--- license: apache-2.0 base_model: nlpconnect/vit-gpt2-image-captioning tags: - generated_from_trainer metrics: - rouge model-index: - name: image-captioning-output results: [] --- # image-captioning-output This model is a fine-tuned version of [nlpconnect/vit-gpt2-image-captioning](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5164 - Rouge1: 35.5267 - Rouge2: 12.254 - Rougel: 32.968 - Rougelsum: 32.9723 - Gen Len: 12.395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.5193 | 0.25 | 500 | 0.5171 | 33.0319 | 10.364 | 30.6939 | 30.6888 | 12.1 | | 0.4842 | 0.5 | 1000 | 0.5102 | 33.7318 | 10.8199 | 31.1842 | 31.18 | 11.3 | | 0.4724 | 0.75 | 1500 | 0.5028 | 34.6981 | 11.4074 | 31.9128 | 31.9158 | 12.02 | | 0.4632 | 1.0 | 2000 | 0.5012 | 35.9443 | 12.8742 | 33.4061 | 33.377 | 11.04 | | 0.377 | 1.25 | 2500 | 0.5026 | 35.7745 | 12.2309 | 33.3234 | 33.3353 | 11.735 | | 0.3819 | 1.5 | 3000 | 0.5018 | 36.0145 | 13.0296 | 33.5985 | 33.6182 | 12.285 | | 0.3788 | 1.75 | 3500 | 0.5030 | 35.9016 | 12.5276 | 33.4995 | 33.5033 | 11.305 | | 0.3654 | 2.0 | 4000 | 0.5020 | 36.2476 | 12.945 | 33.6453 | 33.6595 | 11.9 | | 0.3102 | 2.25 | 4500 | 0.5146 | 36.1507 | 13.0072 | 33.3889 | 33.3786 | 12.305 | | 0.3137 | 2.5 | 5000 | 0.5166 | 35.7413 | 12.5693 | 33.2646 | 33.2508 | 12.71 | | 0.3111 | 2.75 | 5500 | 0.5171 | 35.5658 | 12.511 | 33.0581 | 33.0518 | 12.55 | | 0.3023 | 3.0 | 6000 | 0.5164 | 35.5267 | 12.254 | 32.968 | 32.9723 | 12.395 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1