--- library_name: transformers base_model: NoManDeRY/DPO-Shift-Qwen-2-7B-UltraChat200K-SFT tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: qwen-2-7b-dpo-ultrafeedback-5e-7-SFTed-paged_adamw_32bit-fixed-0.95 results: [] --- # qwen-2-7b-dpo-ultrafeedback-5e-7-SFTed-paged_adamw_32bit-fixed-0.95 This is a model released from the preprint: [DPO-Shift: Shifting the Distribution of Direct Preference Optimization](https://arxiv.org/abs/2502.07599). Please refer to our [repository](https://github.com/Meaquadddd/DPO-Shift) for more details. This model is a fine-tuned version of [NoManDeRY/DPO-Shift-Qwen-2-7B-UltraChat200K-SFT](https://huggingface.co/NoManDeRY/DPO-Shift-Qwen-2-7B-UltraChat200K-SFT) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.5890 - Rewards/chosen: -0.0170 - Rewards/rejected: -0.3976 - Dpo Lambda: 0.9500 - Rewards/accuracies: 0.7302 - Rewards/margins: 0.3806 - Logps/rejected: -346.4959 - Logps/chosen: -335.0127 - Logits/rejected: -1.2190 - Logits/chosen: -1.1200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Dpo Lambda | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:----------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6842 | 0.1047 | 50 | 0.6827 | 0.1496 | 0.1349 | 0.9500 | 0.6865 | 0.0147 | -293.2452 | -318.3515 | -1.2886 | -1.1643 | | 0.6498 | 0.2093 | 100 | 0.6609 | 0.2769 | 0.2144 | 0.9500 | 0.7381 | 0.0625 | -285.2926 | -305.6219 | -1.2589 | -1.1266 | | 0.6549 | 0.3140 | 150 | 0.6408 | 0.2288 | 0.0982 | 0.9500 | 0.7341 | 0.1307 | -296.9194 | -310.4279 | -1.3148 | -1.1846 | | 0.6413 | 0.4186 | 200 | 0.6250 | 0.1619 | -0.0318 | 0.9500 | 0.7381 | 0.1938 | -309.9195 | -317.1192 | -1.2956 | -1.1761 | | 0.6069 | 0.5233 | 250 | 0.6114 | 0.0886 | -0.1684 | 0.9500 | 0.7302 | 0.2570 | -323.5783 | -324.4538 | -1.2827 | -1.1695 | | 0.611 | 0.6279 | 300 | 0.5997 | 0.0461 | -0.2674 | 0.9500 | 0.7381 | 0.3135 | -333.4765 | -328.6992 | -1.2575 | -1.1528 | | 0.6151 | 0.7326 | 350 | 0.5924 | -0.0016 | -0.3586 | 0.9500 | 0.7222 | 0.3570 | -342.5963 | -333.4674 | -1.2391 | -1.1370 | | 0.5997 | 0.8373 | 400 | 0.5898 | -0.0127 | -0.3884 | 0.9500 | 0.7222 | 0.3758 | -345.5813 | -334.5772 | -1.2248 | -1.1256 | | 0.5708 | 0.9419 | 450 | 0.5890 | -0.0170 | -0.3976 | 0.9500 | 0.7302 | 0.3806 | -346.4959 | -335.0127 | -1.2190 | -1.1200 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1