File size: 9,403 Bytes
e49bcd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ae71c2
e49bcd9
 
 
 
 
cb6af00
e49bcd9
 
 
 
 
 
 
fa4f650
47044a4
 
e49bcd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe00151
e49bcd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7311910
e49bcd9
 
 
 
 
 
 
 
fe00151
e49bcd9
 
 
 
 
fe00151
e49bcd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c346e
e49bcd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ae71c2
e49bcd9
6ae71c2
e49bcd9
d87a409
 
e49bcd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---
language:
- en
license: llama3
tags:
- Llama-3.1
- instruct
- finetune
- reasoning
- hybrid-mode
- chatml
- function calling
- tool use
- json mode
- structured outputs
- atropos
- dataforge
- long context
- roleplaying
- chat
base_model: meta-llama/Meta-Llama-3.1-70B
library_name: transformers
widget:
- example_title: Hermes 4
  messages:
  - role: system
    content: >-
      You are Hermes 4, a capable, neutrally-aligned assistant. Prefer concise,
      correct answers.
  - role: user
    content: >-
      Explain the difference between BFS and DFS to a new CS student.
model-index:
- name: Hermes-4-Llama-3.1-405B
  results: []
---

# Hermes 4 — Llama-3.1 70B - FP8

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/roT9o5bMYBtQziRMlaSDf.jpeg)

## Model Description

Hermes 4 70B is a frontier, hybrid-mode **reasoning** model based on Llama-3.1-70B by Nous Research that is aligned to **you**.

Read the Hermes 4 technical report here: <a href="https://arxiv.org/abs/2508.18255">Hermes 4 Technical Report</a>

Chat with Hermes in Nous Chat: https://chat.nousresearch.com

Training highlights include a newly synthesized post-training corpus emphasizing verified reasoning traces, massive improvements in math, code, STEM, logic, creativity, and format-faithful outputs, while preserving general assistant quality and broadly neutral alignment.

**This is the FP8 version of Hermes 4, please see the <a href="https://huggingface.co/NousResearch/Hermes-4-70B"> BF16 Model </a> if looking for that.**


## What’s new vs Hermes 3

- **Post-training corpus**: Massively increased dataset size from 1M samples and 1.2B tokens to **~5M samples / ~60B tokens** blended across reasoning and non-reasoning data.
- **Hybrid reasoning mode** with explicit `<think>…</think>` segments when the model decides to deliberate, and options to make your responses faster when you want.
- **Reasoning** that is top quality, expressive, improves math, code, STEM, logic, and even creative writing and subjective responses.
- **Schema adherence & structured outputs**: trained to produce valid JSON for given schemas and to repair malformed objects.
- **Much easier to steer and align**: extreme improvements on steerability, especially on reduced refusal rates.

## Our Mission: Frontier Capabilities Aligned to You

In pursuit of the mission of producing models that are open, steerable and capable of producing the full range of human expression, while being able to be aligned to your values, we created a new benchmark, RefusalBench, that tests the models willingness to be helpful in a variety of scenarios commonly disallowed by closed and open models.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/t_HvRYPEHV0pc8iS2zHHn.png)

Hermes 4 achieves SOTA on RefusalBench across all popular closed and open models in being helpful and conforming to your values, without censorship.

## Benchmarks (Hermes 4 70B)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/Sa-X7ErRF0ej20P8qBv9i.png)

> Full tables, settings, and comparisons are in the technical report.

## Prompt Format

Hermes 4 uses Llama-3-Chat format with role headers and special tags.

**Basic chat:**
```
<|start_header_id|>system<|end_header_id|>

You are Hermes 4. Be concise and helpful.<|eot_id|>
<|start_header_id|>user<|end_header_id|>

Explain the photoelectric effect simply.<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
```

### Reasoning mode

Reasoning mode can be activated with the chat template via the flag `thinking=True` or by using the following system prompt:

```
You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside <think> </think> tags, and then provide your solution or response to the problem.
```

Note that you can add any additional system instructions before or after this system message, and it will adjust the models policies, style, and effort of thinking, as well as its post-thinking style, format, identity, and more. You may also interleave the tool definition system message with the reasoning one. 

When the model chooses to deliberate, it emits:

```
<|start_header_id|>assistant<|end_header_id|>
<think>
…model’s internal reasoning may appear here…
</think>
Final response starts here…<|eot_id|>
```

Additionally, we provide a flag to keep the content inbetween the `<think> ... </think>` that you can play with by setting `keep_cots=True`

## Function Calling & Tool Use

Hermes 4 supports function/tool calls *within* a single assistant turn, produced after it's reasoning:

**System message (example):**

```
<|start_header_id|>system<|end_header_id|>
You are a function-calling AI. Tools are provided inside <tools>…</tools>.
When appropriate, call a tool by emitting a <tool_call>{...}</tool_call> object.
After a tool responds (as <tool_response>), continue reasoning inside <think> and produce the final answer.
<tools>
{"type":"function","function":{"name":"get_weather","description":"Get weather by city","parameters":{"type":"object","properties":{"city":{"type":"string"}},"required":["city"]}}}
</tools><|eot_id|>
```

Note that you may also simply place tool definitions into the "tools:" field of your messages, and the chat template will parse and create the system prompt for you. This also works with reasoning mode for improved accuracy of tool use.

The model will then generate tool calls within `<tool_call> {tool_call} </tool_call>` tags, for easy parsing. The tool_call tags are also added tokens, so it makes it easy to parse while streaming! There are also automatic tool parsers built-in to VLLM and SGLang for Hermes, just set the tool parser in VLLM to `hermes` and in SGLang to `qwen25`.

## Inference Notes

- **Sampling defaults that work well:** `temperature=0.6, top_p=0.95, top_k=20`.
- **Template:** Use the Llama chat format for Hermes 4 70B and 405B as shown above, or set `add_generation_prompt=True` when using `tokenizer.apply_chat_template(...)`.

### Transformers example

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "NousResearch/Hermes-4-Llama-3.1-70B"

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    device_map="auto"
)

messages = [
    {"role":"system","content":"You are Hermes 4. Be concise."},
    {"role":"user","content":"Summarize CRISPR in 3 sentences."}
]

inputs = tokenizer.apply_chat_template(
    messages, add_generation_prompt=True, return_tensors="pt"
).to(model.device)

outputs = model.generate(
    **inputs, max_new_tokens=400, temperature=0.6, top_p=0.95, top_k=20, do_sample=True
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

For production serving on multi-GPU nodes, consider tensor parallel inference engines (e.g., SGLang/vLLM backends) with prefix caching.

## Inference Providers:

### Nous Portal:

<a href="https://portal.nousresearch.com"><img width=256 alt="chutes logo" src="https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/6YytY7N0mjCnBQvWo3qtv.png"></a>

### Chutes:

<a href="https://chutes.ai/app"><img width=256 alt="chutes logo" src="https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/l14AWPv6cSvaprpwK_IWY.png"></a>

### Nebius:

<a href="https://nebius.com/services/studio-inference-service">
<picture>
  <source media="(prefers-color-scheme: dark)" srcset="https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/vhL0oAomFa_awBdt2KF_x.png">
  <source media="(prefers-color-scheme: light)" srcset="https://cdn-uploads.huggingface.co/production/uploads/64b21cbb2fc8324fcb1dac03/LjAfeFfAz8ac5rV-iiwj5.png">
  <img width=256 alt="nebius.com logo" src="https://cdn-uploads.huggingface.co/production/uploads/64b21cbb2fc8324fcb1dac03/LjAfeFfAz8ac5rV-iiwj5.png">
</picture>
</a>

### Luminal:

<a href="https://luminalai.com/">
<img width=256 alt="luminal logo" src="https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/FIHsRdjMMP0HUjebiuJyH.png">
</a>

# Quantized / Smaller Variants

Hermes 4 is available as BF16 original weights as well as BF16 as well as FP8 variants and GGUF variants by LM Studio.

BF16: https://huggingface.co/NousResearch/Hermes-4-70B

GGUF (Courtesy of LM Studio team!):
https://huggingface.co/lmstudio-community/Hermes-4-70B-GGUF

Hermes 4 is also available in smaller sizes (e.g., 70B) with similar prompt formats.

See the Hermes 4 collection to explore them all:
https://huggingface.co/collections/NousResearch/hermes-4-collection-68a731bfd452e20816725728

# How to cite

```bibtex
@misc{teknium2025hermes4technicalreport,
      title={Hermes 4 Technical Report}, 
      author={Ryan Teknium and Roger Jin and Jai Suphavadeeprasit and Dakota Mahan and Jeffrey Quesnelle and Joe Li and Chen Guang and Shannon Sands and Karan Malhotra},
      year={2025},
      eprint={2508.18255},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2508.18255}, 
}
```