Upload 2 files
Browse files- handler.py +75 -211
- requirements.txt +7 -12
handler.py
CHANGED
@@ -1,227 +1,91 @@
|
|
1 |
-
# https://github.com/sayakpaul/diffusers-torchao
|
2 |
-
# https://github.com/pytorch/ao/releases
|
3 |
-
# https://developer.nvidia.com/cuda-gpus
|
4 |
-
|
5 |
import os
|
6 |
-
from typing import Any, Dict
|
7 |
-
import gc
|
8 |
-
import time
|
9 |
from PIL import Image
|
10 |
-
from huggingface_hub import hf_hub_download
|
11 |
import torch
|
12 |
-
from
|
13 |
-
from torchao.quantization.quant_api import PerRow
|
14 |
-
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, TorchAoConfig
|
15 |
-
from transformers import T5EncoderModel, BitsAndBytesConfig
|
16 |
-
from optimum.quanto import freeze, qfloat8, quantize
|
17 |
-
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
|
18 |
from huggingface_inference_toolkit.logging import logger
|
19 |
-
|
20 |
-
import
|
21 |
-
|
22 |
-
|
23 |
-
print("device name:", torch.cuda.get_device_name())
|
24 |
-
print("device capability:", torch.cuda.get_device_capability())
|
25 |
-
|
26 |
-
IS_TURBO = False
|
27 |
-
IS_4BIT = False
|
28 |
-
IS_PARA = True
|
29 |
-
IS_LVRAM = False
|
30 |
-
IS_COMPILE = True
|
31 |
-
IS_AUTOQ = False
|
32 |
-
IS_CC90 = True if torch.cuda.get_device_capability() >= (9, 0) else False
|
33 |
-
IS_CC89 = True if torch.cuda.get_device_capability() >= (8, 9) else False
|
34 |
|
35 |
# Set high precision for float32 matrix multiplications.
|
36 |
# This setting optimizes performance on NVIDIA GPUs with Ampere architecture (e.g., A100, RTX 30 series) or newer.
|
37 |
torch.set_float32_matmul_precision("high")
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
torch._dynamo.config.suppress_errors = True
|
42 |
-
|
43 |
-
def print_vram():
|
44 |
-
free = torch.cuda.mem_get_info()[0] / (1024 ** 3)
|
45 |
-
total = torch.cuda.mem_get_info()[1] / (1024 ** 3)
|
46 |
-
print(f"VRAM: {total - free:.2f}/{total:.2f}GB")
|
47 |
-
|
48 |
-
def pil_to_base64(image: Image.Image, modelname: str, prompt: str, height: int, width: int, steps: int, cfg: float, seed: int) -> str:
|
49 |
-
import base64
|
50 |
-
from io import BytesIO
|
51 |
-
import json
|
52 |
-
from PIL import PngImagePlugin
|
53 |
-
metadata = {"prompt": prompt, "num_inference_steps": steps, "guidance_scale": cfg, "seed": seed, "resolution": f"{width} x {height}",
|
54 |
-
"Model": {"Model": modelname.split("/")[-1]}}
|
55 |
-
info = PngImagePlugin.PngInfo()
|
56 |
-
info.add_text("metadata", json.dumps(metadata))
|
57 |
-
buffered = BytesIO()
|
58 |
-
image.save(buffered, "PNG", pnginfo=info)
|
59 |
-
return base64.b64encode(buffered.getvalue()).decode('ascii')
|
60 |
-
|
61 |
-
def load_te2(repo_id: str, dtype: torch.dtype) -> Any:
|
62 |
-
if IS_4BIT:
|
63 |
-
nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
64 |
-
text_encoder_2 = T5EncoderModel.from_pretrained(repo_id, subfolder="text_encoder_2", torch_dtype=dtype, quantization_config=nf4_config)
|
65 |
-
else:
|
66 |
-
text_encoder_2 = T5EncoderModel.from_pretrained(repo_id, subfolder="text_encoder_2", torch_dtype=dtype)
|
67 |
-
quantize(text_encoder_2, weights=qfloat8)
|
68 |
-
freeze(text_encoder_2)
|
69 |
-
return text_encoder_2
|
70 |
-
|
71 |
-
def load_pipeline_stable(repo_id: str, dtype: torch.dtype) -> Any:
|
72 |
-
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "float8dq" if IS_CC90 else "int8wo")
|
73 |
-
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
74 |
-
pipe = FluxPipeline.from_pretrained(repo_id, vae=vae, text_encoder_2=load_te2(repo_id, dtype), torch_dtype=dtype, quantization_config=quantization_config)
|
75 |
-
pipe.transformer.fuse_qkv_projections()
|
76 |
-
pipe.vae.fuse_qkv_projections()
|
77 |
-
return pipe
|
78 |
-
|
79 |
-
def load_pipeline_lowvram(repo_id: str, dtype: torch.dtype) -> Any:
|
80 |
-
int4_config = TorchAoConfig("int4dq")
|
81 |
-
float8_config = TorchAoConfig("float8dq")
|
82 |
-
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
83 |
-
transformer = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype, quantization_config=float8_config)
|
84 |
-
pipe = FluxPipeline.from_pretrained(repo_id, vae=None, transformer=None, text_encoder_2=load_te2(repo_id, dtype), torch_dtype=dtype, quantization_config=int4_config)
|
85 |
-
pipe.transformer = transformer
|
86 |
-
pipe.vae = vae
|
87 |
-
#pipe.transformer.fuse_qkv_projections()
|
88 |
-
#pipe.vae.fuse_qkv_projections()
|
89 |
-
pipe.to("cuda")
|
90 |
-
return pipe
|
91 |
-
|
92 |
-
def load_pipeline_compile(repo_id: str, dtype: torch.dtype) -> Any:
|
93 |
-
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "float8dq" if IS_CC90 else "int8wo")
|
94 |
-
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
95 |
-
pipe = FluxPipeline.from_pretrained(repo_id, vae=vae, text_encoder_2=load_te2(repo_id, dtype), torch_dtype=dtype, quantization_config=quantization_config)
|
96 |
-
pipe.transformer.fuse_qkv_projections()
|
97 |
-
pipe.vae.fuse_qkv_projections()
|
98 |
-
pipe.transformer.to(memory_format=torch.channels_last)
|
99 |
-
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
100 |
-
pipe.vae.to(memory_format=torch.channels_last)
|
101 |
-
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True)
|
102 |
-
return pipe
|
103 |
-
|
104 |
-
def load_pipeline_autoquant(repo_id: str, dtype: torch.dtype) -> Any:
|
105 |
-
pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype)
|
106 |
-
pipe.transformer.fuse_qkv_projections()
|
107 |
-
pipe.vae.fuse_qkv_projections()
|
108 |
-
pipe.transformer.to(memory_format=torch.channels_last)
|
109 |
-
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
110 |
-
pipe.vae.to(memory_format=torch.channels_last)
|
111 |
-
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True)
|
112 |
-
pipe.transformer = autoquant(pipe.transformer, error_on_unseen=False)
|
113 |
-
pipe.vae = autoquant(pipe.vae, error_on_unseen=False)
|
114 |
-
return pipe
|
115 |
-
|
116 |
-
def load_pipeline_turbo(repo_id: str, dtype: torch.dtype) -> Any:
|
117 |
-
pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype)
|
118 |
-
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd")
|
119 |
-
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125])
|
120 |
-
pipe.fuse_lora()
|
121 |
-
pipe.unload_lora_weights()
|
122 |
-
pipe.transformer.fuse_qkv_projections()
|
123 |
-
pipe.vae.fuse_qkv_projections()
|
124 |
-
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight()
|
125 |
-
quantize_(pipe.transformer, weight, device="cuda")
|
126 |
-
quantize_(pipe.vae, weight, device="cuda")
|
127 |
-
return pipe
|
128 |
-
|
129 |
-
def load_pipeline_turbo_compile(repo_id: str, dtype: torch.dtype) -> Any:
|
130 |
-
pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype)
|
131 |
-
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd")
|
132 |
-
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125])
|
133 |
-
pipe.fuse_lora()
|
134 |
-
pipe.unload_lora_weights()
|
135 |
-
pipe.transformer.fuse_qkv_projections()
|
136 |
-
pipe.vae.fuse_qkv_projections()
|
137 |
-
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight()
|
138 |
-
quantize_(pipe.transformer, weight, device="cuda")
|
139 |
-
quantize_(pipe.vae, weight, device="cuda")
|
140 |
-
pipe.transformer.to(memory_format=torch.channels_last)
|
141 |
-
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
142 |
-
pipe.vae.to(memory_format=torch.channels_last)
|
143 |
-
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True)
|
144 |
-
return pipe
|
145 |
-
|
146 |
-
def load_pipeline_opt(repo_id: str, dtype: torch.dtype) -> Any:
|
147 |
-
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "float8dq" if IS_CC90 else "int8wo")
|
148 |
-
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight()
|
149 |
-
transformer = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype)
|
150 |
-
transformer.fuse_qkv_projections()
|
151 |
-
if IS_CC90: quantize_(transformer, float8_dynamic_activation_float8_weight(granularity=PerRow()), device="cuda")
|
152 |
-
elif IS_CC89: quantize_(transformer, float8_dynamic_activation_float8_weight(), device="cuda")
|
153 |
-
else: quantize_(transformer, weight, device="cuda")
|
154 |
-
transformer.to(memory_format=torch.channels_last)
|
155 |
-
transformer = torch.compile(transformer, mode="max-autotune", fullgraph=True)
|
156 |
-
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
157 |
-
vae.fuse_qkv_projections()
|
158 |
-
if IS_CC90: quantize_(vae, float8_dynamic_activation_float8_weight(granularity=PerRow()), device="cuda")
|
159 |
-
elif IS_CC89: quantize_(vae, float8_dynamic_activation_float8_weight(), device="cuda")
|
160 |
-
else: quantize_(vae, weight, device="cuda")
|
161 |
-
vae.to(memory_format=torch.channels_last)
|
162 |
-
vae = torch.compile(vae, mode="max-autotune", fullgraph=True)
|
163 |
-
pipe = FluxPipeline.from_pretrained(repo_id, transformer=None, vae=None, torch_dtype=dtype, quantization_config=quantization_config)
|
164 |
-
pipe.transformer = transformer
|
165 |
-
pipe.vae = vae
|
166 |
-
return pipe
|
167 |
|
168 |
class EndpointHandler:
|
169 |
def __init__(self, path=""):
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
print_vram()
|
175 |
-
print("Loading pipeline...")
|
176 |
-
if IS_AUTOQ: self.pipeline = load_pipeline_autoquant(repo_id, dtype)
|
177 |
-
elif IS_COMPILE: self.pipeline = load_pipeline_opt(repo_id, dtype)
|
178 |
-
elif IS_LVRAM and IS_CC89: self.pipeline = load_pipeline_lowvram(repo_id, dtype)
|
179 |
-
else: self.pipeline = load_pipeline_stable(repo_id, dtype)
|
180 |
-
if IS_PARA: apply_cache_on_pipe(self.pipeline, residual_diff_threshold=0.12)
|
181 |
-
gc.collect()
|
182 |
-
torch.cuda.empty_cache()
|
183 |
self.pipeline.enable_vae_slicing()
|
184 |
self.pipeline.enable_vae_tiling()
|
185 |
-
self.pipeline.
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
parameters = data.pop("parameters", {})
|
202 |
-
|
203 |
-
num_inference_steps = parameters.get("num_inference_steps", 8 if IS_TURBO else 28)
|
204 |
-
width = parameters.get("width", 1024)
|
205 |
-
height = parameters.get("height", 1024)
|
206 |
-
guidance_scale = parameters.get("guidance_scale", 3.5)
|
207 |
-
|
208 |
-
# seed generator (seed cannot be provided as is but via a generator)
|
209 |
-
seed = parameters.get("seed", 0)
|
210 |
-
generator = torch.manual_seed(seed)
|
211 |
-
|
212 |
-
start = time.time()
|
213 |
-
image = self.pipeline( # type: ignore
|
214 |
-
prompt,
|
215 |
-
height=height,
|
216 |
-
width=width,
|
217 |
-
guidance_scale=guidance_scale,
|
218 |
-
num_inference_steps=num_inference_steps,
|
219 |
-
generator=generator,
|
220 |
-
output_type="pil",
|
221 |
-
).images[0]
|
222 |
-
end = time.time()
|
223 |
-
print(f'Elapsed {end - start:.3f} sec. / prompt:"{prompt}" / size:{width}x{height} / steps:{num_inference_steps} / guidance scale:{guidance_scale} / seed:{seed}')
|
224 |
-
|
225 |
-
return pil_to_base64(image, self.repo_id, prompt, height, width, num_inference_steps, guidance_scale, seed)
|
226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from typing import Any, Dict, Union
|
|
|
|
|
3 |
from PIL import Image
|
|
|
4 |
import torch
|
5 |
+
from diffusers import FluxPipeline
|
|
|
|
|
|
|
|
|
|
|
6 |
from huggingface_inference_toolkit.logging import logger
|
7 |
+
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
|
8 |
+
from torchao.quantization import autoquant
|
9 |
+
import time
|
10 |
+
import gc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Set high precision for float32 matrix multiplications.
|
13 |
# This setting optimizes performance on NVIDIA GPUs with Ampere architecture (e.g., A100, RTX 30 series) or newer.
|
14 |
torch.set_float32_matmul_precision("high")
|
15 |
|
16 |
+
import torch._dynamo
|
17 |
+
torch._dynamo.config.suppress_errors = False # for debugging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
class EndpointHandler:
|
20 |
def __init__(self, path=""):
|
21 |
+
self.pipeline = FluxPipeline.from_pretrained(
|
22 |
+
"NoMoreCopyrightOrg/flux-dev",
|
23 |
+
torch_dtype=torch.bfloat16,
|
24 |
+
).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
self.pipeline.enable_vae_slicing()
|
26 |
self.pipeline.enable_vae_tiling()
|
27 |
+
self.pipeline.transformer.fuse_qkv_projections()
|
28 |
+
self.pipeline.vae.fuse_qkv_projections()
|
29 |
+
self.pipeline.transformer.to(memory_format=torch.channels_last)
|
30 |
+
self.pipeline.vae.to(memory_format=torch.channels_last)
|
31 |
+
apply_cache_on_pipe(self.pipeline, residual_diff_threshold=0.12)
|
32 |
+
self.pipeline.transformer = torch.compile(
|
33 |
+
self.pipeline.transformer, mode="max-autotune-no-cudagraphs",
|
34 |
+
)
|
35 |
+
self.pipeline.vae = torch.compile(
|
36 |
+
self.pipeline.vae, mode="max-autotune-no-cudagraphs",
|
37 |
+
)
|
38 |
+
self.pipeline.transformer = autoquant(self.pipeline.transformer, error_on_unseen=False)
|
39 |
+
self.pipeline.vae = autoquant(self.pipeline.vae, error_on_unseen=False)
|
40 |
+
|
41 |
+
gc.collect()
|
42 |
+
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
start_time = time.time()
|
45 |
+
print("Start warming-up pipeline")
|
46 |
+
self.pipeline("Hello world!") # Warm-up for compiling
|
47 |
+
end_time = time.time()
|
48 |
+
time_taken = end_time - start_time
|
49 |
+
print(f"Time taken: {time_taken:.2f} seconds")
|
50 |
|
51 |
+
def __call__(self, data: Dict[str, Any]) -> Union[Image.Image, None]:
|
52 |
+
logger.info(f"Received incoming request with {data=}")
|
53 |
+
try:
|
54 |
+
if "inputs" in data and isinstance(data["inputs"], str):
|
55 |
+
prompt = data.pop("inputs")
|
56 |
+
elif "prompt" in data and isinstance(data["prompt"], str):
|
57 |
+
prompt = data.pop("prompt")
|
58 |
+
else:
|
59 |
+
raise ValueError(
|
60 |
+
"Provided input body must contain either the key `inputs` or `prompt` with the"
|
61 |
+
" prompt to use for the image generation, and it needs to be a non-empty string."
|
62 |
+
)
|
63 |
+
|
64 |
+
parameters = data.pop("parameters", {})
|
65 |
+
|
66 |
+
num_inference_steps = parameters.get("num_inference_steps", 28)
|
67 |
+
width = parameters.get("width", 1024)
|
68 |
+
height = parameters.get("height", 1024)
|
69 |
+
#guidance_scale = parameters.get("guidance_scale", 3.5)
|
70 |
+
guidance_scale = parameters.get("guidance", 3.5)
|
71 |
+
|
72 |
+
# seed generator (seed cannot be provided as is but via a generator)
|
73 |
+
seed = parameters.get("seed", 0)
|
74 |
+
generator = torch.manual_seed(seed)
|
75 |
+
start_time = time.time()
|
76 |
+
result = self.pipeline( # type: ignore
|
77 |
+
prompt,
|
78 |
+
height=height,
|
79 |
+
width=width,
|
80 |
+
guidance_scale=guidance_scale,
|
81 |
+
num_inference_steps=num_inference_steps,
|
82 |
+
generator=generator,
|
83 |
+
).images[0]
|
84 |
+
end_time = time.time()
|
85 |
+
time_taken = end_time - start_time
|
86 |
+
print(f"Time taken: {time_taken:.2f} seconds")
|
87 |
+
|
88 |
+
return result
|
89 |
+
except Exception as e:
|
90 |
+
print(e)
|
91 |
+
return None
|
requirements.txt
CHANGED
@@ -1,21 +1,16 @@
|
|
1 |
-
--extra-index-url https://download.pytorch.org/whl/
|
2 |
-
torch
|
3 |
torchvision
|
4 |
torchaudio
|
5 |
huggingface_hub
|
6 |
-
torchao
|
7 |
-
diffusers
|
8 |
peft
|
9 |
-
transformers
|
10 |
-
|
11 |
-
numpy
|
12 |
scipy
|
13 |
Pillow
|
14 |
sentencepiece
|
15 |
protobuf
|
16 |
triton
|
17 |
-
|
18 |
-
tabulate
|
19 |
-
para-attn
|
20 |
-
bitsandbytes
|
21 |
-
optimum-quanto
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
2 |
+
torch==2.6.0
|
3 |
torchvision
|
4 |
torchaudio
|
5 |
huggingface_hub
|
6 |
+
torchao==0.9.0
|
7 |
+
diffusers==0.32.2
|
8 |
peft
|
9 |
+
transformers<=4.48.3
|
10 |
+
numpy<2
|
|
|
11 |
scipy
|
12 |
Pillow
|
13 |
sentencepiece
|
14 |
protobuf
|
15 |
triton
|
16 |
+
para-attn==0.3.23
|
|
|
|
|
|
|
|