Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,62 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
datasets:
|
4 |
+
- cerebras/SlimPajama-627B
|
5 |
+
- HuggingFaceH4/ultrachat_200k
|
6 |
+
- bigcode/starcoderdata
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
library_name: transformers
|
12 |
+
tags:
|
13 |
+
- HelpingAI
|
14 |
+
- coder
|
15 |
+
- lite
|
16 |
+
- Fine-tuned
|
17 |
+
- Text-Generation
|
18 |
+
- Transformers
|
19 |
---
|
20 |
+
# HelpingAI-Lite
|
21 |
+
|
22 |
+
HelpingAI-Lite is a lite version of the HelpingAI model that can assist with coding tasks. It's trained on a diverse range of datasets and fine-tuned to provide accurate and helpful responses.
|
23 |
+
|
24 |
+
## License
|
25 |
+
|
26 |
+
This model is licensed under MIT.
|
27 |
+
|
28 |
+
## Datasets
|
29 |
+
|
30 |
+
The model was trained on the following datasets:
|
31 |
+
- cerebras/SlimPajama-627B
|
32 |
+
- bigcode/starcoderdata
|
33 |
+
- HuggingFaceH4/ultrachat_200k
|
34 |
+
- HuggingFaceH4/ultrafeedback_binarized
|
35 |
+
|
36 |
+
## Language
|
37 |
+
|
38 |
+
The model supports English language.
|
39 |
+
|
40 |
+
## Usage
|
41 |
+
|
42 |
+
Here's an example of how to use the model:
|
43 |
+
|
44 |
+
```python
|
45 |
+
from transformers import pipeline
|
46 |
+
|
47 |
+
pipe = pipeline("text-generation", model="OEvortex/HelpingAI-Lite")
|
48 |
+
|
49 |
+
messages = [
|
50 |
+
{
|
51 |
+
"role": "system",
|
52 |
+
"content": "You are a chatbot who can help code!",
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"role": "user",
|
56 |
+
"content": "Write me a function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI.",
|
57 |
+
},
|
58 |
+
]
|
59 |
+
|
60 |
+
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
61 |
+
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
62 |
+
print(outputs[0]["generated_text"])
|