--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: tmp results: [] --- # tmp This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4127 - Precision: 0.3197 - Recall: 0.2438 - F1: 0.2766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8182 | 0.35 | 500 | 0.5251 | 0.0 | 0.0 | 0.0 | | 0.6835 | 0.7 | 1000 | 0.4857 | 0.0 | 0.0 | 0.0 | | 0.6643 | 1.04 | 1500 | 0.4691 | 0.0 | 0.0 | 0.0 | | 0.6403 | 1.39 | 2000 | 0.4580 | 0.4531 | 0.0349 | 0.0647 | | 0.5617 | 1.74 | 2500 | 0.4528 | 0.3373 | 0.0673 | 0.1122 | | 0.4896 | 2.09 | 3000 | 0.4265 | 0.3268 | 0.1611 | 0.2158 | | 0.4451 | 2.43 | 3500 | 0.4087 | 0.3860 | 0.1791 | 0.2447 | | 0.416 | 2.78 | 4000 | 0.4222 | 0.2937 | 0.2224 | 0.2531 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2