdOD5dnkDJ1fZQoaAZHQJuEVuaWom5oB03oA2gIR0CnU2wAMlTndX2UKGgGR0CcQuHryDqXaAdN6ANoCEdAp1Poxi5NGnV9lChoBkdAm5kN38n/k2gHTegDaAhHQKdVFd8Aq/d1fZQoaAZHQJ10MdNnGsFoB03oA2gIR0CnWt9ytFKDdX2UKGgGR0CZ/2Zjx0+1aAdN6ANoCEdAp2EbxmTTv3V9lChoBkdAl9K88xKxs2gHTegDaAhHQKdh0U9pyp91fZQoaAZHQJzUB0aIeo1oB03oA2gIR0CnY67di2DydX2UKGgGR0Cd3ilXA/LUaAdN6ANoCEdAp2rtpudf9nV9lChoBkdAnjD5WFN+LGgHTegDaAhHQKdwWSuhbnp1fZQoaAZHQJ8PSwljVhFoB03oA2gIR0CncNziCJ40dX2UKGgGR0CfoGfBN21VaAdN6ANoCEdAp3Ii2nbZe3V9lChoBkdAn69OARTS9mgHTegDaAhHQKd4DHwPRRd1fZQoaAZHQJ9yl1mrbQFoB03oA2gIR0Cnfjfe1rqMdX2UKGgGR0CgY3TVDrquaAdN6ANoCEdAp37wWFev6nV9lChoBkdAoFHw35vcamgHTegDaAhHQKeA1D1Gsmx1fZQoaAZHQJ/sHTlT3qRoB03oA2gIR0CniCnKnvUjdX2UKGgGR0Cf6fOxSpBHaAdN6ANoCEdAp42vO4XoDHV9lChoBkdAoCen7WNFSmgHTegDaAhHQKeOL8/D+BJ1fZQoaAZHQJ8ZitihFmZoB03oA2gIR0Cnj3BRIjGDdX2UKGgGR0CgZNqagElmaAdN6ANoCEdAp5U6C8OCoXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 44733, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (999 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1731.3817042456765, "std_reward": 167.58095974576156, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-11T11:48:23.940758"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e2f21eede7b908b348f33f6b03c50173d886642ba9fe7a57be5011994e3e0a4
3
+ size 2136