OPEA
/

Safetensors
molmo
custom_code
4-bit precision
intel/auto-round
n1ck-guo commited on
Commit
7651046
·
1 Parent(s): e64d453

upload auto_round format

Browse files

Signed-off-by: n1ck-guo <[email protected]>

config.json CHANGED
@@ -25,12 +25,11 @@
25
  "quantization_config": {
26
  "amp": true,
27
  "autoround_version": "0.4.4",
 
28
  "batch_size": 8,
29
  "bits": 4,
30
- "block_name_to_quantize": "model.transformer.blocks",
31
- "damp_percent": 0.01,
32
  "data_type": "int",
33
- "desc_act": false,
34
  "enable_minmax_tuning": true,
35
  "enable_norm_bias_tuning": false,
36
  "enable_quanted_input": true,
@@ -41,11 +40,11 @@
41
  "lr": 0.001,
42
  "minmax_lr": 0.001,
43
  "nsamples": 512,
44
- "quant_method": "gptq",
45
  "scale_dtype": "torch.float16",
46
  "seqlen": 2048,
47
  "sym": true,
48
- "true_sequential": false
49
  },
50
  "rope_theta": 1000000.0,
51
  "tie_word_embeddings": false,
 
25
  "quantization_config": {
26
  "amp": true,
27
  "autoround_version": "0.4.4",
28
+ "backend": "auto_round:gptq:exllamav2",
29
  "batch_size": 8,
30
  "bits": 4,
 
 
31
  "data_type": "int",
32
+ "dataset": "NeelNanda/pile-10k",
33
  "enable_minmax_tuning": true,
34
  "enable_norm_bias_tuning": false,
35
  "enable_quanted_input": true,
 
40
  "lr": 0.001,
41
  "minmax_lr": 0.001,
42
  "nsamples": 512,
43
+ "quant_method": "intel/auto-round",
44
  "scale_dtype": "torch.float16",
45
  "seqlen": 2048,
46
  "sym": true,
47
+ "to_quant_block_names": "model.transformer.blocks"
48
  },
49
  "rope_theta": 1000000.0,
50
  "tie_word_embeddings": false,
quantize_config.json → quantization_config.json RENAMED
@@ -15,11 +15,10 @@
15
  "amp": true,
16
  "nsamples": 512,
17
  "low_gpu_mem_usage": false,
 
18
  "enable_norm_bias_tuning": false,
 
19
  "autoround_version": "0.4.4",
20
- "block_name_to_quantize": "model.transformer.blocks",
21
- "quant_method": "gptq",
22
- "desc_act": false,
23
- "true_sequential": false,
24
- "damp_percent": 0.01
25
  }
 
15
  "amp": true,
16
  "nsamples": 512,
17
  "low_gpu_mem_usage": false,
18
+ "to_quant_block_names": "model.transformer.blocks",
19
  "enable_norm_bias_tuning": false,
20
+ "dataset": "NeelNanda/pile-10k",
21
  "autoround_version": "0.4.4",
22
+ "quant_method": "intel/auto-round",
23
+ "backend": "auto_round:gptq:exllamav2"
 
 
 
24
  }