teknium commited on
Commit
42c241b
·
verified ·
1 Parent(s): 264673c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +229 -0
README.md ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: llama3
5
+ tags:
6
+ - Llama-3
7
+ - instruct
8
+ - finetune
9
+ - chatml
10
+ - gpt4
11
+ - synthetic data
12
+ - distillation
13
+ - function calling
14
+ - json mode
15
+ - axolotl
16
+ - roleplaying
17
+ - chat
18
+ - reasoning
19
+ - r1
20
+ base_model: meta-llama/Meta-Llama-3.1-8B
21
+ widget:
22
+ - example_title: Hermes 3
23
+ messages:
24
+ - role: system
25
+ content: You are a sentient, superintelligent artificial general intelligence,
26
+ here to teach and assist me.
27
+ - role: user
28
+ content: What is the meaning of life?
29
+ model-index:
30
+ - name: DeepHermes-3-Llama-3.1-8B
31
+ results: []
32
+ ---
33
+ # DeepHermes 3 - Llama-3.1 8B
34
+
35
+
36
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/eXSMqjsy34QKrLuuhwg6c.png)
37
+ ## Model Description
38
+
39
+ DeepHermes 3 Preview is the latest version of our flagship Hermes series of LLMs by Nous Research, featuring better function calling, more capabilities around LLM as a Judge, and a mixed, toggleable LongCoT Reasoning mode.
40
+
41
+ Hermes 3, the predecessor of DeepHermes 3, is a generalist language model with many improvements over Hermes 2, including advanced agentic capabilities, much better roleplaying, reasoning, multi-turn conversation, long context coherence, and improvements across the board.
42
+
43
+ The ethos of the Hermes series of models is focused on aligning LLMs to the user, with powerful steering capabilities and control given to the end user.
44
+
45
+ *This is a preview Hermes with early reasoning capabilities, distilled from R1 across a variety of tasks that benefit from reasoning and objectivity. Some quirks may be discovered!*
46
+
47
+ # Benchmarks
48
+
49
+ Full benchmark comparisons below:
50
+ {TODO}
51
+
52
+ # Deep Thinking Mode
53
+ {TODO}
54
+
55
+ # Prompt Format
56
+
57
+ DeepHermes 3 now uses Llama-Chat format as the prompt format, opening up a more unified, structured system for engaging the LLM in multi-turn chat dialogue.
58
+
59
+ System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.
60
+
61
+ This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns.
62
+
63
+ This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI.
64
+
65
+ Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
66
+ ```
67
+ <|im_start|>system
68
+ You are Hermes 3, a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|>
69
+ <|im_start|>user
70
+ Hello, who are you?<|im_end|>
71
+ <|im_start|>assistant
72
+ Hi there! My name is Hermes 3, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|>
73
+ ```
74
+
75
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
76
+ `tokenizer.apply_chat_template()` method:
77
+
78
+ ```python
79
+ messages = [
80
+ {"role": "system", "content": "You are Hermes 3."},
81
+ {"role": "user", "content": "Hello, who are you?"}
82
+ ]
83
+ gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
84
+ model.generate(**gen_input)
85
+ ```
86
+
87
+ When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
88
+ that the model continues with an assistant response.
89
+
90
+ To utilize the prompt format without a system prompt, simply leave the line out.
91
+
92
+
93
+
94
+ # Inference
95
+
96
+ Here is example code using HuggingFace Transformers to inference the model
97
+
98
+ ```python
99
+ # Code to inference Hermes with HF Transformers
100
+ # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages
101
+
102
+ import torch
103
+ from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
104
+ import bitsandbytes, flash_attn
105
+
106
+ tokenizer = AutoTokenizer.from_pretrained('NousResearch/DeepHermes-3-Llama-3.1-8B-Preview', trust_remote_code=True)
107
+ model = LlamaForCausalLM.from_pretrained(
108
+ "NousResearch/DeepHermes-3-Llama-3.1-8B-Preview",
109
+ torch_dtype=torch.float16,
110
+ device_map="auto",
111
+ load_in_8bit=False,
112
+ load_in_4bit=True,
113
+ use_flash_attention_2=True
114
+ )
115
+
116
+ prompts = [
117
+ """<|im_start|>system
118
+ You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
119
+ <|im_start|>user
120
+ Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
121
+ <|im_start|>assistant""",
122
+ ]
123
+
124
+ for chat in prompts:
125
+ print(chat)
126
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
127
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
128
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
129
+ print(f"Response: {response}")
130
+ ```
131
+
132
+ You can also run this model with vLLM, by running the following in your terminal after `pip install vllm`
133
+
134
+ `vllm serve NousResearch/Hermes-3-Llama-3.1-8B`
135
+
136
+
137
+ ## Prompt Format for Function Calling
138
+
139
+ Our model was trained on specific system prompts and structures for Function Calling.
140
+
141
+ You should use the system role with this message, followed by a function signature json as this example shows here.
142
+ ```
143
+ <|im_start|>system
144
+ You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
145
+ <tool_call>
146
+ {"arguments": <args-dict>, "name": <function-name>}
147
+ </tool_call><|im_end|>
148
+ ```
149
+
150
+ To complete the function call, create a user prompt that follows the above system prompt, like so:
151
+ ```
152
+ <|im_start|>user
153
+ Fetch the stock fundamentals data for Tesla (TSLA)<|im_end|>
154
+ ```
155
+
156
+ The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):
157
+ ```
158
+ <|im_start|>assistant
159
+ <tool_call>
160
+ {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"}
161
+ </tool_call><|im_end|>
162
+ ```
163
+
164
+ Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so:
165
+ ```
166
+ <|im_start|>tool
167
+ <tool_response>
168
+ {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}}
169
+ </tool_response>
170
+ <|im_end|>
171
+ ```
172
+
173
+ The assistant will then read in that data from the function's response, and generate a natural language response:
174
+ ```
175
+ <|im_start|>assistant
176
+ The stock fundamentals data for Tesla (TSLA) are as follows:
177
+ - **Symbol**: TSLA
178
+ - **Company Name**: Tesla, Inc.
179
+ - **Sector**: Consumer Cyclical
180
+ - **Industry**: Auto Manufacturers
181
+ - **Market Capitalization**: $566,160,130,480
182
+ - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73
183
+ - **Price-to-Book Ratio (PB Ratio)**: 9.04
184
+ - **Dividend Yield**: N/A
185
+ - **Trailing Earnings Per Share (EPS)**: $4.3
186
+ - **Beta Value of the Stock**: 2.42
187
+ - **52-Week High Price of the Stock**: $299.29
188
+ - **52-Week Low Price of the Stock**: $152.37
189
+
190
+ This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|>
191
+ ```
192
+
193
+
194
+ ## Prompt Format for JSON Mode / Structured Outputs
195
+
196
+ Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema.
197
+
198
+ Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main
199
+
200
+ ```
201
+ <|im_start|>system
202
+ You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|>
203
+ ```
204
+
205
+ Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.
206
+
207
+
208
+ ## Inference Code for Function Calling:
209
+
210
+ All code for utilizing, parsing, and building function calling templates is available on our github:
211
+ [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling)
212
+
213
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png)
214
+
215
+
216
+ ## Quantized Versions:
217
+
218
+ GGUF Quants: https://huggingface.co/NousResearch/DeepHermes-3-Llama-3-8B-GGUF-Preview
219
+
220
+ # How to cite:
221
+
222
+ ```bibtext
223
+ @misc{teknium2024hermes3technicalreport,
224
+ title={DeepHermes 3 Preview},
225
+ author={Teknium and Roger Jin and Chen Guang},
226
+ year={2025}
227
+ }
228
+ ```
229
+