PEFT
Safetensors
Generated from Trainer
File size: 2,946 Bytes
bac9578
88c4023
 
 
 
fd3036f
 
88c4023
 
 
 
bac9578
 
34eb80b
bac9578
88c4023
bac9578
58eb22f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bac9578
88c4023
bac9578
88c4023
fd3036f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
datasets:
- Thermostatic/flowers
base_model: NeuralNovel/Valor-7B-v0.1
model-index:
- name: qlora-out
  results: []
---

# Lotus-7B

This is a qlora finetune of NeuralNovel/Valor-7B-v0.1 using the **Thermostatic/flowers** dataset.

Model Sources [optional]
Repository: [More Information Needed]
Paper [optional]: [More Information Needed]
Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]

Downstream Use [optional]
[More Information Needed]

Out-of-Scope Use
[More Information Needed]

Bias, Risks, and Limitations
[More Information Needed]

Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model
Use the code below to get started with the model.

[More Information Needed]

Training Details
Training Data
[More Information Needed]

Training Procedure
Preprocessing [optional]
[More Information Needed]

Training Hyperparameters
Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]

Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]

Factors
[More Information Needed]

Metrics
[More Information Needed]

Results
[More Information Needed]

Summary
Model Examination [optional]
[More Information Needed]

Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

Hardware Type: [More Information Needed]
Hours used: [More Information Needed]
Cloud Provider: [More Information Needed]
Compute Region: [More Information Needed]
Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]

Compute Infrastructure
[More Information Needed]

Hardware
[More Information Needed]

Software
[More Information Needed]

Citation [optional]
BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]
[More Information Needed]

More Information [optional]
[More Information Needed]

Model Card Authors [optional]
[More Information Needed]

Model Card Contact
[More Information Needed]

# Training Details

Coming soon

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Novocoders__Lotus-7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |70.32|
|AI2 Reasoning Challenge (25-Shot)|66.47|
|HellaSwag (10-Shot)              |84.80|
|MMLU (5-Shot)                    |64.64|
|TruthfulQA (0-shot)              |55.57|
|Winogrande (5-shot)              |82.16|
|GSM8k (5-shot)                   |68.31|