File size: 8,239 Bytes
f5fbd9d 12f2a16 f5fbd9d 12f2a16 f5fbd9d 12f2a16 6642aff 1f15603 12f2a16 1f15603 12f2a16 f5fbd9d 12f2a16 123958d 12f2a16 f5fbd9d 12f2a16 f5fbd9d 12f2a16 f5fbd9d 12f2a16 f5fbd9d 12f2a16 f5fbd9d 12f2a16 f5fbd9d 12f2a16 f5fbd9d 12f2a16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- unsloth/Mistral-Small-24B-Base-2501
- unsloth/Mistral-Small-24B-Instruct-2501
- trashpanda-org/MS-24B-Instruct-Mullein-v0
- trashpanda-org/Llama3-24B-Mullein-v1
- ArliAI/Mistral-Small-24B-ArliAI-RPMax-v1.4
- TheDrummer/Cydonia-24B-v2
- estrogen/MS2501-24b-Ink-apollo-ep2
- huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated
- ToastyPigeon/ms3-roselily-rp-v2
- PocketDoc/Dans-DangerousWinds-V1.1.1-24b
- ReadyArt/Forgotten-Safeword-24B-V2.2
- PocketDoc/Dans-PersonalityEngine-V1.2.0-24b
- Undi95/MistralThinker-e2
- lemonilia/Mistral-Small-3-Reasoner-s1
- arcee-ai/Arcee-Blitz
- SicariusSicariiStuff/Redemption_Wind_24B
---
***
## Tantum
>Everything is edible if you are brave enough

### Overview
It's kind of hard to judge a 24B model after using a 70B for a while. From some tests, I think it might be better than my ms-22B and qwen-32B merges.
It has some prose, some character adherence, and... `<think>` tags! It will consistently think if you add `<think>` tag as prefill, tho I think it will obviously not think as well as an actual thinking model distill.
People also like RP-Whole(RP-Broth). You can find it [here](https://huggingface.co/d-rang-d/MS3-RP-Broth-24B)
**Settings:**
Samplers: [Weird preset](https://files.catbox.moe/ccwmca.json) | [Forgotten-Safeword preset](https://huggingface.co/sleepdeprived3/Mistral-V7-Tekken-Extra-Dry)
Prompt format: Mistral-V7 (?)
ChatML and Llama3 give better results imo. In the case of ChatML, there are Dans-PersonalityEngine and Redemption-Wind models that have been trained on it. But Llama3? No clue.
I use [this](https://files.catbox.moe/daluze.json) lorebook for all chats instead of a system prompt for mistal models.
### Quants
[Static](https://huggingface.co/mradermacher/MS3-Tantum-24B-v0.1-GGUF) | [Imatrix](https://huggingface.co/mradermacher/MS3-Tantum-24B-v0.1-i1-GGUF)
***
## Merge Details
### Merging steps
## MS3-test-Merge-1
```yaml
models:
- model: unsloth/Mistral-Small-24B-Base-2501
- model: unsloth/Mistral-Small-24B-Instruct-2501+ToastyPigeon/new-ms-rp-test-ws
parameters:
select_topk:
- value: [0.05, 0.03, 0.02, 0.02, 0.01]
- model: unsloth/Mistral-Small-24B-Instruct-2501+estrogen/MS2501-24b-Ink-ep2-adpt
parameters:
select_topk: 0.1
- model: trashpanda-org/MS-24B-Instruct-Mullein-v0
parameters:
select_topk: 0.4
base_model: unsloth/Mistral-Small-24B-Base-2501
merge_method: sce
parameters:
int8_mask: true
rescale: true
normalize: true
dtype: bfloat16
tokenizer_source: base
```
```yaml
dtype: bfloat16
tokenizer_source: base
merge_method: della_linear
parameters:
density: 0.55
base_model: Step1
models:
- model: unsloth/Mistral-Small-24B-Instruct-2501
parameters:
weight:
- filter: v_proj
value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
- filter: o_proj
value: [1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
- filter: up_proj
value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
- filter: gate_proj
value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
- filter: down_proj
value: [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
- value: 0
- model: Step1
parameters:
weight:
- filter: v_proj
value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
- filter: o_proj
value: [0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0]
- filter: up_proj
value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- filter: gate_proj
value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
- filter: down_proj
value: [0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1]
- value: 1
```
Some early MS3 merge. Not really worth using on its own. Just added it for fun.
## RP-half1
```yaml
models:
- model: ArliAI/Mistral-Small-24B-ArliAI-RPMax-v1.4
parameters:
weight: 0.2
density: 0.7
- model: trashpanda-org/Llama3-24B-Mullein-v1
parameters:
weight: 0.2
density: 0.7
- model: TheDrummer/Cydonia-24B-v2
parameters:
weight: 0.2
density: 0.7
merge_method: della_linear
base_model: Nohobby/MS3-test-Merge-1
parameters:
epsilon: 0.2
lambda: 1.1
dtype: bfloat16
tokenizer:
source: base
```
## RP-half2
```yaml
base_model: Nohobby/MS3-test-Merge-1
parameters:
epsilon: 0.05
lambda: 0.9
int8_mask: true
rescale: true
normalize: false
dtype: bfloat16
tokenizer:
source: base
merge_method: della
models:
- model: estrogen/MS2501-24b-Ink-apollo-ep2
parameters:
weight: [0.1, -0.01, 0.1, -0.02, 0.1]
density: [0.6, 0.4, 0.5, 0.4, 0.6]
- model: huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated
parameters:
weight: [0.02, -0.01, 0.02, -0.02, 0.01]
density: [0.45, 0.55, 0.45, 0.55, 0.45]
- model: ToastyPigeon/ms3-roselily-rp-v2
parameters:
weight: [0.01, -0.02, 0.02, -0.025, 0.01]
density: [0.45, 0.65, 0.45, 0.65, 0.45]
- model: PocketDoc/Dans-DangerousWinds-V1.1.1-24b
parameters:
weight: [0.1, -0.01, 0.1, -0.02, 0.1]
density: [0.6, 0.4, 0.5, 0.4, 0.6]
```
## RP-whole
```yaml
base_model: ReadyArt/Forgotten-Safeword-24B-V2.2
merge_method: model_stock
dtype: bfloat16
models:
- model: mergekit-community/MS3-RP-half1
- model: mergekit-community/MS3-RP-RP-half2
```
## INT
```yaml
merge_method: della_linear
dtype: bfloat16
parameters:
normalize: true
int8_mask: true
tokenizer:
source: base
base_model: PocketDoc/Dans-PersonalityEngine-V1.2.0-24b
models:
- model: PocketDoc/Dans-PersonalityEngine-V1.2.0-24b
parameters:
density: 0.55
weight: 1
- model: Undi95/MistralThinker-e2
parameters:
density: 0.55
weight: 1
- model: d-rang-d/ignore_MS3-Reasoner-mergekit
parameters:
density: 0.55
weight: 1
- model: arcee-ai/Arcee-Blitz
parameters:
density: 0.55
weight: 1
```
## Tantumv00
```yaml
output_base_model: "SicariusSicariiStuff/Redemption_Wind_24B"
output_dtype: "bfloat16"
finetune_merge:
- { "model": "mergekit-community/MS3-INT", "base": "unsloth/Mistral-Small-24B-Instruct-2501", "alpha": 1.0, "is_input": true }
- { "model": "mergekit-community/MS-RP-whole", "base": "unsloth/Mistral-Small-24B-Instruct-2501", "alpha": 0.7, "is_output": true }
output_dir: "output_model"
device: "cpu"
clean_cache: false
cache_dir: "cache"
storage_dir: "storage"
```
Doesn't look like a mergekit recipe, right? Well, it's not. It's for a standalone merge tool: https://github.com/54rt1n/shardmerge
If you want to use it for something non-qwen you can replace index.py with [this](https://files.catbox.moe/bgxmuz.py) and writer.py with [that](https://files.catbox.moe/ewww39.py). A much better solution is possible, ofc, but I'm a dumdum and can't code. The creator knows about this issue and will fix it... Someday, I guess.
You also need to know that this thing is *really* slow, and it took me 5 hours to cram 3 24B models together.
## Tantumv01
```yaml
dtype: bfloat16
tokenizer:
source: unsloth/Mistral-Small-24B-Instruct-2501
merge_method: della_linear
parameters:
density: 0.55
base_model: d-rang-d/MS3-megamerge
models:
- model: unsloth/Mistral-Small-24B-Instruct-2501
parameters:
weight:
- filter: v_proj
value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
- filter: o_proj
value: [1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
- filter: up_proj
value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
- filter: gate_proj
value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
- filter: down_proj
value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- value: 0
- model: d-rang-d/MS3-megamerge
parameters:
weight:
- filter: v_proj
value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
- filter: o_proj
value: [0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0]
- filter: up_proj
value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- filter: gate_proj
value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
- filter: down_proj
value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
- value: 1
``` |