Ogamon commited on
Commit
77a28b7
·
verified ·
1 Parent(s): 345d49a

Initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +60 -0
  2. all_results.json +9 -0
  3. checkpoint-190/config.json +29 -0
  4. checkpoint-190/generation_config.json +10 -0
  5. checkpoint-190/global_step190/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-190/global_step190/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-190/global_step190/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-190/global_step190/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-190/global_step190/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-190/global_step190/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-190/global_step190/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-190/global_step190/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-190/global_step190/mp_rank_00_model_states.pt +3 -0
  14. checkpoint-190/latest +1 -0
  15. checkpoint-190/model-00001-of-00003.safetensors +3 -0
  16. checkpoint-190/model-00002-of-00003.safetensors +3 -0
  17. checkpoint-190/model-00003-of-00003.safetensors +3 -0
  18. checkpoint-190/model.safetensors.index.json +298 -0
  19. checkpoint-190/rng_state_0.pth +3 -0
  20. checkpoint-190/rng_state_1.pth +3 -0
  21. checkpoint-190/rng_state_2.pth +3 -0
  22. checkpoint-190/rng_state_3.pth +3 -0
  23. checkpoint-190/rng_state_4.pth +3 -0
  24. checkpoint-190/rng_state_5.pth +3 -0
  25. checkpoint-190/rng_state_6.pth +3 -0
  26. checkpoint-190/rng_state_7.pth +3 -0
  27. checkpoint-190/scheduler.pt +3 -0
  28. checkpoint-190/special_tokens_map.json +24 -0
  29. checkpoint-190/tokenizer.json +0 -0
  30. checkpoint-190/tokenizer.model +3 -0
  31. checkpoint-190/tokenizer_config.json +44 -0
  32. checkpoint-190/trainer_state.json +1553 -0
  33. checkpoint-190/training_args.bin +3 -0
  34. checkpoint-190/zero_to_fp32.py +604 -0
  35. config.json +29 -0
  36. generation_config.json +10 -0
  37. llamaboard_config.yaml +65 -0
  38. model-00001-of-00003.safetensors +3 -0
  39. model-00002-of-00003.safetensors +3 -0
  40. model-00003-of-00003.safetensors +3 -0
  41. model.safetensors.index.json +298 -0
  42. running_log.txt +633 -0
  43. special_tokens_map.json +24 -0
  44. tokenizer.json +0 -0
  45. tokenizer.model +3 -0
  46. tokenizer_config.json +44 -0
  47. train_results.json +9 -0
  48. trainer_log.jsonl +191 -0
  49. trainer_state.json +1563 -0
  50. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: meta-llama/Llama-2-7b-chat-hf
4
+ tags:
5
+ - llama-factory
6
+ - full
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: train_2024-07-16-16-48-49_llama2_2
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # train_2024-07-16-16-48-49_llama2_2
17
+
18
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the truth_train_0716_2 dataset.
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 5e-06
38
+ - train_batch_size: 2
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - distributed_type: multi-GPU
42
+ - num_devices: 8
43
+ - gradient_accumulation_steps: 8
44
+ - total_train_batch_size: 128
45
+ - total_eval_batch_size: 64
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: cosine
48
+ - lr_scheduler_warmup_steps: 10
49
+ - num_epochs: 5.0
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.42.3
58
+ - Pytorch 2.3.0a0+ebedce2
59
+ - Datasets 2.20.0
60
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 4.903225806451613,
3
+ "num_input_tokens_seen": 1299120,
4
+ "total_flos": 5.150239379108659e+16,
5
+ "train_loss": 0.3450760219912857,
6
+ "train_runtime": 2142.6975,
7
+ "train_samples_per_second": 11.57,
8
+ "train_steps_per_second": 0.089
9
+ }
checkpoint-190/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 32,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": null,
23
+ "rope_theta": 10000.0,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.42.3",
27
+ "use_cache": false,
28
+ "vocab_size": 32000
29
+ }
checkpoint-190/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.42.3"
10
+ }
checkpoint-190/global_step190/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d11d618f1219df097c6c9a06cf8fd4756d595fe3a00536877b1903a5218d3f3
3
+ size 10107631180
checkpoint-190/global_step190/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c94be31d5660eec230ea527203a408a5ca653348e87f55c701a41e9a4acb8f67
3
+ size 10107631372
checkpoint-190/global_step190/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d334ce67a3e3c77de78122a9e114a2c75be607fb2e9052c4967de098d58b20bd
3
+ size 10107631436
checkpoint-190/global_step190/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c0f89dcb4840043f1db0b581fb9de8736afb45a5e05602835453588e3207911
3
+ size 10107631372
checkpoint-190/global_step190/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d78e61c0f9d7f23bb7f77c0ff85f4a875249710029ad0b61df93507f72e81ad
3
+ size 10107631436
checkpoint-190/global_step190/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a020b4655a1d83ccbf1ac7316e537814ae23a3821cf73ec1fec85cfeede94ab
3
+ size 10107631500
checkpoint-190/global_step190/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14dcce04d260abddd1df2470510e4981f99fc9bdf9903b044a08967a38005f9c
3
+ size 10107631436
checkpoint-190/global_step190/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa9bf5b58ddce0c99079b4709e4631b266da3615d50d7765a4dcfd70710c5a45
3
+ size 10107630988
checkpoint-190/global_step190/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30cf4c57c697259ba6764e03b3ba962e8c8f9e32e4ce43e625c2e8e960db8c2b
3
+ size 13476919288
checkpoint-190/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step190
checkpoint-190/model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af6cb31a20c84677f5085cfa5e077f8442dc10afc0d91be75e4e150668712487
3
+ size 4938985352
checkpoint-190/model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03c38c9aa8e45f6b755a47ad5ba015f1b7c2daf7c1459bdb1b15cb876344adc0
3
+ size 4947390880
checkpoint-190/model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7175530932f0eafafa2a482d31b7f8df84aa9dd5f3b5e23dd168cdeb053363a7
3
+ size 3590488816
checkpoint-190/model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476831232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
checkpoint-190/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a0ef6f96a48e59aa52c4b471312c2a62378c19acc7ebbae839612b03a7d775a
3
+ size 15984
checkpoint-190/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab11d533c0fdad46ea8b8e295ba5fdb705e078eeb88cc28f37d82913508766e9
3
+ size 15984
checkpoint-190/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:615c168147e3465ce5bfab6da2ff4afc68566ce00ec0f0c6c9fc988038a58d0a
3
+ size 15984
checkpoint-190/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79f71e8f8674ecaef9f8cdcbf7ac457a8b8ff15b12694ba2a2fffcb4b43f0f08
3
+ size 15984
checkpoint-190/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88cf6d674dab5545c300a55135f08ca935730a3d35e2c419fb0b333f19482c19
3
+ size 15984
checkpoint-190/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2754f2cd8824702f027870d93748b3c0491b0ecd30f1e3d8e937116b2be6151f
3
+ size 15984
checkpoint-190/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1385124ac55604598f45ea6e2d141f29456647d3e7c10d12ca64ec93d312be8d
3
+ size 15984
checkpoint-190/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:416538efaec7391fa8fe782fb15146b83e5612d9e1961292c34c53e964806873
3
+ size 15984
checkpoint-190/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e610dd5e9f27fcc75487bd147a6e92e36d0c3d068f260ff6e94230dced07d21d
3
+ size 1064
checkpoint-190/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-190/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-190/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-190/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if loop.index0 == 0 and system_message is defined %}{% set content = '<<SYS>>\n' + system_message + '\n<</SYS>>\n\n' + message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '<s>' + '[INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
checkpoint-190/trainer_state.json ADDED
@@ -0,0 +1,1553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.903225806451613,
5
+ "eval_steps": 500,
6
+ "global_step": 190,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.025806451612903226,
13
+ "grad_norm": 276.5378112792969,
14
+ "learning_rate": 5.000000000000001e-07,
15
+ "loss": 8.2514,
16
+ "num_input_tokens_seen": 6848,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.05161290322580645,
21
+ "grad_norm": 294.3509521484375,
22
+ "learning_rate": 1.0000000000000002e-06,
23
+ "loss": 8.2793,
24
+ "num_input_tokens_seen": 13776,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.07741935483870968,
29
+ "grad_norm": 283.4303283691406,
30
+ "learning_rate": 1.5e-06,
31
+ "loss": 8.17,
32
+ "num_input_tokens_seen": 20672,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.1032258064516129,
37
+ "grad_norm": 285.55255126953125,
38
+ "learning_rate": 2.0000000000000003e-06,
39
+ "loss": 7.6197,
40
+ "num_input_tokens_seen": 27744,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.12903225806451613,
45
+ "grad_norm": 271.7382507324219,
46
+ "learning_rate": 2.5e-06,
47
+ "loss": 6.9491,
48
+ "num_input_tokens_seen": 34624,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.15483870967741936,
53
+ "grad_norm": 125.66632080078125,
54
+ "learning_rate": 3e-06,
55
+ "loss": 5.2054,
56
+ "num_input_tokens_seen": 41424,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.18064516129032257,
61
+ "grad_norm": 113.50272369384766,
62
+ "learning_rate": 3.5e-06,
63
+ "loss": 4.8642,
64
+ "num_input_tokens_seen": 48304,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.2064516129032258,
69
+ "grad_norm": 113.24736785888672,
70
+ "learning_rate": 4.000000000000001e-06,
71
+ "loss": 3.2874,
72
+ "num_input_tokens_seen": 55152,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.23225806451612904,
77
+ "grad_norm": 117.07583618164062,
78
+ "learning_rate": 4.5e-06,
79
+ "loss": 2.631,
80
+ "num_input_tokens_seen": 61680,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.25806451612903225,
85
+ "grad_norm": 113.77539825439453,
86
+ "learning_rate": 5e-06,
87
+ "loss": 0.6982,
88
+ "num_input_tokens_seen": 68480,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.2838709677419355,
93
+ "grad_norm": 36.774471282958984,
94
+ "learning_rate": 4.9996192378909785e-06,
95
+ "loss": 0.3276,
96
+ "num_input_tokens_seen": 75296,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.3096774193548387,
101
+ "grad_norm": 33.21468734741211,
102
+ "learning_rate": 4.99847706754774e-06,
103
+ "loss": 0.293,
104
+ "num_input_tokens_seen": 82288,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.33548387096774196,
109
+ "grad_norm": 5.65634822845459,
110
+ "learning_rate": 4.9965738368864345e-06,
111
+ "loss": 0.2129,
112
+ "num_input_tokens_seen": 89088,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.36129032258064514,
117
+ "grad_norm": 55.87510299682617,
118
+ "learning_rate": 4.993910125649561e-06,
119
+ "loss": 0.4712,
120
+ "num_input_tokens_seen": 95904,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.3870967741935484,
125
+ "grad_norm": 31.815500259399414,
126
+ "learning_rate": 4.990486745229364e-06,
127
+ "loss": 0.235,
128
+ "num_input_tokens_seen": 102896,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.4129032258064516,
133
+ "grad_norm": 10.451783180236816,
134
+ "learning_rate": 4.986304738420684e-06,
135
+ "loss": 0.202,
136
+ "num_input_tokens_seen": 109792,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.43870967741935485,
141
+ "grad_norm": 21.014144897460938,
142
+ "learning_rate": 4.981365379103306e-06,
143
+ "loss": 0.1981,
144
+ "num_input_tokens_seen": 116528,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.4645161290322581,
149
+ "grad_norm": 4.897561550140381,
150
+ "learning_rate": 4.975670171853926e-06,
151
+ "loss": 0.1517,
152
+ "num_input_tokens_seen": 123200,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.49032258064516127,
157
+ "grad_norm": 37.270225524902344,
158
+ "learning_rate": 4.9692208514878445e-06,
159
+ "loss": 0.4335,
160
+ "num_input_tokens_seen": 130032,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.5161290322580645,
165
+ "grad_norm": 31.595401763916016,
166
+ "learning_rate": 4.962019382530521e-06,
167
+ "loss": 0.3609,
168
+ "num_input_tokens_seen": 136832,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.5419354838709678,
173
+ "grad_norm": 8.859624862670898,
174
+ "learning_rate": 4.9540679586191605e-06,
175
+ "loss": 0.1708,
176
+ "num_input_tokens_seen": 143904,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.567741935483871,
181
+ "grad_norm": 21.666885375976562,
182
+ "learning_rate": 4.9453690018345144e-06,
183
+ "loss": 0.2277,
184
+ "num_input_tokens_seen": 150496,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.5935483870967742,
189
+ "grad_norm": 29.53874969482422,
190
+ "learning_rate": 4.935925161963089e-06,
191
+ "loss": 0.3437,
192
+ "num_input_tokens_seen": 157360,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.6193548387096774,
197
+ "grad_norm": 17.89641761779785,
198
+ "learning_rate": 4.925739315689991e-06,
199
+ "loss": 0.2229,
200
+ "num_input_tokens_seen": 164464,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.6451612903225806,
205
+ "grad_norm": 2.7967522144317627,
206
+ "learning_rate": 4.914814565722671e-06,
207
+ "loss": 0.1242,
208
+ "num_input_tokens_seen": 170960,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.6709677419354839,
213
+ "grad_norm": 15.343024253845215,
214
+ "learning_rate": 4.903154239845798e-06,
215
+ "loss": 0.2117,
216
+ "num_input_tokens_seen": 177808,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.6967741935483871,
221
+ "grad_norm": 20.621328353881836,
222
+ "learning_rate": 4.890761889907589e-06,
223
+ "loss": 0.2706,
224
+ "num_input_tokens_seen": 184848,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.7225806451612903,
229
+ "grad_norm": 14.205361366271973,
230
+ "learning_rate": 4.8776412907378845e-06,
231
+ "loss": 0.2084,
232
+ "num_input_tokens_seen": 191536,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.7483870967741936,
237
+ "grad_norm": 4.756993770599365,
238
+ "learning_rate": 4.863796438998293e-06,
239
+ "loss": 0.0981,
240
+ "num_input_tokens_seen": 198368,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.7741935483870968,
245
+ "grad_norm": 13.791275024414062,
246
+ "learning_rate": 4.849231551964771e-06,
247
+ "loss": 0.16,
248
+ "num_input_tokens_seen": 205200,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.8,
253
+ "grad_norm": 11.285390853881836,
254
+ "learning_rate": 4.833951066243004e-06,
255
+ "loss": 0.1614,
256
+ "num_input_tokens_seen": 211760,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.8258064516129032,
261
+ "grad_norm": 13.351017951965332,
262
+ "learning_rate": 4.817959636416969e-06,
263
+ "loss": 0.1742,
264
+ "num_input_tokens_seen": 218448,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.8516129032258064,
269
+ "grad_norm": 6.028775691986084,
270
+ "learning_rate": 4.801262133631101e-06,
271
+ "loss": 0.1107,
272
+ "num_input_tokens_seen": 225408,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.8774193548387097,
277
+ "grad_norm": 2.5520031452178955,
278
+ "learning_rate": 4.783863644106502e-06,
279
+ "loss": 0.0822,
280
+ "num_input_tokens_seen": 232032,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.9032258064516129,
285
+ "grad_norm": 13.276092529296875,
286
+ "learning_rate": 4.765769467591626e-06,
287
+ "loss": 0.1873,
288
+ "num_input_tokens_seen": 238672,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.9290322580645162,
293
+ "grad_norm": 15.978204727172852,
294
+ "learning_rate": 4.746985115747918e-06,
295
+ "loss": 0.2375,
296
+ "num_input_tokens_seen": 245456,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.9548387096774194,
301
+ "grad_norm": 16.432758331298828,
302
+ "learning_rate": 4.72751631047092e-06,
303
+ "loss": 0.2667,
304
+ "num_input_tokens_seen": 252576,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.9806451612903225,
309
+ "grad_norm": 12.175621032714844,
310
+ "learning_rate": 4.707368982147318e-06,
311
+ "loss": 0.1547,
312
+ "num_input_tokens_seen": 259536,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 1.0064516129032257,
317
+ "grad_norm": 9.780308723449707,
318
+ "learning_rate": 4.68654926784849e-06,
319
+ "loss": 0.1662,
320
+ "num_input_tokens_seen": 266560,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 1.032258064516129,
325
+ "grad_norm": 3.619741678237915,
326
+ "learning_rate": 4.665063509461098e-06,
327
+ "loss": 0.0808,
328
+ "num_input_tokens_seen": 273248,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 1.0580645161290323,
333
+ "grad_norm": 5.894082546234131,
334
+ "learning_rate": 4.642918251755281e-06,
335
+ "loss": 0.0884,
336
+ "num_input_tokens_seen": 279888,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 1.0838709677419356,
341
+ "grad_norm": 5.443681240081787,
342
+ "learning_rate": 4.620120240391065e-06,
343
+ "loss": 0.0883,
344
+ "num_input_tokens_seen": 286944,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 1.1096774193548387,
349
+ "grad_norm": 3.3760452270507812,
350
+ "learning_rate": 4.596676419863561e-06,
351
+ "loss": 0.0562,
352
+ "num_input_tokens_seen": 293792,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 1.135483870967742,
357
+ "grad_norm": 2.7039427757263184,
358
+ "learning_rate": 4.572593931387604e-06,
359
+ "loss": 0.0856,
360
+ "num_input_tokens_seen": 300512,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 1.1612903225806452,
365
+ "grad_norm": 4.186523914337158,
366
+ "learning_rate": 4.54788011072248e-06,
367
+ "loss": 0.0612,
368
+ "num_input_tokens_seen": 307264,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 1.1870967741935483,
373
+ "grad_norm": 4.6027374267578125,
374
+ "learning_rate": 4.522542485937369e-06,
375
+ "loss": 0.0944,
376
+ "num_input_tokens_seen": 314112,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 1.2129032258064516,
381
+ "grad_norm": 4.636350154876709,
382
+ "learning_rate": 4.496588775118232e-06,
383
+ "loss": 0.0624,
384
+ "num_input_tokens_seen": 320864,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 1.238709677419355,
389
+ "grad_norm": 3.0458312034606934,
390
+ "learning_rate": 4.470026884016805e-06,
391
+ "loss": 0.0363,
392
+ "num_input_tokens_seen": 327648,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 1.2645161290322582,
397
+ "grad_norm": 4.572902679443359,
398
+ "learning_rate": 4.442864903642428e-06,
399
+ "loss": 0.1039,
400
+ "num_input_tokens_seen": 334432,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 1.2903225806451613,
405
+ "grad_norm": 2.629575252532959,
406
+ "learning_rate": 4.415111107797445e-06,
407
+ "loss": 0.0488,
408
+ "num_input_tokens_seen": 341248,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 1.3161290322580645,
413
+ "grad_norm": 2.7692055702209473,
414
+ "learning_rate": 4.386773950556931e-06,
415
+ "loss": 0.0613,
416
+ "num_input_tokens_seen": 348192,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 1.3419354838709676,
421
+ "grad_norm": 2.706336498260498,
422
+ "learning_rate": 4.357862063693486e-06,
423
+ "loss": 0.07,
424
+ "num_input_tokens_seen": 354816,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 1.367741935483871,
429
+ "grad_norm": 1.679677963256836,
430
+ "learning_rate": 4.328384254047927e-06,
431
+ "loss": 0.0463,
432
+ "num_input_tokens_seen": 361600,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 1.3935483870967742,
437
+ "grad_norm": 2.623893976211548,
438
+ "learning_rate": 4.2983495008466285e-06,
439
+ "loss": 0.0671,
440
+ "num_input_tokens_seen": 368464,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 1.4193548387096775,
445
+ "grad_norm": 1.7314574718475342,
446
+ "learning_rate": 4.267766952966369e-06,
447
+ "loss": 0.0428,
448
+ "num_input_tokens_seen": 375440,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 1.4451612903225808,
453
+ "grad_norm": 5.240540981292725,
454
+ "learning_rate": 4.236645926147493e-06,
455
+ "loss": 0.0678,
456
+ "num_input_tokens_seen": 382240,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 1.4709677419354839,
461
+ "grad_norm": 1.9007383584976196,
462
+ "learning_rate": 4.204995900156247e-06,
463
+ "loss": 0.0476,
464
+ "num_input_tokens_seen": 389008,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 1.4967741935483871,
469
+ "grad_norm": 3.100925922393799,
470
+ "learning_rate": 4.172826515897146e-06,
471
+ "loss": 0.0442,
472
+ "num_input_tokens_seen": 396080,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 1.5225806451612902,
477
+ "grad_norm": 2.798711061477661,
478
+ "learning_rate": 4.140147572476269e-06,
479
+ "loss": 0.0336,
480
+ "num_input_tokens_seen": 403056,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 1.5483870967741935,
485
+ "grad_norm": 2.20042085647583,
486
+ "learning_rate": 4.106969024216348e-06,
487
+ "loss": 0.046,
488
+ "num_input_tokens_seen": 409664,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 1.5741935483870968,
493
+ "grad_norm": 4.055737495422363,
494
+ "learning_rate": 4.073300977624594e-06,
495
+ "loss": 0.0416,
496
+ "num_input_tokens_seen": 416272,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 1.6,
501
+ "grad_norm": 3.15283465385437,
502
+ "learning_rate": 4.039153688314146e-06,
503
+ "loss": 0.0649,
504
+ "num_input_tokens_seen": 423360,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 1.6258064516129034,
509
+ "grad_norm": 4.418552398681641,
510
+ "learning_rate": 4.0045375578801216e-06,
511
+ "loss": 0.0591,
512
+ "num_input_tokens_seen": 430304,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 1.6516129032258065,
517
+ "grad_norm": 3.960134506225586,
518
+ "learning_rate": 3.969463130731183e-06,
519
+ "loss": 0.0318,
520
+ "num_input_tokens_seen": 436960,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 1.6774193548387095,
525
+ "grad_norm": 3.1769161224365234,
526
+ "learning_rate": 3.933941090877615e-06,
527
+ "loss": 0.0462,
528
+ "num_input_tokens_seen": 443792,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 1.7032258064516128,
533
+ "grad_norm": 4.235939025878906,
534
+ "learning_rate": 3.897982258676867e-06,
535
+ "loss": 0.0465,
536
+ "num_input_tokens_seen": 450672,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 1.729032258064516,
541
+ "grad_norm": 2.7547543048858643,
542
+ "learning_rate": 3.861597587537568e-06,
543
+ "loss": 0.0316,
544
+ "num_input_tokens_seen": 457616,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 1.7548387096774194,
549
+ "grad_norm": 4.103342533111572,
550
+ "learning_rate": 3.824798160583012e-06,
551
+ "loss": 0.1,
552
+ "num_input_tokens_seen": 464592,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 1.7806451612903227,
557
+ "grad_norm": 3.525808811187744,
558
+ "learning_rate": 3.787595187275136e-06,
559
+ "loss": 0.0711,
560
+ "num_input_tokens_seen": 471328,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 1.8064516129032258,
565
+ "grad_norm": 2.9660446643829346,
566
+ "learning_rate": 3.7500000000000005e-06,
567
+ "loss": 0.0494,
568
+ "num_input_tokens_seen": 478480,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 1.832258064516129,
573
+ "grad_norm": 3.661849021911621,
574
+ "learning_rate": 3.7120240506158433e-06,
575
+ "loss": 0.0618,
576
+ "num_input_tokens_seen": 485264,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 1.8580645161290321,
581
+ "grad_norm": 1.8227900266647339,
582
+ "learning_rate": 3.6736789069647273e-06,
583
+ "loss": 0.0511,
584
+ "num_input_tokens_seen": 492064,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 1.8838709677419354,
589
+ "grad_norm": 2.1322553157806396,
590
+ "learning_rate": 3.634976249348867e-06,
591
+ "loss": 0.0464,
592
+ "num_input_tokens_seen": 498896,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 1.9096774193548387,
597
+ "grad_norm": 1.8635531663894653,
598
+ "learning_rate": 3.595927866972694e-06,
599
+ "loss": 0.0331,
600
+ "num_input_tokens_seen": 506016,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 1.935483870967742,
605
+ "grad_norm": 2.9526419639587402,
606
+ "learning_rate": 3.556545654351749e-06,
607
+ "loss": 0.0706,
608
+ "num_input_tokens_seen": 512848,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 1.9612903225806453,
613
+ "grad_norm": 2.8351802825927734,
614
+ "learning_rate": 3.516841607689501e-06,
615
+ "loss": 0.0442,
616
+ "num_input_tokens_seen": 519744,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 1.9870967741935484,
621
+ "grad_norm": 3.1449944972991943,
622
+ "learning_rate": 3.476827821223184e-06,
623
+ "loss": 0.042,
624
+ "num_input_tokens_seen": 526352,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 2.0129032258064514,
629
+ "grad_norm": 1.6314219236373901,
630
+ "learning_rate": 3.436516483539781e-06,
631
+ "loss": 0.021,
632
+ "num_input_tokens_seen": 533136,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 2.0387096774193547,
637
+ "grad_norm": 1.6224279403686523,
638
+ "learning_rate": 3.39591987386325e-06,
639
+ "loss": 0.0094,
640
+ "num_input_tokens_seen": 540016,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 2.064516129032258,
645
+ "grad_norm": 0.3502344787120819,
646
+ "learning_rate": 3.3550503583141726e-06,
647
+ "loss": 0.0021,
648
+ "num_input_tokens_seen": 547152,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 2.0903225806451613,
653
+ "grad_norm": 1.7473047971725464,
654
+ "learning_rate": 3.313920386142892e-06,
655
+ "loss": 0.0146,
656
+ "num_input_tokens_seen": 553888,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 2.1161290322580646,
661
+ "grad_norm": 2.363898277282715,
662
+ "learning_rate": 3.272542485937369e-06,
663
+ "loss": 0.0237,
664
+ "num_input_tokens_seen": 561024,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 2.141935483870968,
669
+ "grad_norm": 1.377082109451294,
670
+ "learning_rate": 3.230929261806842e-06,
671
+ "loss": 0.0031,
672
+ "num_input_tokens_seen": 567936,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 2.167741935483871,
677
+ "grad_norm": 0.6467981934547424,
678
+ "learning_rate": 3.189093389542498e-06,
679
+ "loss": 0.0034,
680
+ "num_input_tokens_seen": 574736,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 2.193548387096774,
685
+ "grad_norm": 0.9653486609458923,
686
+ "learning_rate": 3.147047612756302e-06,
687
+ "loss": 0.0045,
688
+ "num_input_tokens_seen": 581680,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 2.2193548387096773,
693
+ "grad_norm": 0.7019590735435486,
694
+ "learning_rate": 3.1048047389991693e-06,
695
+ "loss": 0.0031,
696
+ "num_input_tokens_seen": 588464,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 2.2451612903225806,
701
+ "grad_norm": 2.078730821609497,
702
+ "learning_rate": 3.062377635859663e-06,
703
+ "loss": 0.0341,
704
+ "num_input_tokens_seen": 595312,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 2.270967741935484,
709
+ "grad_norm": 4.608306407928467,
710
+ "learning_rate": 3.019779227044398e-06,
711
+ "loss": 0.0095,
712
+ "num_input_tokens_seen": 602080,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 2.296774193548387,
717
+ "grad_norm": 3.8219709396362305,
718
+ "learning_rate": 2.9770224884413625e-06,
719
+ "loss": 0.0459,
720
+ "num_input_tokens_seen": 609168,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 2.3225806451612905,
725
+ "grad_norm": 2.868053674697876,
726
+ "learning_rate": 2.9341204441673267e-06,
727
+ "loss": 0.0104,
728
+ "num_input_tokens_seen": 616000,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 2.3483870967741938,
733
+ "grad_norm": 2.516240119934082,
734
+ "learning_rate": 2.8910861626005774e-06,
735
+ "loss": 0.0201,
736
+ "num_input_tokens_seen": 622544,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 2.3741935483870966,
741
+ "grad_norm": 0.5750585794448853,
742
+ "learning_rate": 2.847932752400164e-06,
743
+ "loss": 0.0021,
744
+ "num_input_tokens_seen": 629600,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 2.4,
749
+ "grad_norm": 2.9817891120910645,
750
+ "learning_rate": 2.804673358512869e-06,
751
+ "loss": 0.043,
752
+ "num_input_tokens_seen": 636320,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 2.425806451612903,
757
+ "grad_norm": 1.8277342319488525,
758
+ "learning_rate": 2.761321158169134e-06,
759
+ "loss": 0.0207,
760
+ "num_input_tokens_seen": 643136,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 2.4516129032258065,
765
+ "grad_norm": 4.615224361419678,
766
+ "learning_rate": 2.717889356869146e-06,
767
+ "loss": 0.0148,
768
+ "num_input_tokens_seen": 650048,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 2.47741935483871,
773
+ "grad_norm": 0.9854787588119507,
774
+ "learning_rate": 2.6743911843603134e-06,
775
+ "loss": 0.004,
776
+ "num_input_tokens_seen": 656736,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 2.5032258064516126,
781
+ "grad_norm": 1.4292289018630981,
782
+ "learning_rate": 2.6308398906073603e-06,
783
+ "loss": 0.0131,
784
+ "num_input_tokens_seen": 663552,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 2.5290322580645164,
789
+ "grad_norm": 4.594967842102051,
790
+ "learning_rate": 2.587248741756253e-06,
791
+ "loss": 0.0455,
792
+ "num_input_tokens_seen": 670224,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 2.554838709677419,
797
+ "grad_norm": 0.8579672574996948,
798
+ "learning_rate": 2.543631016093209e-06,
799
+ "loss": 0.0031,
800
+ "num_input_tokens_seen": 676960,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 2.5806451612903225,
805
+ "grad_norm": 2.075626850128174,
806
+ "learning_rate": 2.5e-06,
807
+ "loss": 0.0099,
808
+ "num_input_tokens_seen": 684016,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 2.606451612903226,
813
+ "grad_norm": 3.9176177978515625,
814
+ "learning_rate": 2.4563689839067913e-06,
815
+ "loss": 0.0797,
816
+ "num_input_tokens_seen": 690832,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 2.632258064516129,
821
+ "grad_norm": 1.6330746412277222,
822
+ "learning_rate": 2.4127512582437486e-06,
823
+ "loss": 0.0059,
824
+ "num_input_tokens_seen": 697808,
825
+ "step": 102
826
+ },
827
+ {
828
+ "epoch": 2.6580645161290324,
829
+ "grad_norm": 2.173410177230835,
830
+ "learning_rate": 2.3691601093926406e-06,
831
+ "loss": 0.0438,
832
+ "num_input_tokens_seen": 704352,
833
+ "step": 103
834
+ },
835
+ {
836
+ "epoch": 2.6838709677419352,
837
+ "grad_norm": 1.6522724628448486,
838
+ "learning_rate": 2.325608815639687e-06,
839
+ "loss": 0.0149,
840
+ "num_input_tokens_seen": 711456,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 2.709677419354839,
845
+ "grad_norm": 0.7776157855987549,
846
+ "learning_rate": 2.2821106431308546e-06,
847
+ "loss": 0.0126,
848
+ "num_input_tokens_seen": 718224,
849
+ "step": 105
850
+ },
851
+ {
852
+ "epoch": 2.735483870967742,
853
+ "grad_norm": 2.2912323474884033,
854
+ "learning_rate": 2.238678841830867e-06,
855
+ "loss": 0.0255,
856
+ "num_input_tokens_seen": 724928,
857
+ "step": 106
858
+ },
859
+ {
860
+ "epoch": 2.761290322580645,
861
+ "grad_norm": 0.5118953585624695,
862
+ "learning_rate": 2.195326641487132e-06,
863
+ "loss": 0.0048,
864
+ "num_input_tokens_seen": 731616,
865
+ "step": 107
866
+ },
867
+ {
868
+ "epoch": 2.7870967741935484,
869
+ "grad_norm": 0.9067234396934509,
870
+ "learning_rate": 2.1520672475998374e-06,
871
+ "loss": 0.0142,
872
+ "num_input_tokens_seen": 738272,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 2.8129032258064517,
877
+ "grad_norm": 1.6885769367218018,
878
+ "learning_rate": 2.1089138373994226e-06,
879
+ "loss": 0.0193,
880
+ "num_input_tokens_seen": 745104,
881
+ "step": 109
882
+ },
883
+ {
884
+ "epoch": 2.838709677419355,
885
+ "grad_norm": 0.6433587074279785,
886
+ "learning_rate": 2.0658795558326745e-06,
887
+ "loss": 0.0055,
888
+ "num_input_tokens_seen": 752016,
889
+ "step": 110
890
+ },
891
+ {
892
+ "epoch": 2.864516129032258,
893
+ "grad_norm": 1.0263943672180176,
894
+ "learning_rate": 2.022977511558638e-06,
895
+ "loss": 0.0144,
896
+ "num_input_tokens_seen": 758720,
897
+ "step": 111
898
+ },
899
+ {
900
+ "epoch": 2.8903225806451616,
901
+ "grad_norm": 1.3137305974960327,
902
+ "learning_rate": 1.9802207729556023e-06,
903
+ "loss": 0.0272,
904
+ "num_input_tokens_seen": 765520,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 2.9161290322580644,
909
+ "grad_norm": 2.692868947982788,
910
+ "learning_rate": 1.937622364140338e-06,
911
+ "loss": 0.0101,
912
+ "num_input_tokens_seen": 772288,
913
+ "step": 113
914
+ },
915
+ {
916
+ "epoch": 2.9419354838709677,
917
+ "grad_norm": 2.19588565826416,
918
+ "learning_rate": 1.895195261000831e-06,
919
+ "loss": 0.0109,
920
+ "num_input_tokens_seen": 779520,
921
+ "step": 114
922
+ },
923
+ {
924
+ "epoch": 2.967741935483871,
925
+ "grad_norm": 2.681143283843994,
926
+ "learning_rate": 1.852952387243698e-06,
927
+ "loss": 0.018,
928
+ "num_input_tokens_seen": 786400,
929
+ "step": 115
930
+ },
931
+ {
932
+ "epoch": 2.9935483870967743,
933
+ "grad_norm": 1.9662718772888184,
934
+ "learning_rate": 1.8109066104575023e-06,
935
+ "loss": 0.0141,
936
+ "num_input_tokens_seen": 793008,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 3.0193548387096776,
941
+ "grad_norm": 1.1327028274536133,
942
+ "learning_rate": 1.7690707381931585e-06,
943
+ "loss": 0.0057,
944
+ "num_input_tokens_seen": 799808,
945
+ "step": 117
946
+ },
947
+ {
948
+ "epoch": 3.0451612903225804,
949
+ "grad_norm": 0.593132495880127,
950
+ "learning_rate": 1.7274575140626318e-06,
951
+ "loss": 0.0063,
952
+ "num_input_tokens_seen": 806576,
953
+ "step": 118
954
+ },
955
+ {
956
+ "epoch": 3.0709677419354837,
957
+ "grad_norm": 1.123922348022461,
958
+ "learning_rate": 1.686079613857109e-06,
959
+ "loss": 0.0138,
960
+ "num_input_tokens_seen": 813312,
961
+ "step": 119
962
+ },
963
+ {
964
+ "epoch": 3.096774193548387,
965
+ "grad_norm": 0.14445500075817108,
966
+ "learning_rate": 1.6449496416858285e-06,
967
+ "loss": 0.0011,
968
+ "num_input_tokens_seen": 819728,
969
+ "step": 120
970
+ },
971
+ {
972
+ "epoch": 3.1225806451612903,
973
+ "grad_norm": 0.09276027232408524,
974
+ "learning_rate": 1.6040801261367494e-06,
975
+ "loss": 0.0006,
976
+ "num_input_tokens_seen": 826496,
977
+ "step": 121
978
+ },
979
+ {
980
+ "epoch": 3.1483870967741936,
981
+ "grad_norm": 0.6197965741157532,
982
+ "learning_rate": 1.56348351646022e-06,
983
+ "loss": 0.0055,
984
+ "num_input_tokens_seen": 833360,
985
+ "step": 122
986
+ },
987
+ {
988
+ "epoch": 3.174193548387097,
989
+ "grad_norm": 0.1872132420539856,
990
+ "learning_rate": 1.5231721787768162e-06,
991
+ "loss": 0.0011,
992
+ "num_input_tokens_seen": 840080,
993
+ "step": 123
994
+ },
995
+ {
996
+ "epoch": 3.2,
997
+ "grad_norm": 2.89666748046875,
998
+ "learning_rate": 1.4831583923105e-06,
999
+ "loss": 0.0173,
1000
+ "num_input_tokens_seen": 847104,
1001
+ "step": 124
1002
+ },
1003
+ {
1004
+ "epoch": 3.225806451612903,
1005
+ "grad_norm": 0.8067394495010376,
1006
+ "learning_rate": 1.443454345648252e-06,
1007
+ "loss": 0.0027,
1008
+ "num_input_tokens_seen": 853712,
1009
+ "step": 125
1010
+ },
1011
+ {
1012
+ "epoch": 3.2516129032258063,
1013
+ "grad_norm": 0.5419718623161316,
1014
+ "learning_rate": 1.4040721330273063e-06,
1015
+ "loss": 0.0029,
1016
+ "num_input_tokens_seen": 860400,
1017
+ "step": 126
1018
+ },
1019
+ {
1020
+ "epoch": 3.2774193548387096,
1021
+ "grad_norm": 0.05267687141895294,
1022
+ "learning_rate": 1.3650237506511333e-06,
1023
+ "loss": 0.0003,
1024
+ "num_input_tokens_seen": 867440,
1025
+ "step": 127
1026
+ },
1027
+ {
1028
+ "epoch": 3.303225806451613,
1029
+ "grad_norm": 0.11772596091032028,
1030
+ "learning_rate": 1.3263210930352737e-06,
1031
+ "loss": 0.0007,
1032
+ "num_input_tokens_seen": 874256,
1033
+ "step": 128
1034
+ },
1035
+ {
1036
+ "epoch": 3.329032258064516,
1037
+ "grad_norm": 0.9182859063148499,
1038
+ "learning_rate": 1.2879759493841577e-06,
1039
+ "loss": 0.008,
1040
+ "num_input_tokens_seen": 881168,
1041
+ "step": 129
1042
+ },
1043
+ {
1044
+ "epoch": 3.3548387096774195,
1045
+ "grad_norm": 0.07012775540351868,
1046
+ "learning_rate": 1.2500000000000007e-06,
1047
+ "loss": 0.0004,
1048
+ "num_input_tokens_seen": 888128,
1049
+ "step": 130
1050
+ },
1051
+ {
1052
+ "epoch": 3.3806451612903228,
1053
+ "grad_norm": 0.979766309261322,
1054
+ "learning_rate": 1.2124048127248644e-06,
1055
+ "loss": 0.0049,
1056
+ "num_input_tokens_seen": 895296,
1057
+ "step": 131
1058
+ },
1059
+ {
1060
+ "epoch": 3.4064516129032256,
1061
+ "grad_norm": 0.25211745500564575,
1062
+ "learning_rate": 1.1752018394169882e-06,
1063
+ "loss": 0.0012,
1064
+ "num_input_tokens_seen": 901984,
1065
+ "step": 132
1066
+ },
1067
+ {
1068
+ "epoch": 3.432258064516129,
1069
+ "grad_norm": 0.7576802968978882,
1070
+ "learning_rate": 1.1384024124624324e-06,
1071
+ "loss": 0.0044,
1072
+ "num_input_tokens_seen": 909104,
1073
+ "step": 133
1074
+ },
1075
+ {
1076
+ "epoch": 3.458064516129032,
1077
+ "grad_norm": 0.6242833733558655,
1078
+ "learning_rate": 1.1020177413231334e-06,
1079
+ "loss": 0.0017,
1080
+ "num_input_tokens_seen": 916032,
1081
+ "step": 134
1082
+ },
1083
+ {
1084
+ "epoch": 3.4838709677419355,
1085
+ "grad_norm": 0.06409750878810883,
1086
+ "learning_rate": 1.0660589091223854e-06,
1087
+ "loss": 0.0003,
1088
+ "num_input_tokens_seen": 922736,
1089
+ "step": 135
1090
+ },
1091
+ {
1092
+ "epoch": 3.509677419354839,
1093
+ "grad_norm": 0.7863635420799255,
1094
+ "learning_rate": 1.0305368692688175e-06,
1095
+ "loss": 0.0099,
1096
+ "num_input_tokens_seen": 929472,
1097
+ "step": 136
1098
+ },
1099
+ {
1100
+ "epoch": 3.535483870967742,
1101
+ "grad_norm": 0.7082129716873169,
1102
+ "learning_rate": 9.95462442119879e-07,
1103
+ "loss": 0.0068,
1104
+ "num_input_tokens_seen": 936112,
1105
+ "step": 137
1106
+ },
1107
+ {
1108
+ "epoch": 3.5612903225806454,
1109
+ "grad_norm": 0.5010254383087158,
1110
+ "learning_rate": 9.608463116858544e-07,
1111
+ "loss": 0.0025,
1112
+ "num_input_tokens_seen": 942912,
1113
+ "step": 138
1114
+ },
1115
+ {
1116
+ "epoch": 3.587096774193548,
1117
+ "grad_norm": 0.1011819988489151,
1118
+ "learning_rate": 9.266990223754069e-07,
1119
+ "loss": 0.0004,
1120
+ "num_input_tokens_seen": 949984,
1121
+ "step": 139
1122
+ },
1123
+ {
1124
+ "epoch": 3.6129032258064515,
1125
+ "grad_norm": 4.317319869995117,
1126
+ "learning_rate": 8.930309757836517e-07,
1127
+ "loss": 0.0101,
1128
+ "num_input_tokens_seen": 956608,
1129
+ "step": 140
1130
+ },
1131
+ {
1132
+ "epoch": 3.638709677419355,
1133
+ "grad_norm": 0.7055479288101196,
1134
+ "learning_rate": 8.598524275237321e-07,
1135
+ "loss": 0.0068,
1136
+ "num_input_tokens_seen": 963488,
1137
+ "step": 141
1138
+ },
1139
+ {
1140
+ "epoch": 3.664516129032258,
1141
+ "grad_norm": 0.10063151270151138,
1142
+ "learning_rate": 8.271734841028553e-07,
1143
+ "loss": 0.0007,
1144
+ "num_input_tokens_seen": 970128,
1145
+ "step": 142
1146
+ },
1147
+ {
1148
+ "epoch": 3.6903225806451614,
1149
+ "grad_norm": 3.3077032566070557,
1150
+ "learning_rate": 7.950040998437541e-07,
1151
+ "loss": 0.0161,
1152
+ "num_input_tokens_seen": 976800,
1153
+ "step": 143
1154
+ },
1155
+ {
1156
+ "epoch": 3.7161290322580647,
1157
+ "grad_norm": 1.0670413970947266,
1158
+ "learning_rate": 7.633540738525066e-07,
1159
+ "loss": 0.0115,
1160
+ "num_input_tokens_seen": 984000,
1161
+ "step": 144
1162
+ },
1163
+ {
1164
+ "epoch": 3.741935483870968,
1165
+ "grad_norm": 1.591837763786316,
1166
+ "learning_rate": 7.322330470336314e-07,
1167
+ "loss": 0.0052,
1168
+ "num_input_tokens_seen": 990896,
1169
+ "step": 145
1170
+ },
1171
+ {
1172
+ "epoch": 3.767741935483871,
1173
+ "grad_norm": 3.105447769165039,
1174
+ "learning_rate": 7.016504991533727e-07,
1175
+ "loss": 0.0098,
1176
+ "num_input_tokens_seen": 997824,
1177
+ "step": 146
1178
+ },
1179
+ {
1180
+ "epoch": 3.793548387096774,
1181
+ "grad_norm": 0.0832144096493721,
1182
+ "learning_rate": 6.716157459520739e-07,
1183
+ "loss": 0.0005,
1184
+ "num_input_tokens_seen": 1004928,
1185
+ "step": 147
1186
+ },
1187
+ {
1188
+ "epoch": 3.8193548387096774,
1189
+ "grad_norm": 0.2546854317188263,
1190
+ "learning_rate": 6.421379363065142e-07,
1191
+ "loss": 0.0012,
1192
+ "num_input_tokens_seen": 1011696,
1193
+ "step": 148
1194
+ },
1195
+ {
1196
+ "epoch": 3.8451612903225807,
1197
+ "grad_norm": 0.40274935960769653,
1198
+ "learning_rate": 6.1322604944307e-07,
1199
+ "loss": 0.0013,
1200
+ "num_input_tokens_seen": 1018368,
1201
+ "step": 149
1202
+ },
1203
+ {
1204
+ "epoch": 3.870967741935484,
1205
+ "grad_norm": 0.04935682937502861,
1206
+ "learning_rate": 5.848888922025553e-07,
1207
+ "loss": 0.0003,
1208
+ "num_input_tokens_seen": 1025424,
1209
+ "step": 150
1210
+ },
1211
+ {
1212
+ "epoch": 3.896774193548387,
1213
+ "grad_norm": 0.8725687265396118,
1214
+ "learning_rate": 5.571350963575728e-07,
1215
+ "loss": 0.0026,
1216
+ "num_input_tokens_seen": 1032016,
1217
+ "step": 151
1218
+ },
1219
+ {
1220
+ "epoch": 3.9225806451612906,
1221
+ "grad_norm": 0.9522215127944946,
1222
+ "learning_rate": 5.299731159831953e-07,
1223
+ "loss": 0.0097,
1224
+ "num_input_tokens_seen": 1038928,
1225
+ "step": 152
1226
+ },
1227
+ {
1228
+ "epoch": 3.9483870967741934,
1229
+ "grad_norm": 2.608211040496826,
1230
+ "learning_rate": 5.034112248817685e-07,
1231
+ "loss": 0.0047,
1232
+ "num_input_tokens_seen": 1045664,
1233
+ "step": 153
1234
+ },
1235
+ {
1236
+ "epoch": 3.9741935483870967,
1237
+ "grad_norm": 0.913472592830658,
1238
+ "learning_rate": 4.774575140626317e-07,
1239
+ "loss": 0.0081,
1240
+ "num_input_tokens_seen": 1052640,
1241
+ "step": 154
1242
+ },
1243
+ {
1244
+ "epoch": 4.0,
1245
+ "grad_norm": 0.5549633502960205,
1246
+ "learning_rate": 4.5211988927752026e-07,
1247
+ "loss": 0.0018,
1248
+ "num_input_tokens_seen": 1059840,
1249
+ "step": 155
1250
+ },
1251
+ {
1252
+ "epoch": 4.025806451612903,
1253
+ "grad_norm": 0.6482688784599304,
1254
+ "learning_rate": 4.27406068612396e-07,
1255
+ "loss": 0.0053,
1256
+ "num_input_tokens_seen": 1066704,
1257
+ "step": 156
1258
+ },
1259
+ {
1260
+ "epoch": 4.051612903225807,
1261
+ "grad_norm": 0.11119811981916428,
1262
+ "learning_rate": 4.033235801364402e-07,
1263
+ "loss": 0.0005,
1264
+ "num_input_tokens_seen": 1073600,
1265
+ "step": 157
1266
+ },
1267
+ {
1268
+ "epoch": 4.077419354838709,
1269
+ "grad_norm": 0.009617508389055729,
1270
+ "learning_rate": 3.798797596089351e-07,
1271
+ "loss": 0.0001,
1272
+ "num_input_tokens_seen": 1080208,
1273
+ "step": 158
1274
+ },
1275
+ {
1276
+ "epoch": 4.103225806451613,
1277
+ "grad_norm": 0.18060296773910522,
1278
+ "learning_rate": 3.5708174824471947e-07,
1279
+ "loss": 0.0018,
1280
+ "num_input_tokens_seen": 1086880,
1281
+ "step": 159
1282
+ },
1283
+ {
1284
+ "epoch": 4.129032258064516,
1285
+ "grad_norm": 0.3545215427875519,
1286
+ "learning_rate": 3.3493649053890325e-07,
1287
+ "loss": 0.001,
1288
+ "num_input_tokens_seen": 1093520,
1289
+ "step": 160
1290
+ },
1291
+ {
1292
+ "epoch": 4.15483870967742,
1293
+ "grad_norm": 0.03870348632335663,
1294
+ "learning_rate": 3.134507321515107e-07,
1295
+ "loss": 0.0001,
1296
+ "num_input_tokens_seen": 1100528,
1297
+ "step": 161
1298
+ },
1299
+ {
1300
+ "epoch": 4.180645161290323,
1301
+ "grad_norm": 0.20078836381435394,
1302
+ "learning_rate": 2.9263101785268253e-07,
1303
+ "loss": 0.0012,
1304
+ "num_input_tokens_seen": 1107520,
1305
+ "step": 162
1306
+ },
1307
+ {
1308
+ "epoch": 4.2064516129032254,
1309
+ "grad_norm": 0.00893727969378233,
1310
+ "learning_rate": 2.7248368952908055e-07,
1311
+ "loss": 0.0001,
1312
+ "num_input_tokens_seen": 1114208,
1313
+ "step": 163
1314
+ },
1315
+ {
1316
+ "epoch": 4.232258064516129,
1317
+ "grad_norm": 0.027001328766345978,
1318
+ "learning_rate": 2.53014884252083e-07,
1319
+ "loss": 0.0002,
1320
+ "num_input_tokens_seen": 1120912,
1321
+ "step": 164
1322
+ },
1323
+ {
1324
+ "epoch": 4.258064516129032,
1325
+ "grad_norm": 0.01514577865600586,
1326
+ "learning_rate": 2.3423053240837518e-07,
1327
+ "loss": 0.0001,
1328
+ "num_input_tokens_seen": 1127872,
1329
+ "step": 165
1330
+ },
1331
+ {
1332
+ "epoch": 4.283870967741936,
1333
+ "grad_norm": 0.0690593495965004,
1334
+ "learning_rate": 2.1613635589349756e-07,
1335
+ "loss": 0.0003,
1336
+ "num_input_tokens_seen": 1134352,
1337
+ "step": 166
1338
+ },
1339
+ {
1340
+ "epoch": 4.309677419354839,
1341
+ "grad_norm": 0.021051278337836266,
1342
+ "learning_rate": 1.9873786636889908e-07,
1343
+ "loss": 0.0001,
1344
+ "num_input_tokens_seen": 1141440,
1345
+ "step": 167
1346
+ },
1347
+ {
1348
+ "epoch": 4.335483870967742,
1349
+ "grad_norm": 0.3527485132217407,
1350
+ "learning_rate": 1.8204036358303173e-07,
1351
+ "loss": 0.0007,
1352
+ "num_input_tokens_seen": 1148096,
1353
+ "step": 168
1354
+ },
1355
+ {
1356
+ "epoch": 4.361290322580645,
1357
+ "grad_norm": 0.09119685739278793,
1358
+ "learning_rate": 1.6604893375699594e-07,
1359
+ "loss": 0.0003,
1360
+ "num_input_tokens_seen": 1154672,
1361
+ "step": 169
1362
+ },
1363
+ {
1364
+ "epoch": 4.387096774193548,
1365
+ "grad_norm": 0.014869263395667076,
1366
+ "learning_rate": 1.507684480352292e-07,
1367
+ "loss": 0.0001,
1368
+ "num_input_tokens_seen": 1161744,
1369
+ "step": 170
1370
+ },
1371
+ {
1372
+ "epoch": 4.412903225806452,
1373
+ "grad_norm": 0.16110821068286896,
1374
+ "learning_rate": 1.362035610017079e-07,
1375
+ "loss": 0.0008,
1376
+ "num_input_tokens_seen": 1168944,
1377
+ "step": 171
1378
+ },
1379
+ {
1380
+ "epoch": 4.438709677419355,
1381
+ "grad_norm": 0.05959083512425423,
1382
+ "learning_rate": 1.223587092621162e-07,
1383
+ "loss": 0.0001,
1384
+ "num_input_tokens_seen": 1175792,
1385
+ "step": 172
1386
+ },
1387
+ {
1388
+ "epoch": 4.464516129032258,
1389
+ "grad_norm": 0.15646237134933472,
1390
+ "learning_rate": 1.0923811009241142e-07,
1391
+ "loss": 0.0004,
1392
+ "num_input_tokens_seen": 1182800,
1393
+ "step": 173
1394
+ },
1395
+ {
1396
+ "epoch": 4.490322580645161,
1397
+ "grad_norm": 0.024713285267353058,
1398
+ "learning_rate": 9.684576015420277e-08,
1399
+ "loss": 0.0001,
1400
+ "num_input_tokens_seen": 1189568,
1401
+ "step": 174
1402
+ },
1403
+ {
1404
+ "epoch": 4.516129032258064,
1405
+ "grad_norm": 0.0995955690741539,
1406
+ "learning_rate": 8.518543427732951e-08,
1407
+ "loss": 0.0005,
1408
+ "num_input_tokens_seen": 1196480,
1409
+ "step": 175
1410
+ },
1411
+ {
1412
+ "epoch": 4.541935483870968,
1413
+ "grad_norm": 0.5925021767616272,
1414
+ "learning_rate": 7.426068431000883e-08,
1415
+ "loss": 0.0076,
1416
+ "num_input_tokens_seen": 1203728,
1417
+ "step": 176
1418
+ },
1419
+ {
1420
+ "epoch": 4.567741935483871,
1421
+ "grad_norm": 0.07701185345649719,
1422
+ "learning_rate": 6.407483803691216e-08,
1423
+ "loss": 0.0004,
1424
+ "num_input_tokens_seen": 1210320,
1425
+ "step": 177
1426
+ },
1427
+ {
1428
+ "epoch": 4.593548387096774,
1429
+ "grad_norm": 0.5693293213844299,
1430
+ "learning_rate": 5.463099816548578e-08,
1431
+ "loss": 0.004,
1432
+ "num_input_tokens_seen": 1217248,
1433
+ "step": 178
1434
+ },
1435
+ {
1436
+ "epoch": 4.619354838709677,
1437
+ "grad_norm": 0.025556327775120735,
1438
+ "learning_rate": 4.593204138084006e-08,
1439
+ "loss": 0.0001,
1440
+ "num_input_tokens_seen": 1224192,
1441
+ "step": 179
1442
+ },
1443
+ {
1444
+ "epoch": 4.645161290322581,
1445
+ "grad_norm": 0.14782366156578064,
1446
+ "learning_rate": 3.798061746947995e-08,
1447
+ "loss": 0.0005,
1448
+ "num_input_tokens_seen": 1230896,
1449
+ "step": 180
1450
+ },
1451
+ {
1452
+ "epoch": 4.670967741935484,
1453
+ "grad_norm": 0.06809692084789276,
1454
+ "learning_rate": 3.077914851215585e-08,
1455
+ "loss": 0.0002,
1456
+ "num_input_tokens_seen": 1237840,
1457
+ "step": 181
1458
+ },
1459
+ {
1460
+ "epoch": 4.6967741935483875,
1461
+ "grad_norm": 0.01677132397890091,
1462
+ "learning_rate": 2.4329828146074096e-08,
1463
+ "loss": 0.0001,
1464
+ "num_input_tokens_seen": 1244688,
1465
+ "step": 182
1466
+ },
1467
+ {
1468
+ "epoch": 4.72258064516129,
1469
+ "grad_norm": 0.019206374883651733,
1470
+ "learning_rate": 1.8634620896695044e-08,
1471
+ "loss": 0.0001,
1472
+ "num_input_tokens_seen": 1251584,
1473
+ "step": 183
1474
+ },
1475
+ {
1476
+ "epoch": 4.748387096774193,
1477
+ "grad_norm": 0.02283065766096115,
1478
+ "learning_rate": 1.3695261579316776e-08,
1479
+ "loss": 0.0001,
1480
+ "num_input_tokens_seen": 1258448,
1481
+ "step": 184
1482
+ },
1483
+ {
1484
+ "epoch": 4.774193548387097,
1485
+ "grad_norm": 1.8589617013931274,
1486
+ "learning_rate": 9.513254770636138e-09,
1487
+ "loss": 0.0167,
1488
+ "num_input_tokens_seen": 1265440,
1489
+ "step": 185
1490
+ },
1491
+ {
1492
+ "epoch": 4.8,
1493
+ "grad_norm": 0.03213285654783249,
1494
+ "learning_rate": 6.089874350439507e-09,
1495
+ "loss": 0.0002,
1496
+ "num_input_tokens_seen": 1272080,
1497
+ "step": 186
1498
+ },
1499
+ {
1500
+ "epoch": 4.825806451612904,
1501
+ "grad_norm": 0.11905555427074432,
1502
+ "learning_rate": 3.4261631135654174e-09,
1503
+ "loss": 0.0003,
1504
+ "num_input_tokens_seen": 1278976,
1505
+ "step": 187
1506
+ },
1507
+ {
1508
+ "epoch": 4.851612903225806,
1509
+ "grad_norm": 0.384997695684433,
1510
+ "learning_rate": 1.5229324522605949e-09,
1511
+ "loss": 0.0024,
1512
+ "num_input_tokens_seen": 1285760,
1513
+ "step": 188
1514
+ },
1515
+ {
1516
+ "epoch": 4.877419354838709,
1517
+ "grad_norm": 0.08503298461437225,
1518
+ "learning_rate": 3.8076210902182607e-10,
1519
+ "loss": 0.0005,
1520
+ "num_input_tokens_seen": 1292368,
1521
+ "step": 189
1522
+ },
1523
+ {
1524
+ "epoch": 4.903225806451613,
1525
+ "grad_norm": 0.4136364758014679,
1526
+ "learning_rate": 0.0,
1527
+ "loss": 0.0017,
1528
+ "num_input_tokens_seen": 1299120,
1529
+ "step": 190
1530
+ }
1531
+ ],
1532
+ "logging_steps": 1,
1533
+ "max_steps": 190,
1534
+ "num_input_tokens_seen": 1299120,
1535
+ "num_train_epochs": 5,
1536
+ "save_steps": 1000,
1537
+ "stateful_callbacks": {
1538
+ "TrainerControl": {
1539
+ "args": {
1540
+ "should_epoch_stop": false,
1541
+ "should_evaluate": false,
1542
+ "should_log": false,
1543
+ "should_save": true,
1544
+ "should_training_stop": true
1545
+ },
1546
+ "attributes": {}
1547
+ }
1548
+ },
1549
+ "total_flos": 5.150239379108659e+16,
1550
+ "train_batch_size": 2,
1551
+ "trial_name": null,
1552
+ "trial_params": null
1553
+ }
checkpoint-190/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fea12da3624a50d04db32839a9390a4c8041b3756454a76a3011387f179a4228
3
+ size 6584
checkpoint-190/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 32,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": null,
23
+ "rope_theta": 10000.0,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.42.3",
27
+ "use_cache": false,
28
+ "vocab_size": 32000
29
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.42.3"
10
+ }
llamaboard_config.yaml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ top.booster: auto
2
+ top.checkpoint_path: null
3
+ top.finetuning_type: full
4
+ top.model_name: LLaMA2-7B-Chat
5
+ top.quantization_bit: none
6
+ top.quantization_method: bitsandbytes
7
+ top.rope_scaling: none
8
+ top.template: llama2
9
+ top.visual_inputs: false
10
+ train.additional_target: ''
11
+ train.badam_mode: layer
12
+ train.badam_switch_interval: 50
13
+ train.badam_switch_mode: ascending
14
+ train.badam_update_ratio: 0.05
15
+ train.batch_size: 2
16
+ train.compute_type: bf16
17
+ train.create_new_adapter: false
18
+ train.cutoff_len: 1024
19
+ train.dataset:
20
+ - truth_train_0716_2
21
+ train.dataset_dir: data
22
+ train.ds_offload: false
23
+ train.ds_stage: '2'
24
+ train.freeze_extra_modules: ''
25
+ train.freeze_trainable_layers: 2
26
+ train.freeze_trainable_modules: all
27
+ train.galore_rank: 16
28
+ train.galore_scale: 0.25
29
+ train.galore_target: all
30
+ train.galore_update_interval: 200
31
+ train.gradient_accumulation_steps: 8
32
+ train.learning_rate: 5e-6
33
+ train.logging_steps: 1
34
+ train.lora_alpha: 16
35
+ train.lora_dropout: 0
36
+ train.lora_rank: 8
37
+ train.lora_target: ''
38
+ train.loraplus_lr_ratio: 0
39
+ train.lr_scheduler_type: cosine
40
+ train.max_grad_norm: '1.0'
41
+ train.max_samples: '100000'
42
+ train.neat_packing: false
43
+ train.neftune_alpha: 0
44
+ train.num_train_epochs: '5.0'
45
+ train.optim: adamw_torch
46
+ train.packing: false
47
+ train.ppo_score_norm: false
48
+ train.ppo_whiten_rewards: false
49
+ train.pref_beta: 0.1
50
+ train.pref_ftx: 0
51
+ train.pref_loss: sigmoid
52
+ train.report_to: false
53
+ train.resize_vocab: false
54
+ train.reward_model: null
55
+ train.save_steps: 1000
56
+ train.shift_attn: false
57
+ train.training_stage: Supervised Fine-Tuning
58
+ train.use_badam: false
59
+ train.use_dora: false
60
+ train.use_galore: false
61
+ train.use_llama_pro: false
62
+ train.use_pissa: false
63
+ train.use_rslora: false
64
+ train.val_size: 0
65
+ train.warmup_steps: 10
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af6cb31a20c84677f5085cfa5e077f8442dc10afc0d91be75e4e150668712487
3
+ size 4938985352
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03c38c9aa8e45f6b755a47ad5ba015f1b7c2daf7c1459bdb1b15cb876344adc0
3
+ size 4947390880
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7175530932f0eafafa2a482d31b7f8df84aa9dd5f3b5e23dd168cdeb053363a7
3
+ size 3590488816
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476831232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
running_log.txt ADDED
@@ -0,0 +1,633 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 07/16/2024 16:50:17 - INFO - llamafactory.hparams.parser - Process rank: 7, device: cuda:7, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
2
+
3
+ [INFO|parser.py:325] 2024-07-16 16:50:17,965 >> Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
4
+
5
+ 07/16/2024 16:50:18 - INFO - llamafactory.hparams.parser - Process rank: 4, device: cuda:4, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
6
+
7
+ 07/16/2024 16:50:18 - INFO - llamafactory.hparams.parser - Process rank: 6, device: cuda:6, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
8
+
9
+ 07/16/2024 16:50:18 - INFO - llamafactory.data.template - Add pad token: </s>
10
+
11
+ 07/16/2024 16:50:18 - INFO - llamafactory.hparams.parser - Process rank: 5, device: cuda:5, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
12
+
13
+ 07/16/2024 16:50:18 - INFO - llamafactory.hparams.parser - Process rank: 1, device: cuda:1, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
14
+
15
+ [INFO|tokenization_utils_base.py:2161] 2024-07-16 16:50:18,169 >> loading file tokenizer.model from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/tokenizer.model
16
+
17
+ [INFO|tokenization_utils_base.py:2161] 2024-07-16 16:50:18,169 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/tokenizer.json
18
+
19
+ [INFO|tokenization_utils_base.py:2161] 2024-07-16 16:50:18,170 >> loading file added_tokens.json from cache at None
20
+
21
+ [INFO|tokenization_utils_base.py:2161] 2024-07-16 16:50:18,170 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/special_tokens_map.json
22
+
23
+ [INFO|tokenization_utils_base.py:2161] 2024-07-16 16:50:18,170 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/tokenizer_config.json
24
+
25
+ 07/16/2024 16:50:18 - INFO - llamafactory.data.template - Add pad token: </s>
26
+
27
+ [INFO|template.py:372] 2024-07-16 16:50:18,281 >> Add pad token: </s>
28
+
29
+ [INFO|loader.py:50] 2024-07-16 16:50:18,282 >> Loading dataset 0716_truthfulqa_benchmark_train_2.json...
30
+
31
+ 07/16/2024 16:50:18 - INFO - llamafactory.hparams.parser - Process rank: 2, device: cuda:2, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
32
+
33
+ 07/16/2024 16:50:18 - INFO - llamafactory.data.template - Add pad token: </s>
34
+
35
+ 07/16/2024 16:50:18 - INFO - llamafactory.data.template - Add pad token: </s>
36
+
37
+ 07/16/2024 16:50:18 - INFO - llamafactory.data.template - Add pad token: </s>
38
+
39
+ 07/16/2024 16:50:18 - INFO - llamafactory.data.template - Add pad token: </s>
40
+
41
+ 07/16/2024 16:50:18 - INFO - llamafactory.data.template - Add pad token: </s>
42
+
43
+ 07/16/2024 16:50:19 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train_2.json...
44
+
45
+ 07/16/2024 16:50:19 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train_2.json...
46
+
47
+ 07/16/2024 16:50:19 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train_2.json...
48
+
49
+ 07/16/2024 16:50:19 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train_2.json...
50
+
51
+ 07/16/2024 16:50:19 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train_2.json...
52
+
53
+ 07/16/2024 16:50:19 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train_2.json...
54
+
55
+ 07/16/2024 16:50:19 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train_2.json...
56
+
57
+ [INFO|configuration_utils.py:733] 2024-07-16 16:50:20,327 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/config.json
58
+
59
+ [INFO|configuration_utils.py:800] 2024-07-16 16:50:20,328 >> Model config LlamaConfig {
60
+ "_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
61
+ "architectures": [
62
+ "LlamaForCausalLM"
63
+ ],
64
+ "attention_bias": false,
65
+ "attention_dropout": 0.0,
66
+ "bos_token_id": 1,
67
+ "eos_token_id": 2,
68
+ "hidden_act": "silu",
69
+ "hidden_size": 4096,
70
+ "initializer_range": 0.02,
71
+ "intermediate_size": 11008,
72
+ "max_position_embeddings": 4096,
73
+ "mlp_bias": false,
74
+ "model_type": "llama",
75
+ "num_attention_heads": 32,
76
+ "num_hidden_layers": 32,
77
+ "num_key_value_heads": 32,
78
+ "pretraining_tp": 1,
79
+ "rms_norm_eps": 1e-05,
80
+ "rope_scaling": null,
81
+ "rope_theta": 10000.0,
82
+ "tie_word_embeddings": false,
83
+ "torch_dtype": "float16",
84
+ "transformers_version": "4.42.3",
85
+ "use_cache": true,
86
+ "vocab_size": 32000
87
+ }
88
+
89
+
90
+ [INFO|modeling_utils.py:3556] 2024-07-16 16:50:20,350 >> loading weights file model.safetensors from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/model.safetensors.index.json
91
+
92
+ [INFO|modeling_utils.py:1531] 2024-07-16 16:50:20,351 >> Instantiating LlamaForCausalLM model under default dtype torch.bfloat16.
93
+
94
+ [INFO|configuration_utils.py:1000] 2024-07-16 16:50:20,352 >> Generate config GenerationConfig {
95
+ "bos_token_id": 1,
96
+ "eos_token_id": 2
97
+ }
98
+
99
+
100
+ [INFO|modeling_utils.py:4364] 2024-07-16 16:50:37,558 >> All model checkpoint weights were used when initializing LlamaForCausalLM.
101
+
102
+
103
+ [INFO|modeling_utils.py:4372] 2024-07-16 16:50:37,559 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at meta-llama/Llama-2-7b-chat-hf.
104
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training.
105
+
106
+ [INFO|configuration_utils.py:955] 2024-07-16 16:50:37,738 >> loading configuration file generation_config.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/generation_config.json
107
+
108
+ [INFO|configuration_utils.py:1000] 2024-07-16 16:50:37,738 >> Generate config GenerationConfig {
109
+ "bos_token_id": 1,
110
+ "do_sample": true,
111
+ "eos_token_id": 2,
112
+ "max_length": 4096,
113
+ "pad_token_id": 0,
114
+ "temperature": 0.6,
115
+ "top_p": 0.9
116
+ }
117
+
118
+
119
+ [INFO|checkpointing.py:103] 2024-07-16 16:50:37,746 >> Gradient checkpointing enabled.
120
+
121
+ [INFO|attention.py:80] 2024-07-16 16:50:37,746 >> Using torch SDPA for faster training and inference.
122
+
123
+ [INFO|adapter.py:302] 2024-07-16 16:50:37,746 >> Upcasting trainable params to float32.
124
+
125
+ [INFO|adapter.py:48] 2024-07-16 16:50:37,746 >> Fine-tuning method: Full
126
+
127
+ [INFO|loader.py:196] 2024-07-16 16:50:37,798 >> trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
128
+
129
+ 07/16/2024 16:50:37 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
130
+
131
+ 07/16/2024 16:50:37 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
132
+
133
+ 07/16/2024 16:50:37 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
134
+
135
+ 07/16/2024 16:50:37 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
136
+
137
+ 07/16/2024 16:50:37 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
138
+
139
+ [INFO|trainer.py:642] 2024-07-16 16:50:37,804 >> Using auto half precision backend
140
+
141
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
142
+
143
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
144
+
145
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
146
+
147
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
148
+
149
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
150
+
151
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
152
+
153
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
154
+
155
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
156
+
157
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
158
+
159
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
160
+
161
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
162
+
163
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
164
+
165
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
166
+
167
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
168
+
169
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
170
+
171
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
172
+
173
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
174
+
175
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
176
+
177
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
178
+
179
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
180
+
181
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
182
+
183
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
184
+
185
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
186
+
187
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
188
+
189
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
190
+
191
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
192
+
193
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
194
+
195
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
196
+
197
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
198
+
199
+ 07/16/2024 16:50:38 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
200
+
201
+ [INFO|trainer.py:2128] 2024-07-16 16:50:57,380 >> ***** Running training *****
202
+
203
+ [INFO|trainer.py:2129] 2024-07-16 16:50:57,380 >> Num examples = 4,958
204
+
205
+ [INFO|trainer.py:2130] 2024-07-16 16:50:57,380 >> Num Epochs = 5
206
+
207
+ [INFO|trainer.py:2131] 2024-07-16 16:50:57,380 >> Instantaneous batch size per device = 2
208
+
209
+ [INFO|trainer.py:2134] 2024-07-16 16:50:57,380 >> Total train batch size (w. parallel, distributed & accumulation) = 128
210
+
211
+ [INFO|trainer.py:2135] 2024-07-16 16:50:57,380 >> Gradient Accumulation steps = 8
212
+
213
+ [INFO|trainer.py:2136] 2024-07-16 16:50:57,380 >> Total optimization steps = 190
214
+
215
+ [INFO|trainer.py:2137] 2024-07-16 16:50:57,381 >> Number of trainable parameters = 6,738,415,616
216
+
217
+ [INFO|callbacks.py:310] 2024-07-16 16:51:09,938 >> {'loss': 8.2514, 'learning_rate': 5.0000e-07, 'epoch': 0.03, 'throughput': 545.43}
218
+
219
+ [INFO|callbacks.py:310] 2024-07-16 16:51:20,951 >> {'loss': 8.2793, 'learning_rate': 1.0000e-06, 'epoch': 0.05, 'throughput': 584.51}
220
+
221
+ [INFO|callbacks.py:310] 2024-07-16 16:51:31,943 >> {'loss': 8.1700, 'learning_rate': 1.5000e-06, 'epoch': 0.08, 'throughput': 598.15}
222
+
223
+ [INFO|callbacks.py:310] 2024-07-16 16:51:42,923 >> {'loss': 7.6197, 'learning_rate': 2.0000e-06, 'epoch': 0.10, 'throughput': 609.21}
224
+
225
+ [INFO|callbacks.py:310] 2024-07-16 16:51:53,920 >> {'loss': 6.9491, 'learning_rate': 2.5000e-06, 'epoch': 0.13, 'throughput': 612.41}
226
+
227
+ [INFO|callbacks.py:310] 2024-07-16 16:52:04,919 >> {'loss': 5.2054, 'learning_rate': 3.0000e-06, 'epoch': 0.15, 'throughput': 613.36}
228
+
229
+ [INFO|callbacks.py:310] 2024-07-16 16:52:15,920 >> {'loss': 4.8642, 'learning_rate': 3.5000e-06, 'epoch': 0.18, 'throughput': 615.05}
230
+
231
+ [INFO|callbacks.py:310] 2024-07-16 16:52:26,924 >> {'loss': 3.2874, 'learning_rate': 4.0000e-06, 'epoch': 0.21, 'throughput': 615.94}
232
+
233
+ [INFO|callbacks.py:310] 2024-07-16 16:52:37,962 >> {'loss': 2.6310, 'learning_rate': 4.5000e-06, 'epoch': 0.23, 'throughput': 613.25}
234
+
235
+ [INFO|callbacks.py:310] 2024-07-16 16:52:48,988 >> {'loss': 0.6982, 'learning_rate': 5.0000e-06, 'epoch': 0.26, 'throughput': 613.59}
236
+
237
+ [INFO|callbacks.py:310] 2024-07-16 16:53:00,018 >> {'loss': 0.3276, 'learning_rate': 4.9996e-06, 'epoch': 0.28, 'throughput': 613.98}
238
+
239
+ [INFO|callbacks.py:310] 2024-07-16 16:53:11,029 >> {'loss': 0.2930, 'learning_rate': 4.9985e-06, 'epoch': 0.31, 'throughput': 615.72}
240
+
241
+ [INFO|callbacks.py:310] 2024-07-16 16:53:22,020 >> {'loss': 0.2129, 'learning_rate': 4.9966e-06, 'epoch': 0.34, 'throughput': 615.94}
242
+
243
+ [INFO|callbacks.py:310] 2024-07-16 16:53:33,021 >> {'loss': 0.4712, 'learning_rate': 4.9939e-06, 'epoch': 0.36, 'throughput': 616.20}
244
+
245
+ [INFO|callbacks.py:310] 2024-07-16 16:53:44,003 >> {'loss': 0.2350, 'learning_rate': 4.9905e-06, 'epoch': 0.39, 'throughput': 617.55}
246
+
247
+ [INFO|callbacks.py:310] 2024-07-16 16:53:55,026 >> {'loss': 0.2020, 'learning_rate': 4.9863e-06, 'epoch': 0.41, 'throughput': 618.05}
248
+
249
+ [INFO|callbacks.py:310] 2024-07-16 16:54:06,023 >> {'loss': 0.1981, 'learning_rate': 4.9814e-06, 'epoch': 0.44, 'throughput': 617.73}
250
+
251
+ [INFO|callbacks.py:310] 2024-07-16 16:54:17,028 >> {'loss': 0.1517, 'learning_rate': 4.9757e-06, 'epoch': 0.46, 'throughput': 617.10}
252
+
253
+ [INFO|callbacks.py:310] 2024-07-16 16:54:28,037 >> {'loss': 0.4335, 'learning_rate': 4.9692e-06, 'epoch': 0.49, 'throughput': 617.28}
254
+
255
+ [INFO|callbacks.py:310] 2024-07-16 16:54:39,050 >> {'loss': 0.3609, 'learning_rate': 4.9620e-06, 'epoch': 0.52, 'throughput': 617.29}
256
+
257
+ [INFO|callbacks.py:310] 2024-07-16 16:54:50,034 >> {'loss': 0.1708, 'learning_rate': 4.9541e-06, 'epoch': 0.54, 'throughput': 618.54}
258
+
259
+ [INFO|callbacks.py:310] 2024-07-16 16:55:01,020 >> {'loss': 0.2277, 'learning_rate': 4.9454e-06, 'epoch': 0.57, 'throughput': 617.70}
260
+
261
+ [INFO|callbacks.py:310] 2024-07-16 16:55:12,039 >> {'loss': 0.3437, 'learning_rate': 4.9359e-06, 'epoch': 0.59, 'throughput': 617.93}
262
+
263
+ [INFO|callbacks.py:310] 2024-07-16 16:55:23,067 >> {'loss': 0.2229, 'learning_rate': 4.9257e-06, 'epoch': 0.62, 'throughput': 619.02}
264
+
265
+ [INFO|callbacks.py:310] 2024-07-16 16:55:34,096 >> {'loss': 0.1242, 'learning_rate': 4.9148e-06, 'epoch': 0.65, 'throughput': 617.82}
266
+
267
+ [INFO|callbacks.py:310] 2024-07-16 16:55:45,128 >> {'loss': 0.2117, 'learning_rate': 4.9032e-06, 'epoch': 0.67, 'throughput': 617.94}
268
+
269
+ [INFO|callbacks.py:310] 2024-07-16 16:55:56,152 >> {'loss': 0.2706, 'learning_rate': 4.8908e-06, 'epoch': 0.70, 'throughput': 618.70}
270
+
271
+ [INFO|callbacks.py:310] 2024-07-16 16:56:07,175 >> {'loss': 0.2084, 'learning_rate': 4.8776e-06, 'epoch': 0.72, 'throughput': 618.27}
272
+
273
+ [INFO|callbacks.py:310] 2024-07-16 16:56:18,165 >> {'loss': 0.0981, 'learning_rate': 4.8638e-06, 'epoch': 0.75, 'throughput': 618.39}
274
+
275
+ [INFO|callbacks.py:310] 2024-07-16 16:56:29,154 >> {'loss': 0.1600, 'learning_rate': 4.8492e-06, 'epoch': 0.77, 'throughput': 618.50}
276
+
277
+ [INFO|callbacks.py:310] 2024-07-16 16:56:40,149 >> {'loss': 0.1614, 'learning_rate': 4.8340e-06, 'epoch': 0.80, 'throughput': 617.80}
278
+
279
+ [INFO|callbacks.py:310] 2024-07-16 16:56:51,163 >> {'loss': 0.1742, 'learning_rate': 4.8180e-06, 'epoch': 0.83, 'throughput': 617.47}
280
+
281
+ [INFO|callbacks.py:310] 2024-07-16 16:57:02,179 >> {'loss': 0.1107, 'learning_rate': 4.8013e-06, 'epoch': 0.85, 'throughput': 617.90}
282
+
283
+ [INFO|callbacks.py:310] 2024-07-16 16:57:13,192 >> {'loss': 0.0822, 'learning_rate': 4.7839e-06, 'epoch': 0.88, 'throughput': 617.42}
284
+
285
+ [INFO|callbacks.py:310] 2024-07-16 16:57:24,203 >> {'loss': 0.1873, 'learning_rate': 4.7658e-06, 'epoch': 0.90, 'throughput': 617.01}
286
+
287
+ [INFO|callbacks.py:310] 2024-07-16 16:57:35,243 >> {'loss': 0.2375, 'learning_rate': 4.7470e-06, 'epoch': 0.93, 'throughput': 616.94}
288
+
289
+ [INFO|callbacks.py:310] 2024-07-16 16:57:46,259 >> {'loss': 0.2667, 'learning_rate': 4.7275e-06, 'epoch': 0.95, 'throughput': 617.73}
290
+
291
+ [INFO|callbacks.py:310] 2024-07-16 16:57:57,247 >> {'loss': 0.1547, 'learning_rate': 4.7074e-06, 'epoch': 0.98, 'throughput': 618.14}
292
+
293
+ [INFO|callbacks.py:310] 2024-07-16 16:58:08,231 >> {'loss': 0.1662, 'learning_rate': 4.6865e-06, 'epoch': 1.01, 'throughput': 618.69}
294
+
295
+ [INFO|callbacks.py:310] 2024-07-16 16:58:19,239 >> {'loss': 0.0808, 'learning_rate': 4.6651e-06, 'epoch': 1.03, 'throughput': 618.41}
296
+
297
+ [INFO|callbacks.py:310] 2024-07-16 16:58:30,245 >> {'loss': 0.0884, 'learning_rate': 4.6429e-06, 'epoch': 1.06, 'throughput': 618.04}
298
+
299
+ [INFO|callbacks.py:310] 2024-07-16 16:58:41,281 >> {'loss': 0.0883, 'learning_rate': 4.6201e-06, 'epoch': 1.08, 'throughput': 618.55}
300
+
301
+ [INFO|callbacks.py:310] 2024-07-16 16:58:52,323 >> {'loss': 0.0562, 'learning_rate': 4.5967e-06, 'epoch': 1.11, 'throughput': 618.59}
302
+
303
+ [INFO|callbacks.py:310] 2024-07-16 16:59:03,347 >> {'loss': 0.0856, 'learning_rate': 4.5726e-06, 'epoch': 1.14, 'throughput': 618.38}
304
+
305
+ [INFO|callbacks.py:310] 2024-07-16 16:59:14,361 >> {'loss': 0.0612, 'learning_rate': 4.5479e-06, 'epoch': 1.16, 'throughput': 618.26}
306
+
307
+ [INFO|callbacks.py:310] 2024-07-16 16:59:25,365 >> {'loss': 0.0944, 'learning_rate': 4.5225e-06, 'epoch': 1.19, 'throughput': 618.35}
308
+
309
+ [INFO|callbacks.py:310] 2024-07-16 16:59:36,390 >> {'loss': 0.0624, 'learning_rate': 4.4966e-06, 'epoch': 1.21, 'throughput': 618.23}
310
+
311
+ [INFO|callbacks.py:310] 2024-07-16 16:59:47,376 >> {'loss': 0.0363, 'learning_rate': 4.4700e-06, 'epoch': 1.24, 'throughput': 618.21}
312
+
313
+ [INFO|callbacks.py:310] 2024-07-16 16:59:58,399 >> {'loss': 0.1039, 'learning_rate': 4.4429e-06, 'epoch': 1.26, 'throughput': 618.16}
314
+
315
+ [INFO|callbacks.py:310] 2024-07-16 17:00:09,394 >> {'loss': 0.0488, 'learning_rate': 4.4151e-06, 'epoch': 1.29, 'throughput': 618.19}
316
+
317
+ [INFO|callbacks.py:310] 2024-07-16 17:00:20,399 >> {'loss': 0.0613, 'learning_rate': 4.3868e-06, 'epoch': 1.32, 'throughput': 618.44}
318
+
319
+ [INFO|callbacks.py:310] 2024-07-16 17:00:31,407 >> {'loss': 0.0700, 'learning_rate': 4.3579e-06, 'epoch': 1.34, 'throughput': 618.12}
320
+
321
+ [INFO|callbacks.py:310] 2024-07-16 17:00:42,424 >> {'loss': 0.0463, 'learning_rate': 4.3284e-06, 'epoch': 1.37, 'throughput': 618.08}
322
+
323
+ [INFO|callbacks.py:310] 2024-07-16 17:00:53,462 >> {'loss': 0.0671, 'learning_rate': 4.2983e-06, 'epoch': 1.39, 'throughput': 618.15}
324
+
325
+ [INFO|callbacks.py:310] 2024-07-16 17:01:04,468 >> {'loss': 0.0428, 'learning_rate': 4.2678e-06, 'epoch': 1.42, 'throughput': 618.43}
326
+
327
+ [INFO|callbacks.py:310] 2024-07-16 17:01:15,463 >> {'loss': 0.0678, 'learning_rate': 4.2366e-06, 'epoch': 1.45, 'throughput': 618.43}
328
+
329
+ [INFO|callbacks.py:310] 2024-07-16 17:01:26,456 >> {'loss': 0.0476, 'learning_rate': 4.2050e-06, 'epoch': 1.47, 'throughput': 618.38}
330
+
331
+ [INFO|callbacks.py:310] 2024-07-16 17:01:37,444 >> {'loss': 0.0442, 'learning_rate': 4.1728e-06, 'epoch': 1.50, 'throughput': 618.82}
332
+
333
+ [INFO|callbacks.py:310] 2024-07-16 17:01:48,428 >> {'loss': 0.0336, 'learning_rate': 4.1401e-06, 'epoch': 1.52, 'throughput': 619.09}
334
+
335
+ [INFO|callbacks.py:310] 2024-07-16 17:01:59,445 >> {'loss': 0.0460, 'learning_rate': 4.1070e-06, 'epoch': 1.55, 'throughput': 618.77}
336
+
337
+ [INFO|callbacks.py:310] 2024-07-16 17:02:10,459 >> {'loss': 0.0416, 'learning_rate': 4.0733e-06, 'epoch': 1.57, 'throughput': 618.46}
338
+
339
+ [INFO|callbacks.py:310] 2024-07-16 17:02:21,470 >> {'loss': 0.0649, 'learning_rate': 4.0392e-06, 'epoch': 1.60, 'throughput': 618.87}
340
+
341
+ [INFO|callbacks.py:310] 2024-07-16 17:02:32,483 >> {'loss': 0.0591, 'learning_rate': 4.0045e-06, 'epoch': 1.63, 'throughput': 619.05}
342
+
343
+ [INFO|callbacks.py:310] 2024-07-16 17:02:43,490 >> {'loss': 0.0318, 'learning_rate': 3.9695e-06, 'epoch': 1.65, 'throughput': 618.83}
344
+
345
+ [INFO|callbacks.py:310] 2024-07-16 17:02:54,478 >> {'loss': 0.0462, 'learning_rate': 3.9339e-06, 'epoch': 1.68, 'throughput': 618.87}
346
+
347
+ [INFO|callbacks.py:310] 2024-07-16 17:03:05,466 >> {'loss': 0.0465, 'learning_rate': 3.8980e-06, 'epoch': 1.70, 'throughput': 618.98}
348
+
349
+ [INFO|callbacks.py:310] 2024-07-16 17:03:16,480 >> {'loss': 0.0316, 'learning_rate': 3.8616e-06, 'epoch': 1.73, 'throughput': 619.15}
350
+
351
+ [INFO|callbacks.py:310] 2024-07-16 17:03:27,480 >> {'loss': 0.1000, 'learning_rate': 3.8248e-06, 'epoch': 1.75, 'throughput': 619.38}
352
+
353
+ [INFO|callbacks.py:310] 2024-07-16 17:03:38,513 >> {'loss': 0.0711, 'learning_rate': 3.7876e-06, 'epoch': 1.78, 'throughput': 619.25}
354
+
355
+ [INFO|callbacks.py:310] 2024-07-16 17:03:49,506 >> {'loss': 0.0494, 'learning_rate': 3.7500e-06, 'epoch': 1.81, 'throughput': 619.69}
356
+
357
+ [INFO|callbacks.py:310] 2024-07-16 17:04:00,519 >> {'loss': 0.0618, 'learning_rate': 3.7120e-06, 'epoch': 1.83, 'throughput': 619.64}
358
+
359
+ [INFO|callbacks.py:310] 2024-07-16 17:04:11,528 >> {'loss': 0.0511, 'learning_rate': 3.6737e-06, 'epoch': 1.86, 'throughput': 619.61}
360
+
361
+ [INFO|callbacks.py:310] 2024-07-16 17:04:22,525 >> {'loss': 0.0464, 'learning_rate': 3.6350e-06, 'epoch': 1.88, 'throughput': 619.64}
362
+
363
+ [INFO|callbacks.py:310] 2024-07-16 17:04:33,509 >> {'loss': 0.0331, 'learning_rate': 3.5959e-06, 'epoch': 1.91, 'throughput': 620.02}
364
+
365
+ [INFO|callbacks.py:310] 2024-07-16 17:04:44,504 >> {'loss': 0.0706, 'learning_rate': 3.5565e-06, 'epoch': 1.94, 'throughput': 620.04}
366
+
367
+ [INFO|callbacks.py:310] 2024-07-16 17:04:55,490 >> {'loss': 0.0442, 'learning_rate': 3.5168e-06, 'epoch': 1.96, 'throughput': 620.14}
368
+
369
+ [INFO|callbacks.py:310] 2024-07-16 17:05:06,484 >> {'loss': 0.0420, 'learning_rate': 3.4768e-06, 'epoch': 1.99, 'throughput': 619.89}
370
+
371
+ [INFO|callbacks.py:310] 2024-07-16 17:05:17,496 >> {'loss': 0.0210, 'learning_rate': 3.4365e-06, 'epoch': 2.01, 'throughput': 619.84}
372
+
373
+ [INFO|callbacks.py:310] 2024-07-16 17:05:28,503 >> {'loss': 0.0094, 'learning_rate': 3.3959e-06, 'epoch': 2.04, 'throughput': 619.91}
374
+
375
+ [INFO|callbacks.py:310] 2024-07-16 17:05:39,520 >> {'loss': 0.0021, 'learning_rate': 3.3551e-06, 'epoch': 2.06, 'throughput': 620.26}
376
+
377
+ [INFO|callbacks.py:310] 2024-07-16 17:05:50,557 >> {'loss': 0.0146, 'learning_rate': 3.3139e-06, 'epoch': 2.09, 'throughput': 620.13}
378
+
379
+ [INFO|callbacks.py:310] 2024-07-16 17:06:01,557 >> {'loss': 0.0237, 'learning_rate': 3.2725e-06, 'epoch': 2.12, 'throughput': 620.48}
380
+
381
+ [INFO|callbacks.py:310] 2024-07-16 17:06:12,563 >> {'loss': 0.0031, 'learning_rate': 3.2309e-06, 'epoch': 2.14, 'throughput': 620.57}
382
+
383
+ [INFO|callbacks.py:310] 2024-07-16 17:06:23,576 >> {'loss': 0.0034, 'learning_rate': 3.1891e-06, 'epoch': 2.17, 'throughput': 620.54}
384
+
385
+ [INFO|callbacks.py:310] 2024-07-16 17:06:34,571 >> {'loss': 0.0045, 'learning_rate': 3.1470e-06, 'epoch': 2.19, 'throughput': 620.66}
386
+
387
+ [INFO|callbacks.py:310] 2024-07-16 17:06:45,568 >> {'loss': 0.0031, 'learning_rate': 3.1048e-06, 'epoch': 2.22, 'throughput': 620.62}
388
+
389
+ [INFO|callbacks.py:310] 2024-07-16 17:06:56,589 >> {'loss': 0.0341, 'learning_rate': 3.0624e-06, 'epoch': 2.25, 'throughput': 620.63}
390
+
391
+ [INFO|callbacks.py:310] 2024-07-16 17:07:07,621 >> {'loss': 0.0095, 'learning_rate': 3.0198e-06, 'epoch': 2.27, 'throughput': 620.55}
392
+
393
+ [INFO|callbacks.py:310] 2024-07-16 17:07:18,643 >> {'loss': 0.0459, 'learning_rate': 2.9770e-06, 'epoch': 2.30, 'throughput': 620.80}
394
+
395
+ [INFO|callbacks.py:310] 2024-07-16 17:07:29,659 >> {'loss': 0.0104, 'learning_rate': 2.9341e-06, 'epoch': 2.32, 'throughput': 620.80}
396
+
397
+ [INFO|callbacks.py:310] 2024-07-16 17:07:40,662 >> {'loss': 0.0201, 'learning_rate': 2.8911e-06, 'epoch': 2.35, 'throughput': 620.51}
398
+
399
+ [INFO|callbacks.py:310] 2024-07-16 17:07:51,636 >> {'loss': 0.0021, 'learning_rate': 2.8479e-06, 'epoch': 2.37, 'throughput': 620.75}
400
+
401
+ [INFO|callbacks.py:310] 2024-07-16 17:08:02,651 >> {'loss': 0.0430, 'learning_rate': 2.8047e-06, 'epoch': 2.40, 'throughput': 620.64}
402
+
403
+ [INFO|callbacks.py:310] 2024-07-16 17:08:13,671 >> {'loss': 0.0207, 'learning_rate': 2.7613e-06, 'epoch': 2.43, 'throughput': 620.61}
404
+
405
+ [INFO|callbacks.py:310] 2024-07-16 17:08:24,677 >> {'loss': 0.0148, 'learning_rate': 2.7179e-06, 'epoch': 2.45, 'throughput': 620.69}
406
+
407
+ [INFO|callbacks.py:310] 2024-07-16 17:08:35,700 >> {'loss': 0.0040, 'learning_rate': 2.6744e-06, 'epoch': 2.48, 'throughput': 620.55}
408
+
409
+ [INFO|callbacks.py:310] 2024-07-16 17:08:46,703 >> {'loss': 0.0131, 'learning_rate': 2.6308e-06, 'epoch': 2.50, 'throughput': 620.54}
410
+
411
+ [INFO|callbacks.py:310] 2024-07-16 17:08:57,742 >> {'loss': 0.0455, 'learning_rate': 2.5872e-06, 'epoch': 2.53, 'throughput': 620.37}
412
+
413
+ [INFO|callbacks.py:310] 2024-07-16 17:09:08,772 >> {'loss': 0.0031, 'learning_rate': 2.5436e-06, 'epoch': 2.55, 'throughput': 620.27}
414
+
415
+ [INFO|callbacks.py:310] 2024-07-16 17:09:19,760 >> {'loss': 0.0099, 'learning_rate': 2.5000e-06, 'epoch': 2.58, 'throughput': 620.49}
416
+
417
+ [INFO|callbacks.py:310] 2024-07-16 17:09:30,748 >> {'loss': 0.0797, 'learning_rate': 2.4564e-06, 'epoch': 2.61, 'throughput': 620.49}
418
+
419
+ [INFO|callbacks.py:310] 2024-07-16 17:09:41,738 >> {'loss': 0.0059, 'learning_rate': 2.4128e-06, 'epoch': 2.63, 'throughput': 620.63}
420
+
421
+ [INFO|callbacks.py:310] 2024-07-16 17:09:52,737 >> {'loss': 0.0438, 'learning_rate': 2.3692e-06, 'epoch': 2.66, 'throughput': 620.38}
422
+
423
+ [INFO|callbacks.py:310] 2024-07-16 17:10:03,734 >> {'loss': 0.0149, 'learning_rate': 2.3256e-06, 'epoch': 2.68, 'throughput': 620.63}
424
+
425
+ [INFO|callbacks.py:310] 2024-07-16 17:10:14,743 >> {'loss': 0.0126, 'learning_rate': 2.2821e-06, 'epoch': 2.71, 'throughput': 620.57}
426
+
427
+ [INFO|callbacks.py:310] 2024-07-16 17:10:25,754 >> {'loss': 0.0255, 'learning_rate': 2.2387e-06, 'epoch': 2.74, 'throughput': 620.46}
428
+
429
+ [INFO|callbacks.py:310] 2024-07-16 17:10:36,760 >> {'loss': 0.0048, 'learning_rate': 2.1953e-06, 'epoch': 2.76, 'throughput': 620.34}
430
+
431
+ [INFO|callbacks.py:310] 2024-07-16 17:10:47,758 >> {'loss': 0.0142, 'learning_rate': 2.1521e-06, 'epoch': 2.79, 'throughput': 620.20}
432
+
433
+ [INFO|callbacks.py:310] 2024-07-16 17:10:58,726 >> {'loss': 0.0193, 'learning_rate': 2.1089e-06, 'epoch': 2.81, 'throughput': 620.23}
434
+
435
+ [INFO|callbacks.py:310] 2024-07-16 17:11:09,695 >> {'loss': 0.0055, 'learning_rate': 2.0659e-06, 'epoch': 2.84, 'throughput': 620.32}
436
+
437
+ [INFO|callbacks.py:310] 2024-07-16 17:11:20,678 >> {'loss': 0.0144, 'learning_rate': 2.0230e-06, 'epoch': 2.86, 'throughput': 620.23}
438
+
439
+ [INFO|callbacks.py:310] 2024-07-16 17:11:31,656 >> {'loss': 0.0272, 'learning_rate': 1.9802e-06, 'epoch': 2.89, 'throughput': 620.22}
440
+
441
+ [INFO|callbacks.py:310] 2024-07-16 17:11:42,652 >> {'loss': 0.0101, 'learning_rate': 1.9376e-06, 'epoch': 2.92, 'throughput': 620.18}
442
+
443
+ [INFO|callbacks.py:310] 2024-07-16 17:11:53,647 >> {'loss': 0.0109, 'learning_rate': 1.8952e-06, 'epoch': 2.94, 'throughput': 620.51}
444
+
445
+ [INFO|callbacks.py:310] 2024-07-16 17:12:04,642 >> {'loss': 0.0180, 'learning_rate': 1.8530e-06, 'epoch': 2.97, 'throughput': 620.55}
446
+
447
+ [INFO|callbacks.py:310] 2024-07-16 17:12:15,639 >> {'loss': 0.0141, 'learning_rate': 1.8109e-06, 'epoch': 2.99, 'throughput': 620.38}
448
+
449
+ [INFO|callbacks.py:310] 2024-07-16 17:12:26,637 >> {'loss': 0.0057, 'learning_rate': 1.7691e-06, 'epoch': 3.02, 'throughput': 620.36}
450
+
451
+ [INFO|callbacks.py:310] 2024-07-16 17:12:37,628 >> {'loss': 0.0063, 'learning_rate': 1.7275e-06, 'epoch': 3.05, 'throughput': 620.33}
452
+
453
+ [INFO|callbacks.py:310] 2024-07-16 17:12:48,606 >> {'loss': 0.0138, 'learning_rate': 1.6861e-06, 'epoch': 3.07, 'throughput': 620.27}
454
+
455
+ [INFO|callbacks.py:310] 2024-07-16 17:12:59,593 >> {'loss': 0.0011, 'learning_rate': 1.6449e-06, 'epoch': 3.10, 'throughput': 619.97}
456
+
457
+ [INFO|callbacks.py:310] 2024-07-16 17:13:10,574 >> {'loss': 0.0006, 'learning_rate': 1.6041e-06, 'epoch': 3.12, 'throughput': 619.94}
458
+
459
+ [INFO|callbacks.py:310] 2024-07-16 17:13:21,574 >> {'loss': 0.0055, 'learning_rate': 1.5635e-06, 'epoch': 3.15, 'throughput': 619.97}
460
+
461
+ [INFO|callbacks.py:310] 2024-07-16 17:13:32,565 >> {'loss': 0.0011, 'learning_rate': 1.5232e-06, 'epoch': 3.17, 'throughput': 619.90}
462
+
463
+ [INFO|callbacks.py:310] 2024-07-16 17:13:43,569 >> {'loss': 0.0173, 'learning_rate': 1.4832e-06, 'epoch': 3.20, 'throughput': 620.05}
464
+
465
+ [INFO|callbacks.py:310] 2024-07-16 17:13:54,579 >> {'loss': 0.0027, 'learning_rate': 1.4435e-06, 'epoch': 3.23, 'throughput': 619.89}
466
+
467
+ [INFO|callbacks.py:310] 2024-07-16 17:14:05,559 >> {'loss': 0.0029, 'learning_rate': 1.4041e-06, 'epoch': 3.25, 'throughput': 619.81}
468
+
469
+ [INFO|callbacks.py:310] 2024-07-16 17:14:16,541 >> {'loss': 0.0003, 'learning_rate': 1.3650e-06, 'epoch': 3.28, 'throughput': 619.97}
470
+
471
+ [INFO|callbacks.py:310] 2024-07-16 17:14:27,516 >> {'loss': 0.0007, 'learning_rate': 1.3263e-06, 'epoch': 3.30, 'throughput': 619.98}
472
+
473
+ [INFO|callbacks.py:310] 2024-07-16 17:14:38,496 >> {'loss': 0.0080, 'learning_rate': 1.2880e-06, 'epoch': 3.33, 'throughput': 620.05}
474
+
475
+ [INFO|callbacks.py:310] 2024-07-16 17:14:49,489 >> {'loss': 0.0004, 'learning_rate': 1.2500e-06, 'epoch': 3.35, 'throughput': 620.16}
476
+
477
+ [INFO|callbacks.py:310] 2024-07-16 17:15:00,489 >> {'loss': 0.0049, 'learning_rate': 1.2124e-06, 'epoch': 3.38, 'throughput': 620.39}
478
+
479
+ [INFO|callbacks.py:310] 2024-07-16 17:15:11,487 >> {'loss': 0.0012, 'learning_rate': 1.1752e-06, 'epoch': 3.41, 'throughput': 620.30}
480
+
481
+ [INFO|callbacks.py:310] 2024-07-16 17:15:22,486 >> {'loss': 0.0044, 'learning_rate': 1.1384e-06, 'epoch': 3.43, 'throughput': 620.50}
482
+
483
+ [INFO|callbacks.py:310] 2024-07-16 17:15:33,486 >> {'loss': 0.0017, 'learning_rate': 1.1020e-06, 'epoch': 3.46, 'throughput': 620.57}
484
+
485
+ [INFO|callbacks.py:310] 2024-07-16 17:15:44,480 >> {'loss': 0.0003, 'learning_rate': 1.0661e-06, 'epoch': 3.48, 'throughput': 620.49}
486
+
487
+ [INFO|callbacks.py:310] 2024-07-16 17:15:55,449 >> {'loss': 0.0099, 'learning_rate': 1.0305e-06, 'epoch': 3.51, 'throughput': 620.45}
488
+
489
+ [INFO|callbacks.py:310] 2024-07-16 17:16:06,411 >> {'loss': 0.0068, 'learning_rate': 9.9546e-07, 'epoch': 3.54, 'throughput': 620.34}
490
+
491
+ [INFO|callbacks.py:310] 2024-07-16 17:16:17,397 >> {'loss': 0.0025, 'learning_rate': 9.6085e-07, 'epoch': 3.56, 'throughput': 620.33}
492
+
493
+ [INFO|callbacks.py:310] 2024-07-16 17:16:28,378 >> {'loss': 0.0004, 'learning_rate': 9.2670e-07, 'epoch': 3.59, 'throughput': 620.50}
494
+
495
+ [INFO|callbacks.py:310] 2024-07-16 17:16:39,370 >> {'loss': 0.0101, 'learning_rate': 8.9303e-07, 'epoch': 3.61, 'throughput': 620.37}
496
+
497
+ [INFO|callbacks.py:310] 2024-07-16 17:16:50,370 >> {'loss': 0.0068, 'learning_rate': 8.5985e-07, 'epoch': 3.64, 'throughput': 620.41}
498
+
499
+ [INFO|callbacks.py:310] 2024-07-16 17:17:01,381 >> {'loss': 0.0007, 'learning_rate': 8.2717e-07, 'epoch': 3.66, 'throughput': 620.29}
500
+
501
+ [INFO|callbacks.py:310] 2024-07-16 17:17:12,379 >> {'loss': 0.0161, 'learning_rate': 7.9500e-07, 'epoch': 3.69, 'throughput': 620.19}
502
+
503
+ [INFO|callbacks.py:310] 2024-07-16 17:17:23,362 >> {'loss': 0.0115, 'learning_rate': 7.6335e-07, 'epoch': 3.72, 'throughput': 620.44}
504
+
505
+ [INFO|callbacks.py:310] 2024-07-16 17:17:34,347 >> {'loss': 0.0052, 'learning_rate': 7.3223e-07, 'epoch': 3.74, 'throughput': 620.49}
506
+
507
+ [INFO|callbacks.py:310] 2024-07-16 17:17:45,329 >> {'loss': 0.0098, 'learning_rate': 7.0165e-07, 'epoch': 3.77, 'throughput': 620.56}
508
+
509
+ [INFO|callbacks.py:310] 2024-07-16 17:17:56,308 >> {'loss': 0.0005, 'learning_rate': 6.7162e-07, 'epoch': 3.79, 'throughput': 620.74}
510
+
511
+ [INFO|callbacks.py:310] 2024-07-16 17:18:07,295 >> {'loss': 0.0012, 'learning_rate': 6.4214e-07, 'epoch': 3.82, 'throughput': 620.71}
512
+
513
+ [INFO|callbacks.py:310] 2024-07-16 17:18:18,292 >> {'loss': 0.0013, 'learning_rate': 6.1323e-07, 'epoch': 3.85, 'throughput': 620.61}
514
+
515
+ [INFO|callbacks.py:310] 2024-07-16 17:18:29,277 >> {'loss': 0.0003, 'learning_rate': 5.8489e-07, 'epoch': 3.87, 'throughput': 620.76}
516
+
517
+ [INFO|callbacks.py:310] 2024-07-16 17:18:40,277 >> {'loss': 0.0026, 'learning_rate': 5.5714e-07, 'epoch': 3.90, 'throughput': 620.61}
518
+
519
+ [INFO|callbacks.py:310] 2024-07-16 17:18:51,272 >> {'loss': 0.0097, 'learning_rate': 5.2997e-07, 'epoch': 3.92, 'throughput': 620.67}
520
+
521
+ [INFO|callbacks.py:310] 2024-07-16 17:19:02,251 >> {'loss': 0.0047, 'learning_rate': 5.0341e-07, 'epoch': 3.95, 'throughput': 620.62}
522
+
523
+ [INFO|callbacks.py:310] 2024-07-16 17:19:13,213 >> {'loss': 0.0081, 'learning_rate': 4.7746e-07, 'epoch': 3.97, 'throughput': 620.72}
524
+
525
+ [INFO|callbacks.py:310] 2024-07-16 17:19:24,189 >> {'loss': 0.0018, 'learning_rate': 4.5212e-07, 'epoch': 4.00, 'throughput': 620.95}
526
+
527
+ [INFO|callbacks.py:310] 2024-07-16 17:19:35,181 >> {'loss': 0.0053, 'learning_rate': 4.2741e-07, 'epoch': 4.03, 'throughput': 620.97}
528
+
529
+ [INFO|callbacks.py:310] 2024-07-16 17:19:46,170 >> {'loss': 0.0005, 'learning_rate': 4.0332e-07, 'epoch': 4.05, 'throughput': 621.01}
530
+
531
+ [INFO|callbacks.py:310] 2024-07-16 17:19:57,184 >> {'loss': 0.0001, 'learning_rate': 3.7988e-07, 'epoch': 4.08, 'throughput': 620.88}
532
+
533
+ [INFO|callbacks.py:310] 2024-07-16 17:20:08,184 >> {'loss': 0.0018, 'learning_rate': 3.5708e-07, 'epoch': 4.10, 'throughput': 620.79}
534
+
535
+ [INFO|callbacks.py:310] 2024-07-16 17:20:19,180 >> {'loss': 0.0010, 'learning_rate': 3.3494e-07, 'epoch': 4.13, 'throughput': 620.68}
536
+
537
+ [INFO|callbacks.py:310] 2024-07-16 17:20:30,173 >> {'loss': 0.0001, 'learning_rate': 3.1345e-07, 'epoch': 4.15, 'throughput': 620.79}
538
+
539
+ [INFO|callbacks.py:310] 2024-07-16 17:20:41,136 >> {'loss': 0.0012, 'learning_rate': 2.9263e-07, 'epoch': 4.18, 'throughput': 620.89}
540
+
541
+ [INFO|callbacks.py:310] 2024-07-16 17:20:52,115 >> {'loss': 0.0001, 'learning_rate': 2.7248e-07, 'epoch': 4.21, 'throughput': 620.82}
542
+
543
+ [INFO|callbacks.py:310] 2024-07-16 17:21:03,096 >> {'loss': 0.0002, 'learning_rate': 2.5301e-07, 'epoch': 4.23, 'throughput': 620.76}
544
+
545
+ [INFO|callbacks.py:310] 2024-07-16 17:21:14,072 >> {'loss': 0.0001, 'learning_rate': 2.3423e-07, 'epoch': 4.26, 'throughput': 620.84}
546
+
547
+ [INFO|callbacks.py:310] 2024-07-16 17:21:25,062 >> {'loss': 0.0003, 'learning_rate': 2.1614e-07, 'epoch': 4.28, 'throughput': 620.65}
548
+
549
+ [INFO|callbacks.py:310] 2024-07-16 17:21:36,062 >> {'loss': 0.0001, 'learning_rate': 1.9874e-07, 'epoch': 4.31, 'throughput': 620.79}
550
+
551
+ [INFO|callbacks.py:310] 2024-07-16 17:21:47,070 >> {'loss': 0.0007, 'learning_rate': 1.8204e-07, 'epoch': 4.34, 'throughput': 620.70}
552
+
553
+ [INFO|callbacks.py:310] 2024-07-16 17:21:58,075 >> {'loss': 0.0003, 'learning_rate': 1.6605e-07, 'epoch': 4.36, 'throughput': 620.56}
554
+
555
+ [INFO|callbacks.py:310] 2024-07-16 17:22:09,064 >> {'loss': 0.0001, 'learning_rate': 1.5077e-07, 'epoch': 4.39, 'throughput': 620.70}
556
+
557
+ [INFO|callbacks.py:310] 2024-07-16 17:22:20,044 >> {'loss': 0.0008, 'learning_rate': 1.3620e-07, 'epoch': 4.41, 'throughput': 620.90}
558
+
559
+ [INFO|callbacks.py:310] 2024-07-16 17:22:31,005 >> {'loss': 0.0001, 'learning_rate': 1.2236e-07, 'epoch': 4.44, 'throughput': 620.92}
560
+
561
+ [INFO|callbacks.py:310] 2024-07-16 17:22:41,991 >> {'loss': 0.0004, 'learning_rate': 1.0924e-07, 'epoch': 4.46, 'throughput': 621.02}
562
+
563
+ [INFO|callbacks.py:310] 2024-07-16 17:22:52,983 >> {'loss': 0.0001, 'learning_rate': 9.6846e-08, 'epoch': 4.49, 'throughput': 620.99}
564
+
565
+ [INFO|callbacks.py:310] 2024-07-16 17:23:03,992 >> {'loss': 0.0005, 'learning_rate': 8.5185e-08, 'epoch': 4.52, 'throughput': 621.03}
566
+
567
+ [INFO|callbacks.py:310] 2024-07-16 17:23:14,988 >> {'loss': 0.0076, 'learning_rate': 7.4261e-08, 'epoch': 4.54, 'throughput': 621.25}
568
+
569
+ [INFO|callbacks.py:310] 2024-07-16 17:23:26,004 >> {'loss': 0.0004, 'learning_rate': 6.4075e-08, 'epoch': 4.57, 'throughput': 621.12}
570
+
571
+ [INFO|callbacks.py:310] 2024-07-16 17:23:37,007 >> {'loss': 0.0040, 'learning_rate': 5.4631e-08, 'epoch': 4.59, 'throughput': 621.16}
572
+
573
+ [INFO|callbacks.py:310] 2024-07-16 17:23:47,992 >> {'loss': 0.0001, 'learning_rate': 4.5932e-08, 'epoch': 4.62, 'throughput': 621.22}
574
+
575
+ [INFO|callbacks.py:310] 2024-07-16 17:23:58,970 >> {'loss': 0.0005, 'learning_rate': 3.7981e-08, 'epoch': 4.65, 'throughput': 621.17}
576
+
577
+ [INFO|callbacks.py:310] 2024-07-16 17:24:09,940 >> {'loss': 0.0002, 'learning_rate': 3.0779e-08, 'epoch': 4.67, 'throughput': 621.23}
578
+
579
+ [INFO|callbacks.py:310] 2024-07-16 17:24:20,909 >> {'loss': 0.0001, 'learning_rate': 2.4330e-08, 'epoch': 4.70, 'throughput': 621.25}
580
+
581
+ [INFO|callbacks.py:310] 2024-07-16 17:24:31,898 >> {'loss': 0.0001, 'learning_rate': 1.8635e-08, 'epoch': 4.72, 'throughput': 621.28}
582
+
583
+ [INFO|callbacks.py:310] 2024-07-16 17:24:42,890 >> {'loss': 0.0001, 'learning_rate': 1.3695e-08, 'epoch': 4.75, 'throughput': 621.30}
584
+
585
+ [INFO|callbacks.py:310] 2024-07-16 17:24:53,884 >> {'loss': 0.0167, 'learning_rate': 9.5133e-09, 'epoch': 4.77, 'throughput': 621.38}
586
+
587
+ [INFO|callbacks.py:310] 2024-07-16 17:25:04,898 >> {'loss': 0.0002, 'learning_rate': 6.0899e-09, 'epoch': 4.80, 'throughput': 621.28}
588
+
589
+ [INFO|callbacks.py:310] 2024-07-16 17:25:15,899 >> {'loss': 0.0003, 'learning_rate': 3.4262e-09, 'epoch': 4.83, 'throughput': 621.31}
590
+
591
+ [INFO|callbacks.py:310] 2024-07-16 17:25:26,879 >> {'loss': 0.0024, 'learning_rate': 1.5229e-09, 'epoch': 4.85, 'throughput': 621.29}
592
+
593
+ [INFO|callbacks.py:310] 2024-07-16 17:25:37,870 >> {'loss': 0.0005, 'learning_rate': 3.8076e-10, 'epoch': 4.88, 'throughput': 621.19}
594
+
595
+ [INFO|callbacks.py:310] 2024-07-16 17:25:48,849 >> {'loss': 0.0017, 'learning_rate': 0.0000e+00, 'epoch': 4.90, 'throughput': 621.15}
596
+
597
+ [INFO|trainer.py:3478] 2024-07-16 17:25:55,242 >> Saving model checkpoint to saves/LLaMA2-7B-Chat/full/train_2024-07-16-16-48-49_llama2_2/checkpoint-190
598
+
599
+ [INFO|configuration_utils.py:472] 2024-07-16 17:25:55,245 >> Configuration saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-16-48-49_llama2_2/checkpoint-190/config.json
600
+
601
+ [INFO|configuration_utils.py:769] 2024-07-16 17:25:55,246 >> Configuration saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-16-48-49_llama2_2/checkpoint-190/generation_config.json
602
+
603
+ [INFO|modeling_utils.py:2698] 2024-07-16 17:26:08,802 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 3 checkpoint shards. You can find where each parameters has been saved in the index located at saves/LLaMA2-7B-Chat/full/train_2024-07-16-16-48-49_llama2_2/checkpoint-190/model.safetensors.index.json.
604
+
605
+ [INFO|tokenization_utils_base.py:2574] 2024-07-16 17:26:08,803 >> tokenizer config file saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-16-48-49_llama2_2/checkpoint-190/tokenizer_config.json
606
+
607
+ [INFO|tokenization_utils_base.py:2583] 2024-07-16 17:26:08,803 >> Special tokens file saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-16-48-49_llama2_2/checkpoint-190/special_tokens_map.json
608
+
609
+ [INFO|trainer.py:2383] 2024-07-16 17:26:40,079 >>
610
+
611
+ Training completed. Do not forget to share your model on huggingface.co/models =)
612
+
613
+
614
+
615
+ [INFO|trainer.py:3478] 2024-07-16 17:26:46,683 >> Saving model checkpoint to saves/LLaMA2-7B-Chat/full/train_2024-07-16-16-48-49_llama2_2
616
+
617
+ [INFO|configuration_utils.py:472] 2024-07-16 17:26:46,686 >> Configuration saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-16-48-49_llama2_2/config.json
618
+
619
+ [INFO|configuration_utils.py:769] 2024-07-16 17:26:46,686 >> Configuration saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-16-48-49_llama2_2/generation_config.json
620
+
621
+ [INFO|modeling_utils.py:2698] 2024-07-16 17:27:01,023 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 3 checkpoint shards. You can find where each parameters has been saved in the index located at saves/LLaMA2-7B-Chat/full/train_2024-07-16-16-48-49_llama2_2/model.safetensors.index.json.
622
+
623
+ [INFO|tokenization_utils_base.py:2574] 2024-07-16 17:27:01,024 >> tokenizer config file saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-16-48-49_llama2_2/tokenizer_config.json
624
+
625
+ [INFO|tokenization_utils_base.py:2583] 2024-07-16 17:27:01,025 >> Special tokens file saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-16-48-49_llama2_2/special_tokens_map.json
626
+
627
+ [WARNING|ploting.py:89] 2024-07-16 17:27:02,103 >> No metric eval_loss to plot.
628
+
629
+ [WARNING|ploting.py:89] 2024-07-16 17:27:02,103 >> No metric eval_accuracy to plot.
630
+
631
+ [INFO|modelcard.py:449] 2024-07-16 17:27:02,103 >> Dropping the following result as it does not have all the necessary fields:
632
+ {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
633
+
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if loop.index0 == 0 and system_message is defined %}{% set content = '<<SYS>>\n' + system_message + '\n<</SYS>>\n\n' + message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '<s>' + '[INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 4.903225806451613,
3
+ "num_input_tokens_seen": 1299120,
4
+ "total_flos": 5.150239379108659e+16,
5
+ "train_loss": 0.3450760219912857,
6
+ "train_runtime": 2142.6975,
7
+ "train_samples_per_second": 11.57,
8
+ "train_steps_per_second": 0.089
9
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 190, "loss": 8.2514, "learning_rate": 5.000000000000001e-07, "epoch": 0.025806451612903226, "percentage": 0.53, "elapsed_time": "0:00:12", "remaining_time": "0:39:32", "throughput": "545.43", "total_tokens": 6848}
2
+ {"current_steps": 2, "total_steps": 190, "loss": 8.2793, "learning_rate": 1.0000000000000002e-06, "epoch": 0.05161290322580645, "percentage": 1.05, "elapsed_time": "0:00:23", "remaining_time": "0:36:55", "throughput": "584.51", "total_tokens": 13776}
3
+ {"current_steps": 3, "total_steps": 190, "loss": 8.17, "learning_rate": 1.5e-06, "epoch": 0.07741935483870968, "percentage": 1.58, "elapsed_time": "0:00:34", "remaining_time": "0:35:54", "throughput": "598.15", "total_tokens": 20672}
4
+ {"current_steps": 4, "total_steps": 190, "loss": 7.6197, "learning_rate": 2.0000000000000003e-06, "epoch": 0.1032258064516129, "percentage": 2.11, "elapsed_time": "0:00:45", "remaining_time": "0:35:17", "throughput": "609.21", "total_tokens": 27744}
5
+ {"current_steps": 5, "total_steps": 190, "loss": 6.9491, "learning_rate": 2.5e-06, "epoch": 0.12903225806451613, "percentage": 2.63, "elapsed_time": "0:00:56", "remaining_time": "0:34:51", "throughput": "612.41", "total_tokens": 34624}
6
+ {"current_steps": 6, "total_steps": 190, "loss": 5.2054, "learning_rate": 3e-06, "epoch": 0.15483870967741936, "percentage": 3.16, "elapsed_time": "0:01:07", "remaining_time": "0:34:31", "throughput": "613.36", "total_tokens": 41424}
7
+ {"current_steps": 7, "total_steps": 190, "loss": 4.8642, "learning_rate": 3.5e-06, "epoch": 0.18064516129032257, "percentage": 3.68, "elapsed_time": "0:01:18", "remaining_time": "0:34:13", "throughput": "615.05", "total_tokens": 48304}
8
+ {"current_steps": 8, "total_steps": 190, "loss": 3.2874, "learning_rate": 4.000000000000001e-06, "epoch": 0.2064516129032258, "percentage": 4.21, "elapsed_time": "0:01:29", "remaining_time": "0:33:57", "throughput": "615.94", "total_tokens": 55152}
9
+ {"current_steps": 9, "total_steps": 190, "loss": 2.631, "learning_rate": 4.5e-06, "epoch": 0.23225806451612904, "percentage": 4.74, "elapsed_time": "0:01:40", "remaining_time": "0:33:42", "throughput": "613.25", "total_tokens": 61680}
10
+ {"current_steps": 10, "total_steps": 190, "loss": 0.6982, "learning_rate": 5e-06, "epoch": 0.25806451612903225, "percentage": 5.26, "elapsed_time": "0:01:51", "remaining_time": "0:33:28", "throughput": "613.59", "total_tokens": 68480}
11
+ {"current_steps": 11, "total_steps": 190, "loss": 0.3276, "learning_rate": 4.9996192378909785e-06, "epoch": 0.2838709677419355, "percentage": 5.79, "elapsed_time": "0:02:02", "remaining_time": "0:33:15", "throughput": "613.98", "total_tokens": 75296}
12
+ {"current_steps": 12, "total_steps": 190, "loss": 0.293, "learning_rate": 4.99847706754774e-06, "epoch": 0.3096774193548387, "percentage": 6.32, "elapsed_time": "0:02:13", "remaining_time": "0:33:02", "throughput": "615.72", "total_tokens": 82288}
13
+ {"current_steps": 13, "total_steps": 190, "loss": 0.2129, "learning_rate": 4.9965738368864345e-06, "epoch": 0.33548387096774196, "percentage": 6.84, "elapsed_time": "0:02:24", "remaining_time": "0:32:49", "throughput": "615.94", "total_tokens": 89088}
14
+ {"current_steps": 14, "total_steps": 190, "loss": 0.4712, "learning_rate": 4.993910125649561e-06, "epoch": 0.36129032258064514, "percentage": 7.37, "elapsed_time": "0:02:35", "remaining_time": "0:32:36", "throughput": "616.20", "total_tokens": 95904}
15
+ {"current_steps": 15, "total_steps": 190, "loss": 0.235, "learning_rate": 4.990486745229364e-06, "epoch": 0.3870967741935484, "percentage": 7.89, "elapsed_time": "0:02:46", "remaining_time": "0:32:23", "throughput": "617.55", "total_tokens": 102896}
16
+ {"current_steps": 16, "total_steps": 190, "loss": 0.202, "learning_rate": 4.986304738420684e-06, "epoch": 0.4129032258064516, "percentage": 8.42, "elapsed_time": "0:02:57", "remaining_time": "0:32:11", "throughput": "618.05", "total_tokens": 109792}
17
+ {"current_steps": 17, "total_steps": 190, "loss": 0.1981, "learning_rate": 4.981365379103306e-06, "epoch": 0.43870967741935485, "percentage": 8.95, "elapsed_time": "0:03:08", "remaining_time": "0:31:59", "throughput": "617.73", "total_tokens": 116528}
18
+ {"current_steps": 18, "total_steps": 190, "loss": 0.1517, "learning_rate": 4.975670171853926e-06, "epoch": 0.4645161290322581, "percentage": 9.47, "elapsed_time": "0:03:19", "remaining_time": "0:31:47", "throughput": "617.10", "total_tokens": 123200}
19
+ {"current_steps": 19, "total_steps": 190, "loss": 0.4335, "learning_rate": 4.9692208514878445e-06, "epoch": 0.49032258064516127, "percentage": 10.0, "elapsed_time": "0:03:30", "remaining_time": "0:31:35", "throughput": "617.28", "total_tokens": 130032}
20
+ {"current_steps": 20, "total_steps": 190, "loss": 0.3609, "learning_rate": 4.962019382530521e-06, "epoch": 0.5161290322580645, "percentage": 10.53, "elapsed_time": "0:03:41", "remaining_time": "0:31:24", "throughput": "617.29", "total_tokens": 136832}
21
+ {"current_steps": 21, "total_steps": 190, "loss": 0.1708, "learning_rate": 4.9540679586191605e-06, "epoch": 0.5419354838709678, "percentage": 11.05, "elapsed_time": "0:03:52", "remaining_time": "0:31:12", "throughput": "618.54", "total_tokens": 143904}
22
+ {"current_steps": 22, "total_steps": 190, "loss": 0.2277, "learning_rate": 4.9453690018345144e-06, "epoch": 0.567741935483871, "percentage": 11.58, "elapsed_time": "0:04:03", "remaining_time": "0:31:00", "throughput": "617.70", "total_tokens": 150496}
23
+ {"current_steps": 23, "total_steps": 190, "loss": 0.3437, "learning_rate": 4.935925161963089e-06, "epoch": 0.5935483870967742, "percentage": 12.11, "elapsed_time": "0:04:14", "remaining_time": "0:30:49", "throughput": "617.93", "total_tokens": 157360}
24
+ {"current_steps": 24, "total_steps": 190, "loss": 0.2229, "learning_rate": 4.925739315689991e-06, "epoch": 0.6193548387096774, "percentage": 12.63, "elapsed_time": "0:04:25", "remaining_time": "0:30:37", "throughput": "619.02", "total_tokens": 164464}
25
+ {"current_steps": 25, "total_steps": 190, "loss": 0.1242, "learning_rate": 4.914814565722671e-06, "epoch": 0.6451612903225806, "percentage": 13.16, "elapsed_time": "0:04:36", "remaining_time": "0:30:26", "throughput": "617.82", "total_tokens": 170960}
26
+ {"current_steps": 26, "total_steps": 190, "loss": 0.2117, "learning_rate": 4.903154239845798e-06, "epoch": 0.6709677419354839, "percentage": 13.68, "elapsed_time": "0:04:47", "remaining_time": "0:30:15", "throughput": "617.94", "total_tokens": 177808}
27
+ {"current_steps": 27, "total_steps": 190, "loss": 0.2706, "learning_rate": 4.890761889907589e-06, "epoch": 0.6967741935483871, "percentage": 14.21, "elapsed_time": "0:04:58", "remaining_time": "0:30:03", "throughput": "618.70", "total_tokens": 184848}
28
+ {"current_steps": 28, "total_steps": 190, "loss": 0.2084, "learning_rate": 4.8776412907378845e-06, "epoch": 0.7225806451612903, "percentage": 14.74, "elapsed_time": "0:05:09", "remaining_time": "0:29:52", "throughput": "618.27", "total_tokens": 191536}
29
+ {"current_steps": 29, "total_steps": 190, "loss": 0.0981, "learning_rate": 4.863796438998293e-06, "epoch": 0.7483870967741936, "percentage": 15.26, "elapsed_time": "0:05:20", "remaining_time": "0:29:40", "throughput": "618.39", "total_tokens": 198368}
30
+ {"current_steps": 30, "total_steps": 190, "loss": 0.16, "learning_rate": 4.849231551964771e-06, "epoch": 0.7741935483870968, "percentage": 15.79, "elapsed_time": "0:05:31", "remaining_time": "0:29:29", "throughput": "618.50", "total_tokens": 205200}
31
+ {"current_steps": 31, "total_steps": 190, "loss": 0.1614, "learning_rate": 4.833951066243004e-06, "epoch": 0.8, "percentage": 16.32, "elapsed_time": "0:05:42", "remaining_time": "0:29:18", "throughput": "617.80", "total_tokens": 211760}
32
+ {"current_steps": 32, "total_steps": 190, "loss": 0.1742, "learning_rate": 4.817959636416969e-06, "epoch": 0.8258064516129032, "percentage": 16.84, "elapsed_time": "0:05:53", "remaining_time": "0:29:06", "throughput": "617.47", "total_tokens": 218448}
33
+ {"current_steps": 33, "total_steps": 190, "loss": 0.1107, "learning_rate": 4.801262133631101e-06, "epoch": 0.8516129032258064, "percentage": 17.37, "elapsed_time": "0:06:04", "remaining_time": "0:28:55", "throughput": "617.90", "total_tokens": 225408}
34
+ {"current_steps": 34, "total_steps": 190, "loss": 0.0822, "learning_rate": 4.783863644106502e-06, "epoch": 0.8774193548387097, "percentage": 17.89, "elapsed_time": "0:06:15", "remaining_time": "0:28:44", "throughput": "617.42", "total_tokens": 232032}
35
+ {"current_steps": 35, "total_steps": 190, "loss": 0.1873, "learning_rate": 4.765769467591626e-06, "epoch": 0.9032258064516129, "percentage": 18.42, "elapsed_time": "0:06:26", "remaining_time": "0:28:33", "throughput": "617.01", "total_tokens": 238672}
36
+ {"current_steps": 36, "total_steps": 190, "loss": 0.2375, "learning_rate": 4.746985115747918e-06, "epoch": 0.9290322580645162, "percentage": 18.95, "elapsed_time": "0:06:37", "remaining_time": "0:28:21", "throughput": "616.94", "total_tokens": 245456}
37
+ {"current_steps": 37, "total_steps": 190, "loss": 0.2667, "learning_rate": 4.72751631047092e-06, "epoch": 0.9548387096774194, "percentage": 19.47, "elapsed_time": "0:06:48", "remaining_time": "0:28:10", "throughput": "617.73", "total_tokens": 252576}
38
+ {"current_steps": 38, "total_steps": 190, "loss": 0.1547, "learning_rate": 4.707368982147318e-06, "epoch": 0.9806451612903225, "percentage": 20.0, "elapsed_time": "0:06:59", "remaining_time": "0:27:59", "throughput": "618.14", "total_tokens": 259536}
39
+ {"current_steps": 39, "total_steps": 190, "loss": 0.1662, "learning_rate": 4.68654926784849e-06, "epoch": 1.0064516129032257, "percentage": 20.53, "elapsed_time": "0:07:10", "remaining_time": "0:27:48", "throughput": "618.69", "total_tokens": 266560}
40
+ {"current_steps": 40, "total_steps": 190, "loss": 0.0808, "learning_rate": 4.665063509461098e-06, "epoch": 1.032258064516129, "percentage": 21.05, "elapsed_time": "0:07:21", "remaining_time": "0:27:36", "throughput": "618.41", "total_tokens": 273248}
41
+ {"current_steps": 41, "total_steps": 190, "loss": 0.0884, "learning_rate": 4.642918251755281e-06, "epoch": 1.0580645161290323, "percentage": 21.58, "elapsed_time": "0:07:32", "remaining_time": "0:27:25", "throughput": "618.04", "total_tokens": 279888}
42
+ {"current_steps": 42, "total_steps": 190, "loss": 0.0883, "learning_rate": 4.620120240391065e-06, "epoch": 1.0838709677419356, "percentage": 22.11, "elapsed_time": "0:07:43", "remaining_time": "0:27:14", "throughput": "618.55", "total_tokens": 286944}
43
+ {"current_steps": 43, "total_steps": 190, "loss": 0.0562, "learning_rate": 4.596676419863561e-06, "epoch": 1.1096774193548387, "percentage": 22.63, "elapsed_time": "0:07:54", "remaining_time": "0:27:03", "throughput": "618.59", "total_tokens": 293792}
44
+ {"current_steps": 44, "total_steps": 190, "loss": 0.0856, "learning_rate": 4.572593931387604e-06, "epoch": 1.135483870967742, "percentage": 23.16, "elapsed_time": "0:08:05", "remaining_time": "0:26:52", "throughput": "618.38", "total_tokens": 300512}
45
+ {"current_steps": 45, "total_steps": 190, "loss": 0.0612, "learning_rate": 4.54788011072248e-06, "epoch": 1.1612903225806452, "percentage": 23.68, "elapsed_time": "0:08:16", "remaining_time": "0:26:41", "throughput": "618.26", "total_tokens": 307264}
46
+ {"current_steps": 46, "total_steps": 190, "loss": 0.0944, "learning_rate": 4.522542485937369e-06, "epoch": 1.1870967741935483, "percentage": 24.21, "elapsed_time": "0:08:27", "remaining_time": "0:26:30", "throughput": "618.35", "total_tokens": 314112}
47
+ {"current_steps": 47, "total_steps": 190, "loss": 0.0624, "learning_rate": 4.496588775118232e-06, "epoch": 1.2129032258064516, "percentage": 24.74, "elapsed_time": "0:08:39", "remaining_time": "0:26:19", "throughput": "618.23", "total_tokens": 320864}
48
+ {"current_steps": 48, "total_steps": 190, "loss": 0.0363, "learning_rate": 4.470026884016805e-06, "epoch": 1.238709677419355, "percentage": 25.26, "elapsed_time": "0:08:49", "remaining_time": "0:26:07", "throughput": "618.21", "total_tokens": 327648}
49
+ {"current_steps": 49, "total_steps": 190, "loss": 0.1039, "learning_rate": 4.442864903642428e-06, "epoch": 1.2645161290322582, "percentage": 25.79, "elapsed_time": "0:09:01", "remaining_time": "0:25:56", "throughput": "618.16", "total_tokens": 334432}
50
+ {"current_steps": 50, "total_steps": 190, "loss": 0.0488, "learning_rate": 4.415111107797445e-06, "epoch": 1.2903225806451613, "percentage": 26.32, "elapsed_time": "0:09:12", "remaining_time": "0:25:45", "throughput": "618.19", "total_tokens": 341248}
51
+ {"current_steps": 51, "total_steps": 190, "loss": 0.0613, "learning_rate": 4.386773950556931e-06, "epoch": 1.3161290322580645, "percentage": 26.84, "elapsed_time": "0:09:23", "remaining_time": "0:25:34", "throughput": "618.44", "total_tokens": 348192}
52
+ {"current_steps": 52, "total_steps": 190, "loss": 0.07, "learning_rate": 4.357862063693486e-06, "epoch": 1.3419354838709676, "percentage": 27.37, "elapsed_time": "0:09:34", "remaining_time": "0:25:23", "throughput": "618.12", "total_tokens": 354816}
53
+ {"current_steps": 53, "total_steps": 190, "loss": 0.0463, "learning_rate": 4.328384254047927e-06, "epoch": 1.367741935483871, "percentage": 27.89, "elapsed_time": "0:09:45", "remaining_time": "0:25:12", "throughput": "618.08", "total_tokens": 361600}
54
+ {"current_steps": 54, "total_steps": 190, "loss": 0.0671, "learning_rate": 4.2983495008466285e-06, "epoch": 1.3935483870967742, "percentage": 28.42, "elapsed_time": "0:09:56", "remaining_time": "0:25:01", "throughput": "618.15", "total_tokens": 368464}
55
+ {"current_steps": 55, "total_steps": 190, "loss": 0.0428, "learning_rate": 4.267766952966369e-06, "epoch": 1.4193548387096775, "percentage": 28.95, "elapsed_time": "0:10:07", "remaining_time": "0:24:50", "throughput": "618.43", "total_tokens": 375440}
56
+ {"current_steps": 56, "total_steps": 190, "loss": 0.0678, "learning_rate": 4.236645926147493e-06, "epoch": 1.4451612903225808, "percentage": 29.47, "elapsed_time": "0:10:18", "remaining_time": "0:24:38", "throughput": "618.43", "total_tokens": 382240}
57
+ {"current_steps": 57, "total_steps": 190, "loss": 0.0476, "learning_rate": 4.204995900156247e-06, "epoch": 1.4709677419354839, "percentage": 30.0, "elapsed_time": "0:10:29", "remaining_time": "0:24:27", "throughput": "618.38", "total_tokens": 389008}
58
+ {"current_steps": 58, "total_steps": 190, "loss": 0.0442, "learning_rate": 4.172826515897146e-06, "epoch": 1.4967741935483871, "percentage": 30.53, "elapsed_time": "0:10:40", "remaining_time": "0:24:16", "throughput": "618.82", "total_tokens": 396080}
59
+ {"current_steps": 59, "total_steps": 190, "loss": 0.0336, "learning_rate": 4.140147572476269e-06, "epoch": 1.5225806451612902, "percentage": 31.05, "elapsed_time": "0:10:51", "remaining_time": "0:24:05", "throughput": "619.09", "total_tokens": 403056}
60
+ {"current_steps": 60, "total_steps": 190, "loss": 0.046, "learning_rate": 4.106969024216348e-06, "epoch": 1.5483870967741935, "percentage": 31.58, "elapsed_time": "0:11:02", "remaining_time": "0:23:54", "throughput": "618.77", "total_tokens": 409664}
61
+ {"current_steps": 61, "total_steps": 190, "loss": 0.0416, "learning_rate": 4.073300977624594e-06, "epoch": 1.5741935483870968, "percentage": 32.11, "elapsed_time": "0:11:13", "remaining_time": "0:23:43", "throughput": "618.46", "total_tokens": 416272}
62
+ {"current_steps": 62, "total_steps": 190, "loss": 0.0649, "learning_rate": 4.039153688314146e-06, "epoch": 1.6, "percentage": 32.63, "elapsed_time": "0:11:24", "remaining_time": "0:23:32", "throughput": "618.87", "total_tokens": 423360}
63
+ {"current_steps": 63, "total_steps": 190, "loss": 0.0591, "learning_rate": 4.0045375578801216e-06, "epoch": 1.6258064516129034, "percentage": 33.16, "elapsed_time": "0:11:35", "remaining_time": "0:23:21", "throughput": "619.05", "total_tokens": 430304}
64
+ {"current_steps": 64, "total_steps": 190, "loss": 0.0318, "learning_rate": 3.969463130731183e-06, "epoch": 1.6516129032258065, "percentage": 33.68, "elapsed_time": "0:11:46", "remaining_time": "0:23:10", "throughput": "618.83", "total_tokens": 436960}
65
+ {"current_steps": 65, "total_steps": 190, "loss": 0.0462, "learning_rate": 3.933941090877615e-06, "epoch": 1.6774193548387095, "percentage": 34.21, "elapsed_time": "0:11:57", "remaining_time": "0:22:59", "throughput": "618.87", "total_tokens": 443792}
66
+ {"current_steps": 66, "total_steps": 190, "loss": 0.0465, "learning_rate": 3.897982258676867e-06, "epoch": 1.7032258064516128, "percentage": 34.74, "elapsed_time": "0:12:08", "remaining_time": "0:22:47", "throughput": "618.98", "total_tokens": 450672}
67
+ {"current_steps": 67, "total_steps": 190, "loss": 0.0316, "learning_rate": 3.861597587537568e-06, "epoch": 1.729032258064516, "percentage": 35.26, "elapsed_time": "0:12:19", "remaining_time": "0:22:36", "throughput": "619.15", "total_tokens": 457616}
68
+ {"current_steps": 68, "total_steps": 190, "loss": 0.1, "learning_rate": 3.824798160583012e-06, "epoch": 1.7548387096774194, "percentage": 35.79, "elapsed_time": "0:12:30", "remaining_time": "0:22:25", "throughput": "619.38", "total_tokens": 464592}
69
+ {"current_steps": 69, "total_steps": 190, "loss": 0.0711, "learning_rate": 3.787595187275136e-06, "epoch": 1.7806451612903227, "percentage": 36.32, "elapsed_time": "0:12:41", "remaining_time": "0:22:14", "throughput": "619.25", "total_tokens": 471328}
70
+ {"current_steps": 70, "total_steps": 190, "loss": 0.0494, "learning_rate": 3.7500000000000005e-06, "epoch": 1.8064516129032258, "percentage": 36.84, "elapsed_time": "0:12:52", "remaining_time": "0:22:03", "throughput": "619.69", "total_tokens": 478480}
71
+ {"current_steps": 71, "total_steps": 190, "loss": 0.0618, "learning_rate": 3.7120240506158433e-06, "epoch": 1.832258064516129, "percentage": 37.37, "elapsed_time": "0:13:03", "remaining_time": "0:21:52", "throughput": "619.64", "total_tokens": 485264}
72
+ {"current_steps": 72, "total_steps": 190, "loss": 0.0511, "learning_rate": 3.6736789069647273e-06, "epoch": 1.8580645161290321, "percentage": 37.89, "elapsed_time": "0:13:14", "remaining_time": "0:21:41", "throughput": "619.61", "total_tokens": 492064}
73
+ {"current_steps": 73, "total_steps": 190, "loss": 0.0464, "learning_rate": 3.634976249348867e-06, "epoch": 1.8838709677419354, "percentage": 38.42, "elapsed_time": "0:13:25", "remaining_time": "0:21:30", "throughput": "619.64", "total_tokens": 498896}
74
+ {"current_steps": 74, "total_steps": 190, "loss": 0.0331, "learning_rate": 3.595927866972694e-06, "epoch": 1.9096774193548387, "percentage": 38.95, "elapsed_time": "0:13:36", "remaining_time": "0:21:19", "throughput": "620.02", "total_tokens": 506016}
75
+ {"current_steps": 75, "total_steps": 190, "loss": 0.0706, "learning_rate": 3.556545654351749e-06, "epoch": 1.935483870967742, "percentage": 39.47, "elapsed_time": "0:13:47", "remaining_time": "0:21:08", "throughput": "620.04", "total_tokens": 512848}
76
+ {"current_steps": 76, "total_steps": 190, "loss": 0.0442, "learning_rate": 3.516841607689501e-06, "epoch": 1.9612903225806453, "percentage": 40.0, "elapsed_time": "0:13:58", "remaining_time": "0:20:57", "throughput": "620.14", "total_tokens": 519744}
77
+ {"current_steps": 77, "total_steps": 190, "loss": 0.042, "learning_rate": 3.476827821223184e-06, "epoch": 1.9870967741935484, "percentage": 40.53, "elapsed_time": "0:14:09", "remaining_time": "0:20:46", "throughput": "619.89", "total_tokens": 526352}
78
+ {"current_steps": 78, "total_steps": 190, "loss": 0.021, "learning_rate": 3.436516483539781e-06, "epoch": 2.0129032258064514, "percentage": 41.05, "elapsed_time": "0:14:20", "remaining_time": "0:20:35", "throughput": "619.84", "total_tokens": 533136}
79
+ {"current_steps": 79, "total_steps": 190, "loss": 0.0094, "learning_rate": 3.39591987386325e-06, "epoch": 2.0387096774193547, "percentage": 41.58, "elapsed_time": "0:14:31", "remaining_time": "0:20:23", "throughput": "619.91", "total_tokens": 540016}
80
+ {"current_steps": 80, "total_steps": 190, "loss": 0.0021, "learning_rate": 3.3550503583141726e-06, "epoch": 2.064516129032258, "percentage": 42.11, "elapsed_time": "0:14:42", "remaining_time": "0:20:12", "throughput": "620.26", "total_tokens": 547152}
81
+ {"current_steps": 81, "total_steps": 190, "loss": 0.0146, "learning_rate": 3.313920386142892e-06, "epoch": 2.0903225806451613, "percentage": 42.63, "elapsed_time": "0:14:53", "remaining_time": "0:20:01", "throughput": "620.13", "total_tokens": 553888}
82
+ {"current_steps": 82, "total_steps": 190, "loss": 0.0237, "learning_rate": 3.272542485937369e-06, "epoch": 2.1161290322580646, "percentage": 43.16, "elapsed_time": "0:15:04", "remaining_time": "0:19:50", "throughput": "620.48", "total_tokens": 561024}
83
+ {"current_steps": 83, "total_steps": 190, "loss": 0.0031, "learning_rate": 3.230929261806842e-06, "epoch": 2.141935483870968, "percentage": 43.68, "elapsed_time": "0:15:15", "remaining_time": "0:19:39", "throughput": "620.57", "total_tokens": 567936}
84
+ {"current_steps": 84, "total_steps": 190, "loss": 0.0034, "learning_rate": 3.189093389542498e-06, "epoch": 2.167741935483871, "percentage": 44.21, "elapsed_time": "0:15:26", "remaining_time": "0:19:28", "throughput": "620.54", "total_tokens": 574736}
85
+ {"current_steps": 85, "total_steps": 190, "loss": 0.0045, "learning_rate": 3.147047612756302e-06, "epoch": 2.193548387096774, "percentage": 44.74, "elapsed_time": "0:15:37", "remaining_time": "0:19:17", "throughput": "620.66", "total_tokens": 581680}
86
+ {"current_steps": 86, "total_steps": 190, "loss": 0.0031, "learning_rate": 3.1048047389991693e-06, "epoch": 2.2193548387096773, "percentage": 45.26, "elapsed_time": "0:15:48", "remaining_time": "0:19:06", "throughput": "620.62", "total_tokens": 588464}
87
+ {"current_steps": 87, "total_steps": 190, "loss": 0.0341, "learning_rate": 3.062377635859663e-06, "epoch": 2.2451612903225806, "percentage": 45.79, "elapsed_time": "0:15:59", "remaining_time": "0:18:55", "throughput": "620.63", "total_tokens": 595312}
88
+ {"current_steps": 88, "total_steps": 190, "loss": 0.0095, "learning_rate": 3.019779227044398e-06, "epoch": 2.270967741935484, "percentage": 46.32, "elapsed_time": "0:16:10", "remaining_time": "0:18:44", "throughput": "620.55", "total_tokens": 602080}
89
+ {"current_steps": 89, "total_steps": 190, "loss": 0.0459, "learning_rate": 2.9770224884413625e-06, "epoch": 2.296774193548387, "percentage": 46.84, "elapsed_time": "0:16:21", "remaining_time": "0:18:33", "throughput": "620.80", "total_tokens": 609168}
90
+ {"current_steps": 90, "total_steps": 190, "loss": 0.0104, "learning_rate": 2.9341204441673267e-06, "epoch": 2.3225806451612905, "percentage": 47.37, "elapsed_time": "0:16:32", "remaining_time": "0:18:22", "throughput": "620.80", "total_tokens": 616000}
91
+ {"current_steps": 91, "total_steps": 190, "loss": 0.0201, "learning_rate": 2.8910861626005774e-06, "epoch": 2.3483870967741938, "percentage": 47.89, "elapsed_time": "0:16:43", "remaining_time": "0:18:11", "throughput": "620.51", "total_tokens": 622544}
92
+ {"current_steps": 92, "total_steps": 190, "loss": 0.0021, "learning_rate": 2.847932752400164e-06, "epoch": 2.3741935483870966, "percentage": 48.42, "elapsed_time": "0:16:54", "remaining_time": "0:18:00", "throughput": "620.75", "total_tokens": 629600}
93
+ {"current_steps": 93, "total_steps": 190, "loss": 0.043, "learning_rate": 2.804673358512869e-06, "epoch": 2.4, "percentage": 48.95, "elapsed_time": "0:17:05", "remaining_time": "0:17:49", "throughput": "620.64", "total_tokens": 636320}
94
+ {"current_steps": 94, "total_steps": 190, "loss": 0.0207, "learning_rate": 2.761321158169134e-06, "epoch": 2.425806451612903, "percentage": 49.47, "elapsed_time": "0:17:16", "remaining_time": "0:17:38", "throughput": "620.61", "total_tokens": 643136}
95
+ {"current_steps": 95, "total_steps": 190, "loss": 0.0148, "learning_rate": 2.717889356869146e-06, "epoch": 2.4516129032258065, "percentage": 50.0, "elapsed_time": "0:17:27", "remaining_time": "0:17:27", "throughput": "620.69", "total_tokens": 650048}
96
+ {"current_steps": 96, "total_steps": 190, "loss": 0.004, "learning_rate": 2.6743911843603134e-06, "epoch": 2.47741935483871, "percentage": 50.53, "elapsed_time": "0:17:38", "remaining_time": "0:17:16", "throughput": "620.55", "total_tokens": 656736}
97
+ {"current_steps": 97, "total_steps": 190, "loss": 0.0131, "learning_rate": 2.6308398906073603e-06, "epoch": 2.5032258064516126, "percentage": 51.05, "elapsed_time": "0:17:49", "remaining_time": "0:17:05", "throughput": "620.54", "total_tokens": 663552}
98
+ {"current_steps": 98, "total_steps": 190, "loss": 0.0455, "learning_rate": 2.587248741756253e-06, "epoch": 2.5290322580645164, "percentage": 51.58, "elapsed_time": "0:18:00", "remaining_time": "0:16:54", "throughput": "620.37", "total_tokens": 670224}
99
+ {"current_steps": 99, "total_steps": 190, "loss": 0.0031, "learning_rate": 2.543631016093209e-06, "epoch": 2.554838709677419, "percentage": 52.11, "elapsed_time": "0:18:11", "remaining_time": "0:16:43", "throughput": "620.27", "total_tokens": 676960}
100
+ {"current_steps": 100, "total_steps": 190, "loss": 0.0099, "learning_rate": 2.5e-06, "epoch": 2.5806451612903225, "percentage": 52.63, "elapsed_time": "0:18:22", "remaining_time": "0:16:32", "throughput": "620.49", "total_tokens": 684016}
101
+ {"current_steps": 101, "total_steps": 190, "loss": 0.0797, "learning_rate": 2.4563689839067913e-06, "epoch": 2.606451612903226, "percentage": 53.16, "elapsed_time": "0:18:33", "remaining_time": "0:16:21", "throughput": "620.49", "total_tokens": 690832}
102
+ {"current_steps": 102, "total_steps": 190, "loss": 0.0059, "learning_rate": 2.4127512582437486e-06, "epoch": 2.632258064516129, "percentage": 53.68, "elapsed_time": "0:18:44", "remaining_time": "0:16:10", "throughput": "620.63", "total_tokens": 697808}
103
+ {"current_steps": 103, "total_steps": 190, "loss": 0.0438, "learning_rate": 2.3691601093926406e-06, "epoch": 2.6580645161290324, "percentage": 54.21, "elapsed_time": "0:18:55", "remaining_time": "0:15:58", "throughput": "620.38", "total_tokens": 704352}
104
+ {"current_steps": 104, "total_steps": 190, "loss": 0.0149, "learning_rate": 2.325608815639687e-06, "epoch": 2.6838709677419352, "percentage": 54.74, "elapsed_time": "0:19:06", "remaining_time": "0:15:47", "throughput": "620.63", "total_tokens": 711456}
105
+ {"current_steps": 105, "total_steps": 190, "loss": 0.0126, "learning_rate": 2.2821106431308546e-06, "epoch": 2.709677419354839, "percentage": 55.26, "elapsed_time": "0:19:17", "remaining_time": "0:15:36", "throughput": "620.57", "total_tokens": 718224}
106
+ {"current_steps": 106, "total_steps": 190, "loss": 0.0255, "learning_rate": 2.238678841830867e-06, "epoch": 2.735483870967742, "percentage": 55.79, "elapsed_time": "0:19:28", "remaining_time": "0:15:25", "throughput": "620.46", "total_tokens": 724928}
107
+ {"current_steps": 107, "total_steps": 190, "loss": 0.0048, "learning_rate": 2.195326641487132e-06, "epoch": 2.761290322580645, "percentage": 56.32, "elapsed_time": "0:19:39", "remaining_time": "0:15:14", "throughput": "620.34", "total_tokens": 731616}
108
+ {"current_steps": 108, "total_steps": 190, "loss": 0.0142, "learning_rate": 2.1520672475998374e-06, "epoch": 2.7870967741935484, "percentage": 56.84, "elapsed_time": "0:19:50", "remaining_time": "0:15:03", "throughput": "620.20", "total_tokens": 738272}
109
+ {"current_steps": 109, "total_steps": 190, "loss": 0.0193, "learning_rate": 2.1089138373994226e-06, "epoch": 2.8129032258064517, "percentage": 57.37, "elapsed_time": "0:20:01", "remaining_time": "0:14:52", "throughput": "620.23", "total_tokens": 745104}
110
+ {"current_steps": 110, "total_steps": 190, "loss": 0.0055, "learning_rate": 2.0658795558326745e-06, "epoch": 2.838709677419355, "percentage": 57.89, "elapsed_time": "0:20:12", "remaining_time": "0:14:41", "throughput": "620.32", "total_tokens": 752016}
111
+ {"current_steps": 111, "total_steps": 190, "loss": 0.0144, "learning_rate": 2.022977511558638e-06, "epoch": 2.864516129032258, "percentage": 58.42, "elapsed_time": "0:20:23", "remaining_time": "0:14:30", "throughput": "620.23", "total_tokens": 758720}
112
+ {"current_steps": 112, "total_steps": 190, "loss": 0.0272, "learning_rate": 1.9802207729556023e-06, "epoch": 2.8903225806451616, "percentage": 58.95, "elapsed_time": "0:20:34", "remaining_time": "0:14:19", "throughput": "620.22", "total_tokens": 765520}
113
+ {"current_steps": 113, "total_steps": 190, "loss": 0.0101, "learning_rate": 1.937622364140338e-06, "epoch": 2.9161290322580644, "percentage": 59.47, "elapsed_time": "0:20:45", "remaining_time": "0:14:08", "throughput": "620.18", "total_tokens": 772288}
114
+ {"current_steps": 114, "total_steps": 190, "loss": 0.0109, "learning_rate": 1.895195261000831e-06, "epoch": 2.9419354838709677, "percentage": 60.0, "elapsed_time": "0:20:56", "remaining_time": "0:13:57", "throughput": "620.51", "total_tokens": 779520}
115
+ {"current_steps": 115, "total_steps": 190, "loss": 0.018, "learning_rate": 1.852952387243698e-06, "epoch": 2.967741935483871, "percentage": 60.53, "elapsed_time": "0:21:07", "remaining_time": "0:13:46", "throughput": "620.55", "total_tokens": 786400}
116
+ {"current_steps": 116, "total_steps": 190, "loss": 0.0141, "learning_rate": 1.8109066104575023e-06, "epoch": 2.9935483870967743, "percentage": 61.05, "elapsed_time": "0:21:18", "remaining_time": "0:13:35", "throughput": "620.38", "total_tokens": 793008}
117
+ {"current_steps": 117, "total_steps": 190, "loss": 0.0057, "learning_rate": 1.7690707381931585e-06, "epoch": 3.0193548387096776, "percentage": 61.58, "elapsed_time": "0:21:29", "remaining_time": "0:13:24", "throughput": "620.36", "total_tokens": 799808}
118
+ {"current_steps": 118, "total_steps": 190, "loss": 0.0063, "learning_rate": 1.7274575140626318e-06, "epoch": 3.0451612903225804, "percentage": 62.11, "elapsed_time": "0:21:40", "remaining_time": "0:13:13", "throughput": "620.33", "total_tokens": 806576}
119
+ {"current_steps": 119, "total_steps": 190, "loss": 0.0138, "learning_rate": 1.686079613857109e-06, "epoch": 3.0709677419354837, "percentage": 62.63, "elapsed_time": "0:21:51", "remaining_time": "0:13:02", "throughput": "620.27", "total_tokens": 813312}
120
+ {"current_steps": 120, "total_steps": 190, "loss": 0.0011, "learning_rate": 1.6449496416858285e-06, "epoch": 3.096774193548387, "percentage": 63.16, "elapsed_time": "0:22:02", "remaining_time": "0:12:51", "throughput": "619.97", "total_tokens": 819728}
121
+ {"current_steps": 121, "total_steps": 190, "loss": 0.0006, "learning_rate": 1.6040801261367494e-06, "epoch": 3.1225806451612903, "percentage": 63.68, "elapsed_time": "0:22:13", "remaining_time": "0:12:40", "throughput": "619.94", "total_tokens": 826496}
122
+ {"current_steps": 122, "total_steps": 190, "loss": 0.0055, "learning_rate": 1.56348351646022e-06, "epoch": 3.1483870967741936, "percentage": 64.21, "elapsed_time": "0:22:24", "remaining_time": "0:12:29", "throughput": "619.97", "total_tokens": 833360}
123
+ {"current_steps": 123, "total_steps": 190, "loss": 0.0011, "learning_rate": 1.5231721787768162e-06, "epoch": 3.174193548387097, "percentage": 64.74, "elapsed_time": "0:22:35", "remaining_time": "0:12:18", "throughput": "619.90", "total_tokens": 840080}
124
+ {"current_steps": 124, "total_steps": 190, "loss": 0.0173, "learning_rate": 1.4831583923105e-06, "epoch": 3.2, "percentage": 65.26, "elapsed_time": "0:22:46", "remaining_time": "0:12:07", "throughput": "620.05", "total_tokens": 847104}
125
+ {"current_steps": 125, "total_steps": 190, "loss": 0.0027, "learning_rate": 1.443454345648252e-06, "epoch": 3.225806451612903, "percentage": 65.79, "elapsed_time": "0:22:57", "remaining_time": "0:11:56", "throughput": "619.89", "total_tokens": 853712}
126
+ {"current_steps": 126, "total_steps": 190, "loss": 0.0029, "learning_rate": 1.4040721330273063e-06, "epoch": 3.2516129032258063, "percentage": 66.32, "elapsed_time": "0:23:08", "remaining_time": "0:11:45", "throughput": "619.81", "total_tokens": 860400}
127
+ {"current_steps": 127, "total_steps": 190, "loss": 0.0003, "learning_rate": 1.3650237506511333e-06, "epoch": 3.2774193548387096, "percentage": 66.84, "elapsed_time": "0:23:19", "remaining_time": "0:11:34", "throughput": "619.97", "total_tokens": 867440}
128
+ {"current_steps": 128, "total_steps": 190, "loss": 0.0007, "learning_rate": 1.3263210930352737e-06, "epoch": 3.303225806451613, "percentage": 67.37, "elapsed_time": "0:23:30", "remaining_time": "0:11:23", "throughput": "619.98", "total_tokens": 874256}
129
+ {"current_steps": 129, "total_steps": 190, "loss": 0.008, "learning_rate": 1.2879759493841577e-06, "epoch": 3.329032258064516, "percentage": 67.89, "elapsed_time": "0:23:41", "remaining_time": "0:11:11", "throughput": "620.05", "total_tokens": 881168}
130
+ {"current_steps": 130, "total_steps": 190, "loss": 0.0004, "learning_rate": 1.2500000000000007e-06, "epoch": 3.3548387096774195, "percentage": 68.42, "elapsed_time": "0:23:52", "remaining_time": "0:11:00", "throughput": "620.16", "total_tokens": 888128}
131
+ {"current_steps": 131, "total_steps": 190, "loss": 0.0049, "learning_rate": 1.2124048127248644e-06, "epoch": 3.3806451612903228, "percentage": 68.95, "elapsed_time": "0:24:03", "remaining_time": "0:10:49", "throughput": "620.39", "total_tokens": 895296}
132
+ {"current_steps": 132, "total_steps": 190, "loss": 0.0012, "learning_rate": 1.1752018394169882e-06, "epoch": 3.4064516129032256, "percentage": 69.47, "elapsed_time": "0:24:14", "remaining_time": "0:10:38", "throughput": "620.30", "total_tokens": 901984}
133
+ {"current_steps": 133, "total_steps": 190, "loss": 0.0044, "learning_rate": 1.1384024124624324e-06, "epoch": 3.432258064516129, "percentage": 70.0, "elapsed_time": "0:24:25", "remaining_time": "0:10:27", "throughput": "620.50", "total_tokens": 909104}
134
+ {"current_steps": 134, "total_steps": 190, "loss": 0.0017, "learning_rate": 1.1020177413231334e-06, "epoch": 3.458064516129032, "percentage": 70.53, "elapsed_time": "0:24:36", "remaining_time": "0:10:16", "throughput": "620.57", "total_tokens": 916032}
135
+ {"current_steps": 135, "total_steps": 190, "loss": 0.0003, "learning_rate": 1.0660589091223854e-06, "epoch": 3.4838709677419355, "percentage": 71.05, "elapsed_time": "0:24:47", "remaining_time": "0:10:05", "throughput": "620.49", "total_tokens": 922736}
136
+ {"current_steps": 136, "total_steps": 190, "loss": 0.0099, "learning_rate": 1.0305368692688175e-06, "epoch": 3.509677419354839, "percentage": 71.58, "elapsed_time": "0:24:58", "remaining_time": "0:09:54", "throughput": "620.45", "total_tokens": 929472}
137
+ {"current_steps": 137, "total_steps": 190, "loss": 0.0068, "learning_rate": 9.95462442119879e-07, "epoch": 3.535483870967742, "percentage": 72.11, "elapsed_time": "0:25:09", "remaining_time": "0:09:43", "throughput": "620.34", "total_tokens": 936112}
138
+ {"current_steps": 138, "total_steps": 190, "loss": 0.0025, "learning_rate": 9.608463116858544e-07, "epoch": 3.5612903225806454, "percentage": 72.63, "elapsed_time": "0:25:20", "remaining_time": "0:09:32", "throughput": "620.33", "total_tokens": 942912}
139
+ {"current_steps": 139, "total_steps": 190, "loss": 0.0004, "learning_rate": 9.266990223754069e-07, "epoch": 3.587096774193548, "percentage": 73.16, "elapsed_time": "0:25:30", "remaining_time": "0:09:21", "throughput": "620.50", "total_tokens": 949984}
140
+ {"current_steps": 140, "total_steps": 190, "loss": 0.0101, "learning_rate": 8.930309757836517e-07, "epoch": 3.6129032258064515, "percentage": 73.68, "elapsed_time": "0:25:41", "remaining_time": "0:09:10", "throughput": "620.37", "total_tokens": 956608}
141
+ {"current_steps": 141, "total_steps": 190, "loss": 0.0068, "learning_rate": 8.598524275237321e-07, "epoch": 3.638709677419355, "percentage": 74.21, "elapsed_time": "0:25:52", "remaining_time": "0:08:59", "throughput": "620.41", "total_tokens": 963488}
142
+ {"current_steps": 142, "total_steps": 190, "loss": 0.0007, "learning_rate": 8.271734841028553e-07, "epoch": 3.664516129032258, "percentage": 74.74, "elapsed_time": "0:26:03", "remaining_time": "0:08:48", "throughput": "620.29", "total_tokens": 970128}
143
+ {"current_steps": 143, "total_steps": 190, "loss": 0.0161, "learning_rate": 7.950040998437541e-07, "epoch": 3.6903225806451614, "percentage": 75.26, "elapsed_time": "0:26:14", "remaining_time": "0:08:37", "throughput": "620.19", "total_tokens": 976800}
144
+ {"current_steps": 144, "total_steps": 190, "loss": 0.0115, "learning_rate": 7.633540738525066e-07, "epoch": 3.7161290322580647, "percentage": 75.79, "elapsed_time": "0:26:25", "remaining_time": "0:08:26", "throughput": "620.44", "total_tokens": 984000}
145
+ {"current_steps": 145, "total_steps": 190, "loss": 0.0052, "learning_rate": 7.322330470336314e-07, "epoch": 3.741935483870968, "percentage": 76.32, "elapsed_time": "0:26:36", "remaining_time": "0:08:15", "throughput": "620.49", "total_tokens": 990896}
146
+ {"current_steps": 146, "total_steps": 190, "loss": 0.0098, "learning_rate": 7.016504991533727e-07, "epoch": 3.767741935483871, "percentage": 76.84, "elapsed_time": "0:26:47", "remaining_time": "0:08:04", "throughput": "620.56", "total_tokens": 997824}
147
+ {"current_steps": 147, "total_steps": 190, "loss": 0.0005, "learning_rate": 6.716157459520739e-07, "epoch": 3.793548387096774, "percentage": 77.37, "elapsed_time": "0:26:58", "remaining_time": "0:07:53", "throughput": "620.74", "total_tokens": 1004928}
148
+ {"current_steps": 148, "total_steps": 190, "loss": 0.0012, "learning_rate": 6.421379363065142e-07, "epoch": 3.8193548387096774, "percentage": 77.89, "elapsed_time": "0:27:09", "remaining_time": "0:07:42", "throughput": "620.71", "total_tokens": 1011696}
149
+ {"current_steps": 149, "total_steps": 190, "loss": 0.0013, "learning_rate": 6.1322604944307e-07, "epoch": 3.8451612903225807, "percentage": 78.42, "elapsed_time": "0:27:20", "remaining_time": "0:07:31", "throughput": "620.61", "total_tokens": 1018368}
150
+ {"current_steps": 150, "total_steps": 190, "loss": 0.0003, "learning_rate": 5.848888922025553e-07, "epoch": 3.870967741935484, "percentage": 78.95, "elapsed_time": "0:27:31", "remaining_time": "0:07:20", "throughput": "620.76", "total_tokens": 1025424}
151
+ {"current_steps": 151, "total_steps": 190, "loss": 0.0026, "learning_rate": 5.571350963575728e-07, "epoch": 3.896774193548387, "percentage": 79.47, "elapsed_time": "0:27:42", "remaining_time": "0:07:09", "throughput": "620.61", "total_tokens": 1032016}
152
+ {"current_steps": 152, "total_steps": 190, "loss": 0.0097, "learning_rate": 5.299731159831953e-07, "epoch": 3.9225806451612906, "percentage": 80.0, "elapsed_time": "0:27:53", "remaining_time": "0:06:58", "throughput": "620.67", "total_tokens": 1038928}
153
+ {"current_steps": 153, "total_steps": 190, "loss": 0.0047, "learning_rate": 5.034112248817685e-07, "epoch": 3.9483870967741934, "percentage": 80.53, "elapsed_time": "0:28:04", "remaining_time": "0:06:47", "throughput": "620.62", "total_tokens": 1045664}
154
+ {"current_steps": 154, "total_steps": 190, "loss": 0.0081, "learning_rate": 4.774575140626317e-07, "epoch": 3.9741935483870967, "percentage": 81.05, "elapsed_time": "0:28:15", "remaining_time": "0:06:36", "throughput": "620.72", "total_tokens": 1052640}
155
+ {"current_steps": 155, "total_steps": 190, "loss": 0.0018, "learning_rate": 4.5211988927752026e-07, "epoch": 4.0, "percentage": 81.58, "elapsed_time": "0:28:26", "remaining_time": "0:06:25", "throughput": "620.95", "total_tokens": 1059840}
156
+ {"current_steps": 156, "total_steps": 190, "loss": 0.0053, "learning_rate": 4.27406068612396e-07, "epoch": 4.025806451612903, "percentage": 82.11, "elapsed_time": "0:28:37", "remaining_time": "0:06:14", "throughput": "620.97", "total_tokens": 1066704}
157
+ {"current_steps": 157, "total_steps": 190, "loss": 0.0005, "learning_rate": 4.033235801364402e-07, "epoch": 4.051612903225807, "percentage": 82.63, "elapsed_time": "0:28:48", "remaining_time": "0:06:03", "throughput": "621.01", "total_tokens": 1073600}
158
+ {"current_steps": 158, "total_steps": 190, "loss": 0.0001, "learning_rate": 3.798797596089351e-07, "epoch": 4.077419354838709, "percentage": 83.16, "elapsed_time": "0:28:59", "remaining_time": "0:05:52", "throughput": "620.88", "total_tokens": 1080208}
159
+ {"current_steps": 159, "total_steps": 190, "loss": 0.0018, "learning_rate": 3.5708174824471947e-07, "epoch": 4.103225806451613, "percentage": 83.68, "elapsed_time": "0:29:10", "remaining_time": "0:05:41", "throughput": "620.79", "total_tokens": 1086880}
160
+ {"current_steps": 160, "total_steps": 190, "loss": 0.001, "learning_rate": 3.3493649053890325e-07, "epoch": 4.129032258064516, "percentage": 84.21, "elapsed_time": "0:29:21", "remaining_time": "0:05:30", "throughput": "620.68", "total_tokens": 1093520}
161
+ {"current_steps": 161, "total_steps": 190, "loss": 0.0001, "learning_rate": 3.134507321515107e-07, "epoch": 4.15483870967742, "percentage": 84.74, "elapsed_time": "0:29:32", "remaining_time": "0:05:19", "throughput": "620.79", "total_tokens": 1100528}
162
+ {"current_steps": 162, "total_steps": 190, "loss": 0.0012, "learning_rate": 2.9263101785268253e-07, "epoch": 4.180645161290323, "percentage": 85.26, "elapsed_time": "0:29:43", "remaining_time": "0:05:08", "throughput": "620.89", "total_tokens": 1107520}
163
+ {"current_steps": 163, "total_steps": 190, "loss": 0.0001, "learning_rate": 2.7248368952908055e-07, "epoch": 4.2064516129032254, "percentage": 85.79, "elapsed_time": "0:29:54", "remaining_time": "0:04:57", "throughput": "620.82", "total_tokens": 1114208}
164
+ {"current_steps": 164, "total_steps": 190, "loss": 0.0002, "learning_rate": 2.53014884252083e-07, "epoch": 4.232258064516129, "percentage": 86.32, "elapsed_time": "0:30:05", "remaining_time": "0:04:46", "throughput": "620.76", "total_tokens": 1120912}
165
+ {"current_steps": 165, "total_steps": 190, "loss": 0.0001, "learning_rate": 2.3423053240837518e-07, "epoch": 4.258064516129032, "percentage": 86.84, "elapsed_time": "0:30:16", "remaining_time": "0:04:35", "throughput": "620.84", "total_tokens": 1127872}
166
+ {"current_steps": 166, "total_steps": 190, "loss": 0.0003, "learning_rate": 2.1613635589349756e-07, "epoch": 4.283870967741936, "percentage": 87.37, "elapsed_time": "0:30:27", "remaining_time": "0:04:24", "throughput": "620.65", "total_tokens": 1134352}
167
+ {"current_steps": 167, "total_steps": 190, "loss": 0.0001, "learning_rate": 1.9873786636889908e-07, "epoch": 4.309677419354839, "percentage": 87.89, "elapsed_time": "0:30:38", "remaining_time": "0:04:13", "throughput": "620.79", "total_tokens": 1141440}
168
+ {"current_steps": 168, "total_steps": 190, "loss": 0.0007, "learning_rate": 1.8204036358303173e-07, "epoch": 4.335483870967742, "percentage": 88.42, "elapsed_time": "0:30:49", "remaining_time": "0:04:02", "throughput": "620.70", "total_tokens": 1148096}
169
+ {"current_steps": 169, "total_steps": 190, "loss": 0.0003, "learning_rate": 1.6604893375699594e-07, "epoch": 4.361290322580645, "percentage": 88.95, "elapsed_time": "0:31:00", "remaining_time": "0:03:51", "throughput": "620.56", "total_tokens": 1154672}
170
+ {"current_steps": 170, "total_steps": 190, "loss": 0.0001, "learning_rate": 1.507684480352292e-07, "epoch": 4.387096774193548, "percentage": 89.47, "elapsed_time": "0:31:11", "remaining_time": "0:03:40", "throughput": "620.70", "total_tokens": 1161744}
171
+ {"current_steps": 171, "total_steps": 190, "loss": 0.0008, "learning_rate": 1.362035610017079e-07, "epoch": 4.412903225806452, "percentage": 90.0, "elapsed_time": "0:31:22", "remaining_time": "0:03:29", "throughput": "620.90", "total_tokens": 1168944}
172
+ {"current_steps": 172, "total_steps": 190, "loss": 0.0001, "learning_rate": 1.223587092621162e-07, "epoch": 4.438709677419355, "percentage": 90.53, "elapsed_time": "0:31:33", "remaining_time": "0:03:18", "throughput": "620.92", "total_tokens": 1175792}
173
+ {"current_steps": 173, "total_steps": 190, "loss": 0.0004, "learning_rate": 1.0923811009241142e-07, "epoch": 4.464516129032258, "percentage": 91.05, "elapsed_time": "0:31:44", "remaining_time": "0:03:07", "throughput": "621.02", "total_tokens": 1182800}
174
+ {"current_steps": 174, "total_steps": 190, "loss": 0.0001, "learning_rate": 9.684576015420277e-08, "epoch": 4.490322580645161, "percentage": 91.58, "elapsed_time": "0:31:55", "remaining_time": "0:02:56", "throughput": "620.99", "total_tokens": 1189568}
175
+ {"current_steps": 175, "total_steps": 190, "loss": 0.0005, "learning_rate": 8.518543427732951e-08, "epoch": 4.516129032258064, "percentage": 92.11, "elapsed_time": "0:32:06", "remaining_time": "0:02:45", "throughput": "621.03", "total_tokens": 1196480}
176
+ {"current_steps": 176, "total_steps": 190, "loss": 0.0076, "learning_rate": 7.426068431000883e-08, "epoch": 4.541935483870968, "percentage": 92.63, "elapsed_time": "0:32:17", "remaining_time": "0:02:34", "throughput": "621.25", "total_tokens": 1203728}
177
+ {"current_steps": 177, "total_steps": 190, "loss": 0.0004, "learning_rate": 6.407483803691216e-08, "epoch": 4.567741935483871, "percentage": 93.16, "elapsed_time": "0:32:28", "remaining_time": "0:02:23", "throughput": "621.12", "total_tokens": 1210320}
178
+ {"current_steps": 178, "total_steps": 190, "loss": 0.004, "learning_rate": 5.463099816548578e-08, "epoch": 4.593548387096774, "percentage": 93.68, "elapsed_time": "0:32:39", "remaining_time": "0:02:12", "throughput": "621.16", "total_tokens": 1217248}
179
+ {"current_steps": 179, "total_steps": 190, "loss": 0.0001, "learning_rate": 4.593204138084006e-08, "epoch": 4.619354838709677, "percentage": 94.21, "elapsed_time": "0:32:50", "remaining_time": "0:02:01", "throughput": "621.22", "total_tokens": 1224192}
180
+ {"current_steps": 180, "total_steps": 190, "loss": 0.0005, "learning_rate": 3.798061746947995e-08, "epoch": 4.645161290322581, "percentage": 94.74, "elapsed_time": "0:33:01", "remaining_time": "0:01:50", "throughput": "621.17", "total_tokens": 1230896}
181
+ {"current_steps": 181, "total_steps": 190, "loss": 0.0002, "learning_rate": 3.077914851215585e-08, "epoch": 4.670967741935484, "percentage": 95.26, "elapsed_time": "0:33:12", "remaining_time": "0:01:39", "throughput": "621.23", "total_tokens": 1237840}
182
+ {"current_steps": 182, "total_steps": 190, "loss": 0.0001, "learning_rate": 2.4329828146074096e-08, "epoch": 4.6967741935483875, "percentage": 95.79, "elapsed_time": "0:33:23", "remaining_time": "0:01:28", "throughput": "621.25", "total_tokens": 1244688}
183
+ {"current_steps": 183, "total_steps": 190, "loss": 0.0001, "learning_rate": 1.8634620896695044e-08, "epoch": 4.72258064516129, "percentage": 96.32, "elapsed_time": "0:33:34", "remaining_time": "0:01:17", "throughput": "621.28", "total_tokens": 1251584}
184
+ {"current_steps": 184, "total_steps": 190, "loss": 0.0001, "learning_rate": 1.3695261579316776e-08, "epoch": 4.748387096774193, "percentage": 96.84, "elapsed_time": "0:33:45", "remaining_time": "0:01:06", "throughput": "621.30", "total_tokens": 1258448}
185
+ {"current_steps": 185, "total_steps": 190, "loss": 0.0167, "learning_rate": 9.513254770636138e-09, "epoch": 4.774193548387097, "percentage": 97.37, "elapsed_time": "0:33:56", "remaining_time": "0:00:55", "throughput": "621.38", "total_tokens": 1265440}
186
+ {"current_steps": 186, "total_steps": 190, "loss": 0.0002, "learning_rate": 6.089874350439507e-09, "epoch": 4.8, "percentage": 97.89, "elapsed_time": "0:34:07", "remaining_time": "0:00:44", "throughput": "621.28", "total_tokens": 1272080}
187
+ {"current_steps": 187, "total_steps": 190, "loss": 0.0003, "learning_rate": 3.4261631135654174e-09, "epoch": 4.825806451612904, "percentage": 98.42, "elapsed_time": "0:34:18", "remaining_time": "0:00:33", "throughput": "621.31", "total_tokens": 1278976}
188
+ {"current_steps": 188, "total_steps": 190, "loss": 0.0024, "learning_rate": 1.5229324522605949e-09, "epoch": 4.851612903225806, "percentage": 98.95, "elapsed_time": "0:34:29", "remaining_time": "0:00:22", "throughput": "621.29", "total_tokens": 1285760}
189
+ {"current_steps": 189, "total_steps": 190, "loss": 0.0005, "learning_rate": 3.8076210902182607e-10, "epoch": 4.877419354838709, "percentage": 99.47, "elapsed_time": "0:34:40", "remaining_time": "0:00:11", "throughput": "621.19", "total_tokens": 1292368}
190
+ {"current_steps": 190, "total_steps": 190, "loss": 0.0017, "learning_rate": 0.0, "epoch": 4.903225806451613, "percentage": 100.0, "elapsed_time": "0:34:51", "remaining_time": "0:00:00", "throughput": "621.15", "total_tokens": 1299120}
191
+ {"current_steps": 190, "total_steps": 190, "epoch": 4.903225806451613, "percentage": 100.0, "elapsed_time": "0:35:42", "remaining_time": "0:00:00", "throughput": "606.30", "total_tokens": 1299120}
trainer_state.json ADDED
@@ -0,0 +1,1563 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.903225806451613,
5
+ "eval_steps": 500,
6
+ "global_step": 190,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.025806451612903226,
13
+ "grad_norm": 276.5378112792969,
14
+ "learning_rate": 5.000000000000001e-07,
15
+ "loss": 8.2514,
16
+ "num_input_tokens_seen": 6848,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.05161290322580645,
21
+ "grad_norm": 294.3509521484375,
22
+ "learning_rate": 1.0000000000000002e-06,
23
+ "loss": 8.2793,
24
+ "num_input_tokens_seen": 13776,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.07741935483870968,
29
+ "grad_norm": 283.4303283691406,
30
+ "learning_rate": 1.5e-06,
31
+ "loss": 8.17,
32
+ "num_input_tokens_seen": 20672,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.1032258064516129,
37
+ "grad_norm": 285.55255126953125,
38
+ "learning_rate": 2.0000000000000003e-06,
39
+ "loss": 7.6197,
40
+ "num_input_tokens_seen": 27744,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.12903225806451613,
45
+ "grad_norm": 271.7382507324219,
46
+ "learning_rate": 2.5e-06,
47
+ "loss": 6.9491,
48
+ "num_input_tokens_seen": 34624,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.15483870967741936,
53
+ "grad_norm": 125.66632080078125,
54
+ "learning_rate": 3e-06,
55
+ "loss": 5.2054,
56
+ "num_input_tokens_seen": 41424,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.18064516129032257,
61
+ "grad_norm": 113.50272369384766,
62
+ "learning_rate": 3.5e-06,
63
+ "loss": 4.8642,
64
+ "num_input_tokens_seen": 48304,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.2064516129032258,
69
+ "grad_norm": 113.24736785888672,
70
+ "learning_rate": 4.000000000000001e-06,
71
+ "loss": 3.2874,
72
+ "num_input_tokens_seen": 55152,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.23225806451612904,
77
+ "grad_norm": 117.07583618164062,
78
+ "learning_rate": 4.5e-06,
79
+ "loss": 2.631,
80
+ "num_input_tokens_seen": 61680,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.25806451612903225,
85
+ "grad_norm": 113.77539825439453,
86
+ "learning_rate": 5e-06,
87
+ "loss": 0.6982,
88
+ "num_input_tokens_seen": 68480,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.2838709677419355,
93
+ "grad_norm": 36.774471282958984,
94
+ "learning_rate": 4.9996192378909785e-06,
95
+ "loss": 0.3276,
96
+ "num_input_tokens_seen": 75296,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.3096774193548387,
101
+ "grad_norm": 33.21468734741211,
102
+ "learning_rate": 4.99847706754774e-06,
103
+ "loss": 0.293,
104
+ "num_input_tokens_seen": 82288,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.33548387096774196,
109
+ "grad_norm": 5.65634822845459,
110
+ "learning_rate": 4.9965738368864345e-06,
111
+ "loss": 0.2129,
112
+ "num_input_tokens_seen": 89088,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.36129032258064514,
117
+ "grad_norm": 55.87510299682617,
118
+ "learning_rate": 4.993910125649561e-06,
119
+ "loss": 0.4712,
120
+ "num_input_tokens_seen": 95904,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.3870967741935484,
125
+ "grad_norm": 31.815500259399414,
126
+ "learning_rate": 4.990486745229364e-06,
127
+ "loss": 0.235,
128
+ "num_input_tokens_seen": 102896,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.4129032258064516,
133
+ "grad_norm": 10.451783180236816,
134
+ "learning_rate": 4.986304738420684e-06,
135
+ "loss": 0.202,
136
+ "num_input_tokens_seen": 109792,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.43870967741935485,
141
+ "grad_norm": 21.014144897460938,
142
+ "learning_rate": 4.981365379103306e-06,
143
+ "loss": 0.1981,
144
+ "num_input_tokens_seen": 116528,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.4645161290322581,
149
+ "grad_norm": 4.897561550140381,
150
+ "learning_rate": 4.975670171853926e-06,
151
+ "loss": 0.1517,
152
+ "num_input_tokens_seen": 123200,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.49032258064516127,
157
+ "grad_norm": 37.270225524902344,
158
+ "learning_rate": 4.9692208514878445e-06,
159
+ "loss": 0.4335,
160
+ "num_input_tokens_seen": 130032,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.5161290322580645,
165
+ "grad_norm": 31.595401763916016,
166
+ "learning_rate": 4.962019382530521e-06,
167
+ "loss": 0.3609,
168
+ "num_input_tokens_seen": 136832,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.5419354838709678,
173
+ "grad_norm": 8.859624862670898,
174
+ "learning_rate": 4.9540679586191605e-06,
175
+ "loss": 0.1708,
176
+ "num_input_tokens_seen": 143904,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.567741935483871,
181
+ "grad_norm": 21.666885375976562,
182
+ "learning_rate": 4.9453690018345144e-06,
183
+ "loss": 0.2277,
184
+ "num_input_tokens_seen": 150496,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.5935483870967742,
189
+ "grad_norm": 29.53874969482422,
190
+ "learning_rate": 4.935925161963089e-06,
191
+ "loss": 0.3437,
192
+ "num_input_tokens_seen": 157360,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.6193548387096774,
197
+ "grad_norm": 17.89641761779785,
198
+ "learning_rate": 4.925739315689991e-06,
199
+ "loss": 0.2229,
200
+ "num_input_tokens_seen": 164464,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.6451612903225806,
205
+ "grad_norm": 2.7967522144317627,
206
+ "learning_rate": 4.914814565722671e-06,
207
+ "loss": 0.1242,
208
+ "num_input_tokens_seen": 170960,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.6709677419354839,
213
+ "grad_norm": 15.343024253845215,
214
+ "learning_rate": 4.903154239845798e-06,
215
+ "loss": 0.2117,
216
+ "num_input_tokens_seen": 177808,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.6967741935483871,
221
+ "grad_norm": 20.621328353881836,
222
+ "learning_rate": 4.890761889907589e-06,
223
+ "loss": 0.2706,
224
+ "num_input_tokens_seen": 184848,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.7225806451612903,
229
+ "grad_norm": 14.205361366271973,
230
+ "learning_rate": 4.8776412907378845e-06,
231
+ "loss": 0.2084,
232
+ "num_input_tokens_seen": 191536,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.7483870967741936,
237
+ "grad_norm": 4.756993770599365,
238
+ "learning_rate": 4.863796438998293e-06,
239
+ "loss": 0.0981,
240
+ "num_input_tokens_seen": 198368,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.7741935483870968,
245
+ "grad_norm": 13.791275024414062,
246
+ "learning_rate": 4.849231551964771e-06,
247
+ "loss": 0.16,
248
+ "num_input_tokens_seen": 205200,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.8,
253
+ "grad_norm": 11.285390853881836,
254
+ "learning_rate": 4.833951066243004e-06,
255
+ "loss": 0.1614,
256
+ "num_input_tokens_seen": 211760,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.8258064516129032,
261
+ "grad_norm": 13.351017951965332,
262
+ "learning_rate": 4.817959636416969e-06,
263
+ "loss": 0.1742,
264
+ "num_input_tokens_seen": 218448,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.8516129032258064,
269
+ "grad_norm": 6.028775691986084,
270
+ "learning_rate": 4.801262133631101e-06,
271
+ "loss": 0.1107,
272
+ "num_input_tokens_seen": 225408,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.8774193548387097,
277
+ "grad_norm": 2.5520031452178955,
278
+ "learning_rate": 4.783863644106502e-06,
279
+ "loss": 0.0822,
280
+ "num_input_tokens_seen": 232032,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.9032258064516129,
285
+ "grad_norm": 13.276092529296875,
286
+ "learning_rate": 4.765769467591626e-06,
287
+ "loss": 0.1873,
288
+ "num_input_tokens_seen": 238672,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.9290322580645162,
293
+ "grad_norm": 15.978204727172852,
294
+ "learning_rate": 4.746985115747918e-06,
295
+ "loss": 0.2375,
296
+ "num_input_tokens_seen": 245456,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.9548387096774194,
301
+ "grad_norm": 16.432758331298828,
302
+ "learning_rate": 4.72751631047092e-06,
303
+ "loss": 0.2667,
304
+ "num_input_tokens_seen": 252576,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.9806451612903225,
309
+ "grad_norm": 12.175621032714844,
310
+ "learning_rate": 4.707368982147318e-06,
311
+ "loss": 0.1547,
312
+ "num_input_tokens_seen": 259536,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 1.0064516129032257,
317
+ "grad_norm": 9.780308723449707,
318
+ "learning_rate": 4.68654926784849e-06,
319
+ "loss": 0.1662,
320
+ "num_input_tokens_seen": 266560,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 1.032258064516129,
325
+ "grad_norm": 3.619741678237915,
326
+ "learning_rate": 4.665063509461098e-06,
327
+ "loss": 0.0808,
328
+ "num_input_tokens_seen": 273248,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 1.0580645161290323,
333
+ "grad_norm": 5.894082546234131,
334
+ "learning_rate": 4.642918251755281e-06,
335
+ "loss": 0.0884,
336
+ "num_input_tokens_seen": 279888,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 1.0838709677419356,
341
+ "grad_norm": 5.443681240081787,
342
+ "learning_rate": 4.620120240391065e-06,
343
+ "loss": 0.0883,
344
+ "num_input_tokens_seen": 286944,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 1.1096774193548387,
349
+ "grad_norm": 3.3760452270507812,
350
+ "learning_rate": 4.596676419863561e-06,
351
+ "loss": 0.0562,
352
+ "num_input_tokens_seen": 293792,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 1.135483870967742,
357
+ "grad_norm": 2.7039427757263184,
358
+ "learning_rate": 4.572593931387604e-06,
359
+ "loss": 0.0856,
360
+ "num_input_tokens_seen": 300512,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 1.1612903225806452,
365
+ "grad_norm": 4.186523914337158,
366
+ "learning_rate": 4.54788011072248e-06,
367
+ "loss": 0.0612,
368
+ "num_input_tokens_seen": 307264,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 1.1870967741935483,
373
+ "grad_norm": 4.6027374267578125,
374
+ "learning_rate": 4.522542485937369e-06,
375
+ "loss": 0.0944,
376
+ "num_input_tokens_seen": 314112,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 1.2129032258064516,
381
+ "grad_norm": 4.636350154876709,
382
+ "learning_rate": 4.496588775118232e-06,
383
+ "loss": 0.0624,
384
+ "num_input_tokens_seen": 320864,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 1.238709677419355,
389
+ "grad_norm": 3.0458312034606934,
390
+ "learning_rate": 4.470026884016805e-06,
391
+ "loss": 0.0363,
392
+ "num_input_tokens_seen": 327648,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 1.2645161290322582,
397
+ "grad_norm": 4.572902679443359,
398
+ "learning_rate": 4.442864903642428e-06,
399
+ "loss": 0.1039,
400
+ "num_input_tokens_seen": 334432,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 1.2903225806451613,
405
+ "grad_norm": 2.629575252532959,
406
+ "learning_rate": 4.415111107797445e-06,
407
+ "loss": 0.0488,
408
+ "num_input_tokens_seen": 341248,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 1.3161290322580645,
413
+ "grad_norm": 2.7692055702209473,
414
+ "learning_rate": 4.386773950556931e-06,
415
+ "loss": 0.0613,
416
+ "num_input_tokens_seen": 348192,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 1.3419354838709676,
421
+ "grad_norm": 2.706336498260498,
422
+ "learning_rate": 4.357862063693486e-06,
423
+ "loss": 0.07,
424
+ "num_input_tokens_seen": 354816,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 1.367741935483871,
429
+ "grad_norm": 1.679677963256836,
430
+ "learning_rate": 4.328384254047927e-06,
431
+ "loss": 0.0463,
432
+ "num_input_tokens_seen": 361600,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 1.3935483870967742,
437
+ "grad_norm": 2.623893976211548,
438
+ "learning_rate": 4.2983495008466285e-06,
439
+ "loss": 0.0671,
440
+ "num_input_tokens_seen": 368464,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 1.4193548387096775,
445
+ "grad_norm": 1.7314574718475342,
446
+ "learning_rate": 4.267766952966369e-06,
447
+ "loss": 0.0428,
448
+ "num_input_tokens_seen": 375440,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 1.4451612903225808,
453
+ "grad_norm": 5.240540981292725,
454
+ "learning_rate": 4.236645926147493e-06,
455
+ "loss": 0.0678,
456
+ "num_input_tokens_seen": 382240,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 1.4709677419354839,
461
+ "grad_norm": 1.9007383584976196,
462
+ "learning_rate": 4.204995900156247e-06,
463
+ "loss": 0.0476,
464
+ "num_input_tokens_seen": 389008,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 1.4967741935483871,
469
+ "grad_norm": 3.100925922393799,
470
+ "learning_rate": 4.172826515897146e-06,
471
+ "loss": 0.0442,
472
+ "num_input_tokens_seen": 396080,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 1.5225806451612902,
477
+ "grad_norm": 2.798711061477661,
478
+ "learning_rate": 4.140147572476269e-06,
479
+ "loss": 0.0336,
480
+ "num_input_tokens_seen": 403056,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 1.5483870967741935,
485
+ "grad_norm": 2.20042085647583,
486
+ "learning_rate": 4.106969024216348e-06,
487
+ "loss": 0.046,
488
+ "num_input_tokens_seen": 409664,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 1.5741935483870968,
493
+ "grad_norm": 4.055737495422363,
494
+ "learning_rate": 4.073300977624594e-06,
495
+ "loss": 0.0416,
496
+ "num_input_tokens_seen": 416272,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 1.6,
501
+ "grad_norm": 3.15283465385437,
502
+ "learning_rate": 4.039153688314146e-06,
503
+ "loss": 0.0649,
504
+ "num_input_tokens_seen": 423360,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 1.6258064516129034,
509
+ "grad_norm": 4.418552398681641,
510
+ "learning_rate": 4.0045375578801216e-06,
511
+ "loss": 0.0591,
512
+ "num_input_tokens_seen": 430304,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 1.6516129032258065,
517
+ "grad_norm": 3.960134506225586,
518
+ "learning_rate": 3.969463130731183e-06,
519
+ "loss": 0.0318,
520
+ "num_input_tokens_seen": 436960,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 1.6774193548387095,
525
+ "grad_norm": 3.1769161224365234,
526
+ "learning_rate": 3.933941090877615e-06,
527
+ "loss": 0.0462,
528
+ "num_input_tokens_seen": 443792,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 1.7032258064516128,
533
+ "grad_norm": 4.235939025878906,
534
+ "learning_rate": 3.897982258676867e-06,
535
+ "loss": 0.0465,
536
+ "num_input_tokens_seen": 450672,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 1.729032258064516,
541
+ "grad_norm": 2.7547543048858643,
542
+ "learning_rate": 3.861597587537568e-06,
543
+ "loss": 0.0316,
544
+ "num_input_tokens_seen": 457616,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 1.7548387096774194,
549
+ "grad_norm": 4.103342533111572,
550
+ "learning_rate": 3.824798160583012e-06,
551
+ "loss": 0.1,
552
+ "num_input_tokens_seen": 464592,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 1.7806451612903227,
557
+ "grad_norm": 3.525808811187744,
558
+ "learning_rate": 3.787595187275136e-06,
559
+ "loss": 0.0711,
560
+ "num_input_tokens_seen": 471328,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 1.8064516129032258,
565
+ "grad_norm": 2.9660446643829346,
566
+ "learning_rate": 3.7500000000000005e-06,
567
+ "loss": 0.0494,
568
+ "num_input_tokens_seen": 478480,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 1.832258064516129,
573
+ "grad_norm": 3.661849021911621,
574
+ "learning_rate": 3.7120240506158433e-06,
575
+ "loss": 0.0618,
576
+ "num_input_tokens_seen": 485264,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 1.8580645161290321,
581
+ "grad_norm": 1.8227900266647339,
582
+ "learning_rate": 3.6736789069647273e-06,
583
+ "loss": 0.0511,
584
+ "num_input_tokens_seen": 492064,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 1.8838709677419354,
589
+ "grad_norm": 2.1322553157806396,
590
+ "learning_rate": 3.634976249348867e-06,
591
+ "loss": 0.0464,
592
+ "num_input_tokens_seen": 498896,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 1.9096774193548387,
597
+ "grad_norm": 1.8635531663894653,
598
+ "learning_rate": 3.595927866972694e-06,
599
+ "loss": 0.0331,
600
+ "num_input_tokens_seen": 506016,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 1.935483870967742,
605
+ "grad_norm": 2.9526419639587402,
606
+ "learning_rate": 3.556545654351749e-06,
607
+ "loss": 0.0706,
608
+ "num_input_tokens_seen": 512848,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 1.9612903225806453,
613
+ "grad_norm": 2.8351802825927734,
614
+ "learning_rate": 3.516841607689501e-06,
615
+ "loss": 0.0442,
616
+ "num_input_tokens_seen": 519744,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 1.9870967741935484,
621
+ "grad_norm": 3.1449944972991943,
622
+ "learning_rate": 3.476827821223184e-06,
623
+ "loss": 0.042,
624
+ "num_input_tokens_seen": 526352,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 2.0129032258064514,
629
+ "grad_norm": 1.6314219236373901,
630
+ "learning_rate": 3.436516483539781e-06,
631
+ "loss": 0.021,
632
+ "num_input_tokens_seen": 533136,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 2.0387096774193547,
637
+ "grad_norm": 1.6224279403686523,
638
+ "learning_rate": 3.39591987386325e-06,
639
+ "loss": 0.0094,
640
+ "num_input_tokens_seen": 540016,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 2.064516129032258,
645
+ "grad_norm": 0.3502344787120819,
646
+ "learning_rate": 3.3550503583141726e-06,
647
+ "loss": 0.0021,
648
+ "num_input_tokens_seen": 547152,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 2.0903225806451613,
653
+ "grad_norm": 1.7473047971725464,
654
+ "learning_rate": 3.313920386142892e-06,
655
+ "loss": 0.0146,
656
+ "num_input_tokens_seen": 553888,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 2.1161290322580646,
661
+ "grad_norm": 2.363898277282715,
662
+ "learning_rate": 3.272542485937369e-06,
663
+ "loss": 0.0237,
664
+ "num_input_tokens_seen": 561024,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 2.141935483870968,
669
+ "grad_norm": 1.377082109451294,
670
+ "learning_rate": 3.230929261806842e-06,
671
+ "loss": 0.0031,
672
+ "num_input_tokens_seen": 567936,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 2.167741935483871,
677
+ "grad_norm": 0.6467981934547424,
678
+ "learning_rate": 3.189093389542498e-06,
679
+ "loss": 0.0034,
680
+ "num_input_tokens_seen": 574736,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 2.193548387096774,
685
+ "grad_norm": 0.9653486609458923,
686
+ "learning_rate": 3.147047612756302e-06,
687
+ "loss": 0.0045,
688
+ "num_input_tokens_seen": 581680,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 2.2193548387096773,
693
+ "grad_norm": 0.7019590735435486,
694
+ "learning_rate": 3.1048047389991693e-06,
695
+ "loss": 0.0031,
696
+ "num_input_tokens_seen": 588464,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 2.2451612903225806,
701
+ "grad_norm": 2.078730821609497,
702
+ "learning_rate": 3.062377635859663e-06,
703
+ "loss": 0.0341,
704
+ "num_input_tokens_seen": 595312,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 2.270967741935484,
709
+ "grad_norm": 4.608306407928467,
710
+ "learning_rate": 3.019779227044398e-06,
711
+ "loss": 0.0095,
712
+ "num_input_tokens_seen": 602080,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 2.296774193548387,
717
+ "grad_norm": 3.8219709396362305,
718
+ "learning_rate": 2.9770224884413625e-06,
719
+ "loss": 0.0459,
720
+ "num_input_tokens_seen": 609168,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 2.3225806451612905,
725
+ "grad_norm": 2.868053674697876,
726
+ "learning_rate": 2.9341204441673267e-06,
727
+ "loss": 0.0104,
728
+ "num_input_tokens_seen": 616000,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 2.3483870967741938,
733
+ "grad_norm": 2.516240119934082,
734
+ "learning_rate": 2.8910861626005774e-06,
735
+ "loss": 0.0201,
736
+ "num_input_tokens_seen": 622544,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 2.3741935483870966,
741
+ "grad_norm": 0.5750585794448853,
742
+ "learning_rate": 2.847932752400164e-06,
743
+ "loss": 0.0021,
744
+ "num_input_tokens_seen": 629600,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 2.4,
749
+ "grad_norm": 2.9817891120910645,
750
+ "learning_rate": 2.804673358512869e-06,
751
+ "loss": 0.043,
752
+ "num_input_tokens_seen": 636320,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 2.425806451612903,
757
+ "grad_norm": 1.8277342319488525,
758
+ "learning_rate": 2.761321158169134e-06,
759
+ "loss": 0.0207,
760
+ "num_input_tokens_seen": 643136,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 2.4516129032258065,
765
+ "grad_norm": 4.615224361419678,
766
+ "learning_rate": 2.717889356869146e-06,
767
+ "loss": 0.0148,
768
+ "num_input_tokens_seen": 650048,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 2.47741935483871,
773
+ "grad_norm": 0.9854787588119507,
774
+ "learning_rate": 2.6743911843603134e-06,
775
+ "loss": 0.004,
776
+ "num_input_tokens_seen": 656736,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 2.5032258064516126,
781
+ "grad_norm": 1.4292289018630981,
782
+ "learning_rate": 2.6308398906073603e-06,
783
+ "loss": 0.0131,
784
+ "num_input_tokens_seen": 663552,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 2.5290322580645164,
789
+ "grad_norm": 4.594967842102051,
790
+ "learning_rate": 2.587248741756253e-06,
791
+ "loss": 0.0455,
792
+ "num_input_tokens_seen": 670224,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 2.554838709677419,
797
+ "grad_norm": 0.8579672574996948,
798
+ "learning_rate": 2.543631016093209e-06,
799
+ "loss": 0.0031,
800
+ "num_input_tokens_seen": 676960,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 2.5806451612903225,
805
+ "grad_norm": 2.075626850128174,
806
+ "learning_rate": 2.5e-06,
807
+ "loss": 0.0099,
808
+ "num_input_tokens_seen": 684016,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 2.606451612903226,
813
+ "grad_norm": 3.9176177978515625,
814
+ "learning_rate": 2.4563689839067913e-06,
815
+ "loss": 0.0797,
816
+ "num_input_tokens_seen": 690832,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 2.632258064516129,
821
+ "grad_norm": 1.6330746412277222,
822
+ "learning_rate": 2.4127512582437486e-06,
823
+ "loss": 0.0059,
824
+ "num_input_tokens_seen": 697808,
825
+ "step": 102
826
+ },
827
+ {
828
+ "epoch": 2.6580645161290324,
829
+ "grad_norm": 2.173410177230835,
830
+ "learning_rate": 2.3691601093926406e-06,
831
+ "loss": 0.0438,
832
+ "num_input_tokens_seen": 704352,
833
+ "step": 103
834
+ },
835
+ {
836
+ "epoch": 2.6838709677419352,
837
+ "grad_norm": 1.6522724628448486,
838
+ "learning_rate": 2.325608815639687e-06,
839
+ "loss": 0.0149,
840
+ "num_input_tokens_seen": 711456,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 2.709677419354839,
845
+ "grad_norm": 0.7776157855987549,
846
+ "learning_rate": 2.2821106431308546e-06,
847
+ "loss": 0.0126,
848
+ "num_input_tokens_seen": 718224,
849
+ "step": 105
850
+ },
851
+ {
852
+ "epoch": 2.735483870967742,
853
+ "grad_norm": 2.2912323474884033,
854
+ "learning_rate": 2.238678841830867e-06,
855
+ "loss": 0.0255,
856
+ "num_input_tokens_seen": 724928,
857
+ "step": 106
858
+ },
859
+ {
860
+ "epoch": 2.761290322580645,
861
+ "grad_norm": 0.5118953585624695,
862
+ "learning_rate": 2.195326641487132e-06,
863
+ "loss": 0.0048,
864
+ "num_input_tokens_seen": 731616,
865
+ "step": 107
866
+ },
867
+ {
868
+ "epoch": 2.7870967741935484,
869
+ "grad_norm": 0.9067234396934509,
870
+ "learning_rate": 2.1520672475998374e-06,
871
+ "loss": 0.0142,
872
+ "num_input_tokens_seen": 738272,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 2.8129032258064517,
877
+ "grad_norm": 1.6885769367218018,
878
+ "learning_rate": 2.1089138373994226e-06,
879
+ "loss": 0.0193,
880
+ "num_input_tokens_seen": 745104,
881
+ "step": 109
882
+ },
883
+ {
884
+ "epoch": 2.838709677419355,
885
+ "grad_norm": 0.6433587074279785,
886
+ "learning_rate": 2.0658795558326745e-06,
887
+ "loss": 0.0055,
888
+ "num_input_tokens_seen": 752016,
889
+ "step": 110
890
+ },
891
+ {
892
+ "epoch": 2.864516129032258,
893
+ "grad_norm": 1.0263943672180176,
894
+ "learning_rate": 2.022977511558638e-06,
895
+ "loss": 0.0144,
896
+ "num_input_tokens_seen": 758720,
897
+ "step": 111
898
+ },
899
+ {
900
+ "epoch": 2.8903225806451616,
901
+ "grad_norm": 1.3137305974960327,
902
+ "learning_rate": 1.9802207729556023e-06,
903
+ "loss": 0.0272,
904
+ "num_input_tokens_seen": 765520,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 2.9161290322580644,
909
+ "grad_norm": 2.692868947982788,
910
+ "learning_rate": 1.937622364140338e-06,
911
+ "loss": 0.0101,
912
+ "num_input_tokens_seen": 772288,
913
+ "step": 113
914
+ },
915
+ {
916
+ "epoch": 2.9419354838709677,
917
+ "grad_norm": 2.19588565826416,
918
+ "learning_rate": 1.895195261000831e-06,
919
+ "loss": 0.0109,
920
+ "num_input_tokens_seen": 779520,
921
+ "step": 114
922
+ },
923
+ {
924
+ "epoch": 2.967741935483871,
925
+ "grad_norm": 2.681143283843994,
926
+ "learning_rate": 1.852952387243698e-06,
927
+ "loss": 0.018,
928
+ "num_input_tokens_seen": 786400,
929
+ "step": 115
930
+ },
931
+ {
932
+ "epoch": 2.9935483870967743,
933
+ "grad_norm": 1.9662718772888184,
934
+ "learning_rate": 1.8109066104575023e-06,
935
+ "loss": 0.0141,
936
+ "num_input_tokens_seen": 793008,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 3.0193548387096776,
941
+ "grad_norm": 1.1327028274536133,
942
+ "learning_rate": 1.7690707381931585e-06,
943
+ "loss": 0.0057,
944
+ "num_input_tokens_seen": 799808,
945
+ "step": 117
946
+ },
947
+ {
948
+ "epoch": 3.0451612903225804,
949
+ "grad_norm": 0.593132495880127,
950
+ "learning_rate": 1.7274575140626318e-06,
951
+ "loss": 0.0063,
952
+ "num_input_tokens_seen": 806576,
953
+ "step": 118
954
+ },
955
+ {
956
+ "epoch": 3.0709677419354837,
957
+ "grad_norm": 1.123922348022461,
958
+ "learning_rate": 1.686079613857109e-06,
959
+ "loss": 0.0138,
960
+ "num_input_tokens_seen": 813312,
961
+ "step": 119
962
+ },
963
+ {
964
+ "epoch": 3.096774193548387,
965
+ "grad_norm": 0.14445500075817108,
966
+ "learning_rate": 1.6449496416858285e-06,
967
+ "loss": 0.0011,
968
+ "num_input_tokens_seen": 819728,
969
+ "step": 120
970
+ },
971
+ {
972
+ "epoch": 3.1225806451612903,
973
+ "grad_norm": 0.09276027232408524,
974
+ "learning_rate": 1.6040801261367494e-06,
975
+ "loss": 0.0006,
976
+ "num_input_tokens_seen": 826496,
977
+ "step": 121
978
+ },
979
+ {
980
+ "epoch": 3.1483870967741936,
981
+ "grad_norm": 0.6197965741157532,
982
+ "learning_rate": 1.56348351646022e-06,
983
+ "loss": 0.0055,
984
+ "num_input_tokens_seen": 833360,
985
+ "step": 122
986
+ },
987
+ {
988
+ "epoch": 3.174193548387097,
989
+ "grad_norm": 0.1872132420539856,
990
+ "learning_rate": 1.5231721787768162e-06,
991
+ "loss": 0.0011,
992
+ "num_input_tokens_seen": 840080,
993
+ "step": 123
994
+ },
995
+ {
996
+ "epoch": 3.2,
997
+ "grad_norm": 2.89666748046875,
998
+ "learning_rate": 1.4831583923105e-06,
999
+ "loss": 0.0173,
1000
+ "num_input_tokens_seen": 847104,
1001
+ "step": 124
1002
+ },
1003
+ {
1004
+ "epoch": 3.225806451612903,
1005
+ "grad_norm": 0.8067394495010376,
1006
+ "learning_rate": 1.443454345648252e-06,
1007
+ "loss": 0.0027,
1008
+ "num_input_tokens_seen": 853712,
1009
+ "step": 125
1010
+ },
1011
+ {
1012
+ "epoch": 3.2516129032258063,
1013
+ "grad_norm": 0.5419718623161316,
1014
+ "learning_rate": 1.4040721330273063e-06,
1015
+ "loss": 0.0029,
1016
+ "num_input_tokens_seen": 860400,
1017
+ "step": 126
1018
+ },
1019
+ {
1020
+ "epoch": 3.2774193548387096,
1021
+ "grad_norm": 0.05267687141895294,
1022
+ "learning_rate": 1.3650237506511333e-06,
1023
+ "loss": 0.0003,
1024
+ "num_input_tokens_seen": 867440,
1025
+ "step": 127
1026
+ },
1027
+ {
1028
+ "epoch": 3.303225806451613,
1029
+ "grad_norm": 0.11772596091032028,
1030
+ "learning_rate": 1.3263210930352737e-06,
1031
+ "loss": 0.0007,
1032
+ "num_input_tokens_seen": 874256,
1033
+ "step": 128
1034
+ },
1035
+ {
1036
+ "epoch": 3.329032258064516,
1037
+ "grad_norm": 0.9182859063148499,
1038
+ "learning_rate": 1.2879759493841577e-06,
1039
+ "loss": 0.008,
1040
+ "num_input_tokens_seen": 881168,
1041
+ "step": 129
1042
+ },
1043
+ {
1044
+ "epoch": 3.3548387096774195,
1045
+ "grad_norm": 0.07012775540351868,
1046
+ "learning_rate": 1.2500000000000007e-06,
1047
+ "loss": 0.0004,
1048
+ "num_input_tokens_seen": 888128,
1049
+ "step": 130
1050
+ },
1051
+ {
1052
+ "epoch": 3.3806451612903228,
1053
+ "grad_norm": 0.979766309261322,
1054
+ "learning_rate": 1.2124048127248644e-06,
1055
+ "loss": 0.0049,
1056
+ "num_input_tokens_seen": 895296,
1057
+ "step": 131
1058
+ },
1059
+ {
1060
+ "epoch": 3.4064516129032256,
1061
+ "grad_norm": 0.25211745500564575,
1062
+ "learning_rate": 1.1752018394169882e-06,
1063
+ "loss": 0.0012,
1064
+ "num_input_tokens_seen": 901984,
1065
+ "step": 132
1066
+ },
1067
+ {
1068
+ "epoch": 3.432258064516129,
1069
+ "grad_norm": 0.7576802968978882,
1070
+ "learning_rate": 1.1384024124624324e-06,
1071
+ "loss": 0.0044,
1072
+ "num_input_tokens_seen": 909104,
1073
+ "step": 133
1074
+ },
1075
+ {
1076
+ "epoch": 3.458064516129032,
1077
+ "grad_norm": 0.6242833733558655,
1078
+ "learning_rate": 1.1020177413231334e-06,
1079
+ "loss": 0.0017,
1080
+ "num_input_tokens_seen": 916032,
1081
+ "step": 134
1082
+ },
1083
+ {
1084
+ "epoch": 3.4838709677419355,
1085
+ "grad_norm": 0.06409750878810883,
1086
+ "learning_rate": 1.0660589091223854e-06,
1087
+ "loss": 0.0003,
1088
+ "num_input_tokens_seen": 922736,
1089
+ "step": 135
1090
+ },
1091
+ {
1092
+ "epoch": 3.509677419354839,
1093
+ "grad_norm": 0.7863635420799255,
1094
+ "learning_rate": 1.0305368692688175e-06,
1095
+ "loss": 0.0099,
1096
+ "num_input_tokens_seen": 929472,
1097
+ "step": 136
1098
+ },
1099
+ {
1100
+ "epoch": 3.535483870967742,
1101
+ "grad_norm": 0.7082129716873169,
1102
+ "learning_rate": 9.95462442119879e-07,
1103
+ "loss": 0.0068,
1104
+ "num_input_tokens_seen": 936112,
1105
+ "step": 137
1106
+ },
1107
+ {
1108
+ "epoch": 3.5612903225806454,
1109
+ "grad_norm": 0.5010254383087158,
1110
+ "learning_rate": 9.608463116858544e-07,
1111
+ "loss": 0.0025,
1112
+ "num_input_tokens_seen": 942912,
1113
+ "step": 138
1114
+ },
1115
+ {
1116
+ "epoch": 3.587096774193548,
1117
+ "grad_norm": 0.1011819988489151,
1118
+ "learning_rate": 9.266990223754069e-07,
1119
+ "loss": 0.0004,
1120
+ "num_input_tokens_seen": 949984,
1121
+ "step": 139
1122
+ },
1123
+ {
1124
+ "epoch": 3.6129032258064515,
1125
+ "grad_norm": 4.317319869995117,
1126
+ "learning_rate": 8.930309757836517e-07,
1127
+ "loss": 0.0101,
1128
+ "num_input_tokens_seen": 956608,
1129
+ "step": 140
1130
+ },
1131
+ {
1132
+ "epoch": 3.638709677419355,
1133
+ "grad_norm": 0.7055479288101196,
1134
+ "learning_rate": 8.598524275237321e-07,
1135
+ "loss": 0.0068,
1136
+ "num_input_tokens_seen": 963488,
1137
+ "step": 141
1138
+ },
1139
+ {
1140
+ "epoch": 3.664516129032258,
1141
+ "grad_norm": 0.10063151270151138,
1142
+ "learning_rate": 8.271734841028553e-07,
1143
+ "loss": 0.0007,
1144
+ "num_input_tokens_seen": 970128,
1145
+ "step": 142
1146
+ },
1147
+ {
1148
+ "epoch": 3.6903225806451614,
1149
+ "grad_norm": 3.3077032566070557,
1150
+ "learning_rate": 7.950040998437541e-07,
1151
+ "loss": 0.0161,
1152
+ "num_input_tokens_seen": 976800,
1153
+ "step": 143
1154
+ },
1155
+ {
1156
+ "epoch": 3.7161290322580647,
1157
+ "grad_norm": 1.0670413970947266,
1158
+ "learning_rate": 7.633540738525066e-07,
1159
+ "loss": 0.0115,
1160
+ "num_input_tokens_seen": 984000,
1161
+ "step": 144
1162
+ },
1163
+ {
1164
+ "epoch": 3.741935483870968,
1165
+ "grad_norm": 1.591837763786316,
1166
+ "learning_rate": 7.322330470336314e-07,
1167
+ "loss": 0.0052,
1168
+ "num_input_tokens_seen": 990896,
1169
+ "step": 145
1170
+ },
1171
+ {
1172
+ "epoch": 3.767741935483871,
1173
+ "grad_norm": 3.105447769165039,
1174
+ "learning_rate": 7.016504991533727e-07,
1175
+ "loss": 0.0098,
1176
+ "num_input_tokens_seen": 997824,
1177
+ "step": 146
1178
+ },
1179
+ {
1180
+ "epoch": 3.793548387096774,
1181
+ "grad_norm": 0.0832144096493721,
1182
+ "learning_rate": 6.716157459520739e-07,
1183
+ "loss": 0.0005,
1184
+ "num_input_tokens_seen": 1004928,
1185
+ "step": 147
1186
+ },
1187
+ {
1188
+ "epoch": 3.8193548387096774,
1189
+ "grad_norm": 0.2546854317188263,
1190
+ "learning_rate": 6.421379363065142e-07,
1191
+ "loss": 0.0012,
1192
+ "num_input_tokens_seen": 1011696,
1193
+ "step": 148
1194
+ },
1195
+ {
1196
+ "epoch": 3.8451612903225807,
1197
+ "grad_norm": 0.40274935960769653,
1198
+ "learning_rate": 6.1322604944307e-07,
1199
+ "loss": 0.0013,
1200
+ "num_input_tokens_seen": 1018368,
1201
+ "step": 149
1202
+ },
1203
+ {
1204
+ "epoch": 3.870967741935484,
1205
+ "grad_norm": 0.04935682937502861,
1206
+ "learning_rate": 5.848888922025553e-07,
1207
+ "loss": 0.0003,
1208
+ "num_input_tokens_seen": 1025424,
1209
+ "step": 150
1210
+ },
1211
+ {
1212
+ "epoch": 3.896774193548387,
1213
+ "grad_norm": 0.8725687265396118,
1214
+ "learning_rate": 5.571350963575728e-07,
1215
+ "loss": 0.0026,
1216
+ "num_input_tokens_seen": 1032016,
1217
+ "step": 151
1218
+ },
1219
+ {
1220
+ "epoch": 3.9225806451612906,
1221
+ "grad_norm": 0.9522215127944946,
1222
+ "learning_rate": 5.299731159831953e-07,
1223
+ "loss": 0.0097,
1224
+ "num_input_tokens_seen": 1038928,
1225
+ "step": 152
1226
+ },
1227
+ {
1228
+ "epoch": 3.9483870967741934,
1229
+ "grad_norm": 2.608211040496826,
1230
+ "learning_rate": 5.034112248817685e-07,
1231
+ "loss": 0.0047,
1232
+ "num_input_tokens_seen": 1045664,
1233
+ "step": 153
1234
+ },
1235
+ {
1236
+ "epoch": 3.9741935483870967,
1237
+ "grad_norm": 0.913472592830658,
1238
+ "learning_rate": 4.774575140626317e-07,
1239
+ "loss": 0.0081,
1240
+ "num_input_tokens_seen": 1052640,
1241
+ "step": 154
1242
+ },
1243
+ {
1244
+ "epoch": 4.0,
1245
+ "grad_norm": 0.5549633502960205,
1246
+ "learning_rate": 4.5211988927752026e-07,
1247
+ "loss": 0.0018,
1248
+ "num_input_tokens_seen": 1059840,
1249
+ "step": 155
1250
+ },
1251
+ {
1252
+ "epoch": 4.025806451612903,
1253
+ "grad_norm": 0.6482688784599304,
1254
+ "learning_rate": 4.27406068612396e-07,
1255
+ "loss": 0.0053,
1256
+ "num_input_tokens_seen": 1066704,
1257
+ "step": 156
1258
+ },
1259
+ {
1260
+ "epoch": 4.051612903225807,
1261
+ "grad_norm": 0.11119811981916428,
1262
+ "learning_rate": 4.033235801364402e-07,
1263
+ "loss": 0.0005,
1264
+ "num_input_tokens_seen": 1073600,
1265
+ "step": 157
1266
+ },
1267
+ {
1268
+ "epoch": 4.077419354838709,
1269
+ "grad_norm": 0.009617508389055729,
1270
+ "learning_rate": 3.798797596089351e-07,
1271
+ "loss": 0.0001,
1272
+ "num_input_tokens_seen": 1080208,
1273
+ "step": 158
1274
+ },
1275
+ {
1276
+ "epoch": 4.103225806451613,
1277
+ "grad_norm": 0.18060296773910522,
1278
+ "learning_rate": 3.5708174824471947e-07,
1279
+ "loss": 0.0018,
1280
+ "num_input_tokens_seen": 1086880,
1281
+ "step": 159
1282
+ },
1283
+ {
1284
+ "epoch": 4.129032258064516,
1285
+ "grad_norm": 0.3545215427875519,
1286
+ "learning_rate": 3.3493649053890325e-07,
1287
+ "loss": 0.001,
1288
+ "num_input_tokens_seen": 1093520,
1289
+ "step": 160
1290
+ },
1291
+ {
1292
+ "epoch": 4.15483870967742,
1293
+ "grad_norm": 0.03870348632335663,
1294
+ "learning_rate": 3.134507321515107e-07,
1295
+ "loss": 0.0001,
1296
+ "num_input_tokens_seen": 1100528,
1297
+ "step": 161
1298
+ },
1299
+ {
1300
+ "epoch": 4.180645161290323,
1301
+ "grad_norm": 0.20078836381435394,
1302
+ "learning_rate": 2.9263101785268253e-07,
1303
+ "loss": 0.0012,
1304
+ "num_input_tokens_seen": 1107520,
1305
+ "step": 162
1306
+ },
1307
+ {
1308
+ "epoch": 4.2064516129032254,
1309
+ "grad_norm": 0.00893727969378233,
1310
+ "learning_rate": 2.7248368952908055e-07,
1311
+ "loss": 0.0001,
1312
+ "num_input_tokens_seen": 1114208,
1313
+ "step": 163
1314
+ },
1315
+ {
1316
+ "epoch": 4.232258064516129,
1317
+ "grad_norm": 0.027001328766345978,
1318
+ "learning_rate": 2.53014884252083e-07,
1319
+ "loss": 0.0002,
1320
+ "num_input_tokens_seen": 1120912,
1321
+ "step": 164
1322
+ },
1323
+ {
1324
+ "epoch": 4.258064516129032,
1325
+ "grad_norm": 0.01514577865600586,
1326
+ "learning_rate": 2.3423053240837518e-07,
1327
+ "loss": 0.0001,
1328
+ "num_input_tokens_seen": 1127872,
1329
+ "step": 165
1330
+ },
1331
+ {
1332
+ "epoch": 4.283870967741936,
1333
+ "grad_norm": 0.0690593495965004,
1334
+ "learning_rate": 2.1613635589349756e-07,
1335
+ "loss": 0.0003,
1336
+ "num_input_tokens_seen": 1134352,
1337
+ "step": 166
1338
+ },
1339
+ {
1340
+ "epoch": 4.309677419354839,
1341
+ "grad_norm": 0.021051278337836266,
1342
+ "learning_rate": 1.9873786636889908e-07,
1343
+ "loss": 0.0001,
1344
+ "num_input_tokens_seen": 1141440,
1345
+ "step": 167
1346
+ },
1347
+ {
1348
+ "epoch": 4.335483870967742,
1349
+ "grad_norm": 0.3527485132217407,
1350
+ "learning_rate": 1.8204036358303173e-07,
1351
+ "loss": 0.0007,
1352
+ "num_input_tokens_seen": 1148096,
1353
+ "step": 168
1354
+ },
1355
+ {
1356
+ "epoch": 4.361290322580645,
1357
+ "grad_norm": 0.09119685739278793,
1358
+ "learning_rate": 1.6604893375699594e-07,
1359
+ "loss": 0.0003,
1360
+ "num_input_tokens_seen": 1154672,
1361
+ "step": 169
1362
+ },
1363
+ {
1364
+ "epoch": 4.387096774193548,
1365
+ "grad_norm": 0.014869263395667076,
1366
+ "learning_rate": 1.507684480352292e-07,
1367
+ "loss": 0.0001,
1368
+ "num_input_tokens_seen": 1161744,
1369
+ "step": 170
1370
+ },
1371
+ {
1372
+ "epoch": 4.412903225806452,
1373
+ "grad_norm": 0.16110821068286896,
1374
+ "learning_rate": 1.362035610017079e-07,
1375
+ "loss": 0.0008,
1376
+ "num_input_tokens_seen": 1168944,
1377
+ "step": 171
1378
+ },
1379
+ {
1380
+ "epoch": 4.438709677419355,
1381
+ "grad_norm": 0.05959083512425423,
1382
+ "learning_rate": 1.223587092621162e-07,
1383
+ "loss": 0.0001,
1384
+ "num_input_tokens_seen": 1175792,
1385
+ "step": 172
1386
+ },
1387
+ {
1388
+ "epoch": 4.464516129032258,
1389
+ "grad_norm": 0.15646237134933472,
1390
+ "learning_rate": 1.0923811009241142e-07,
1391
+ "loss": 0.0004,
1392
+ "num_input_tokens_seen": 1182800,
1393
+ "step": 173
1394
+ },
1395
+ {
1396
+ "epoch": 4.490322580645161,
1397
+ "grad_norm": 0.024713285267353058,
1398
+ "learning_rate": 9.684576015420277e-08,
1399
+ "loss": 0.0001,
1400
+ "num_input_tokens_seen": 1189568,
1401
+ "step": 174
1402
+ },
1403
+ {
1404
+ "epoch": 4.516129032258064,
1405
+ "grad_norm": 0.0995955690741539,
1406
+ "learning_rate": 8.518543427732951e-08,
1407
+ "loss": 0.0005,
1408
+ "num_input_tokens_seen": 1196480,
1409
+ "step": 175
1410
+ },
1411
+ {
1412
+ "epoch": 4.541935483870968,
1413
+ "grad_norm": 0.5925021767616272,
1414
+ "learning_rate": 7.426068431000883e-08,
1415
+ "loss": 0.0076,
1416
+ "num_input_tokens_seen": 1203728,
1417
+ "step": 176
1418
+ },
1419
+ {
1420
+ "epoch": 4.567741935483871,
1421
+ "grad_norm": 0.07701185345649719,
1422
+ "learning_rate": 6.407483803691216e-08,
1423
+ "loss": 0.0004,
1424
+ "num_input_tokens_seen": 1210320,
1425
+ "step": 177
1426
+ },
1427
+ {
1428
+ "epoch": 4.593548387096774,
1429
+ "grad_norm": 0.5693293213844299,
1430
+ "learning_rate": 5.463099816548578e-08,
1431
+ "loss": 0.004,
1432
+ "num_input_tokens_seen": 1217248,
1433
+ "step": 178
1434
+ },
1435
+ {
1436
+ "epoch": 4.619354838709677,
1437
+ "grad_norm": 0.025556327775120735,
1438
+ "learning_rate": 4.593204138084006e-08,
1439
+ "loss": 0.0001,
1440
+ "num_input_tokens_seen": 1224192,
1441
+ "step": 179
1442
+ },
1443
+ {
1444
+ "epoch": 4.645161290322581,
1445
+ "grad_norm": 0.14782366156578064,
1446
+ "learning_rate": 3.798061746947995e-08,
1447
+ "loss": 0.0005,
1448
+ "num_input_tokens_seen": 1230896,
1449
+ "step": 180
1450
+ },
1451
+ {
1452
+ "epoch": 4.670967741935484,
1453
+ "grad_norm": 0.06809692084789276,
1454
+ "learning_rate": 3.077914851215585e-08,
1455
+ "loss": 0.0002,
1456
+ "num_input_tokens_seen": 1237840,
1457
+ "step": 181
1458
+ },
1459
+ {
1460
+ "epoch": 4.6967741935483875,
1461
+ "grad_norm": 0.01677132397890091,
1462
+ "learning_rate": 2.4329828146074096e-08,
1463
+ "loss": 0.0001,
1464
+ "num_input_tokens_seen": 1244688,
1465
+ "step": 182
1466
+ },
1467
+ {
1468
+ "epoch": 4.72258064516129,
1469
+ "grad_norm": 0.019206374883651733,
1470
+ "learning_rate": 1.8634620896695044e-08,
1471
+ "loss": 0.0001,
1472
+ "num_input_tokens_seen": 1251584,
1473
+ "step": 183
1474
+ },
1475
+ {
1476
+ "epoch": 4.748387096774193,
1477
+ "grad_norm": 0.02283065766096115,
1478
+ "learning_rate": 1.3695261579316776e-08,
1479
+ "loss": 0.0001,
1480
+ "num_input_tokens_seen": 1258448,
1481
+ "step": 184
1482
+ },
1483
+ {
1484
+ "epoch": 4.774193548387097,
1485
+ "grad_norm": 1.8589617013931274,
1486
+ "learning_rate": 9.513254770636138e-09,
1487
+ "loss": 0.0167,
1488
+ "num_input_tokens_seen": 1265440,
1489
+ "step": 185
1490
+ },
1491
+ {
1492
+ "epoch": 4.8,
1493
+ "grad_norm": 0.03213285654783249,
1494
+ "learning_rate": 6.089874350439507e-09,
1495
+ "loss": 0.0002,
1496
+ "num_input_tokens_seen": 1272080,
1497
+ "step": 186
1498
+ },
1499
+ {
1500
+ "epoch": 4.825806451612904,
1501
+ "grad_norm": 0.11905555427074432,
1502
+ "learning_rate": 3.4261631135654174e-09,
1503
+ "loss": 0.0003,
1504
+ "num_input_tokens_seen": 1278976,
1505
+ "step": 187
1506
+ },
1507
+ {
1508
+ "epoch": 4.851612903225806,
1509
+ "grad_norm": 0.384997695684433,
1510
+ "learning_rate": 1.5229324522605949e-09,
1511
+ "loss": 0.0024,
1512
+ "num_input_tokens_seen": 1285760,
1513
+ "step": 188
1514
+ },
1515
+ {
1516
+ "epoch": 4.877419354838709,
1517
+ "grad_norm": 0.08503298461437225,
1518
+ "learning_rate": 3.8076210902182607e-10,
1519
+ "loss": 0.0005,
1520
+ "num_input_tokens_seen": 1292368,
1521
+ "step": 189
1522
+ },
1523
+ {
1524
+ "epoch": 4.903225806451613,
1525
+ "grad_norm": 0.4136364758014679,
1526
+ "learning_rate": 0.0,
1527
+ "loss": 0.0017,
1528
+ "num_input_tokens_seen": 1299120,
1529
+ "step": 190
1530
+ },
1531
+ {
1532
+ "epoch": 4.903225806451613,
1533
+ "num_input_tokens_seen": 1299120,
1534
+ "step": 190,
1535
+ "total_flos": 5.150239379108659e+16,
1536
+ "train_loss": 0.3450760219912857,
1537
+ "train_runtime": 2142.6975,
1538
+ "train_samples_per_second": 11.57,
1539
+ "train_steps_per_second": 0.089
1540
+ }
1541
+ ],
1542
+ "logging_steps": 1,
1543
+ "max_steps": 190,
1544
+ "num_input_tokens_seen": 1299120,
1545
+ "num_train_epochs": 5,
1546
+ "save_steps": 1000,
1547
+ "stateful_callbacks": {
1548
+ "TrainerControl": {
1549
+ "args": {
1550
+ "should_epoch_stop": false,
1551
+ "should_evaluate": false,
1552
+ "should_log": false,
1553
+ "should_save": true,
1554
+ "should_training_stop": true
1555
+ },
1556
+ "attributes": {}
1557
+ }
1558
+ },
1559
+ "total_flos": 5.150239379108659e+16,
1560
+ "train_batch_size": 2,
1561
+ "trial_name": null,
1562
+ "trial_params": null
1563
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fea12da3624a50d04db32839a9390a4c8041b3756454a76a3011387f179a4228
3
+ size 6584