--- library_name: transformers license: other base_model: Qwen/Qwen2-7B tags: - llama-factory - full - generated_from_trainer model-index: - name: qwen-2-7b-2e-5-paged_adamw_32bit results: [] --- # qwen-2-7b-paged_adamw_32bit This is a model released from the preprint: [DPO-Shift: Shifting the Distribution of Direct Preference Optimization](https://arxiv.org/abs/2502.07599). Please refer to our [repository](https://github.com/Meaquadddd/DPO-Shift) for more details. This model is a fine-tuned version of [Qwen/Qwen2-7B](https://huggingface.co/Qwen/Qwen2-7B) on the ultrachat_200k_train dataset. It achieves the following results on the evaluation set: - Loss: 0.8906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9206 | 0.1232 | 200 | 0.9238 | | 0.9521 | 0.2463 | 400 | 0.9254 | | 0.9654 | 0.3695 | 600 | 0.9204 | | 0.9188 | 0.4926 | 800 | 0.9126 | | 0.967 | 0.6158 | 1000 | 0.9037 | | 0.8783 | 0.7389 | 1200 | 0.8964 | | 0.8915 | 0.8621 | 1400 | 0.8918 | | 0.9246 | 0.9852 | 1600 | 0.8906 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1