diff --git "a/trainer_log.jsonl" "b/trainer_log.jsonl" new file mode 100644--- /dev/null +++ "b/trainer_log.jsonl" @@ -0,0 +1,1633 @@ +{"current_steps": 1, "total_steps": 1624, "loss": 0.8773, "learning_rate": 1.226993865030675e-07, "epoch": 0.0006157635467980296, "percentage": 0.06, "elapsed_time": "0:00:14", "remaining_time": "6:25:04"} +{"current_steps": 2, "total_steps": 1624, "loss": 0.9148, "learning_rate": 2.45398773006135e-07, "epoch": 0.0012315270935960591, "percentage": 0.12, "elapsed_time": "0:00:25", "remaining_time": "5:48:35"} +{"current_steps": 3, "total_steps": 1624, "loss": 0.9107, "learning_rate": 3.680981595092025e-07, "epoch": 0.0018472906403940886, "percentage": 0.18, "elapsed_time": "0:00:37", "remaining_time": "5:36:34"} +{"current_steps": 4, "total_steps": 1624, "loss": 0.9222, "learning_rate": 4.9079754601227e-07, "epoch": 0.0024630541871921183, "percentage": 0.25, "elapsed_time": "0:00:49", "remaining_time": "5:30:50"} +{"current_steps": 5, "total_steps": 1624, "loss": 0.963, "learning_rate": 6.134969325153375e-07, "epoch": 0.003078817733990148, "percentage": 0.31, "elapsed_time": "0:01:00", "remaining_time": "5:27:10"} +{"current_steps": 6, "total_steps": 1624, "loss": 0.9265, "learning_rate": 7.36196319018405e-07, "epoch": 0.003694581280788177, "percentage": 0.37, "elapsed_time": "0:01:12", "remaining_time": "5:24:48"} +{"current_steps": 7, "total_steps": 1624, "loss": 0.9672, "learning_rate": 8.588957055214725e-07, "epoch": 0.004310344827586207, "percentage": 0.43, "elapsed_time": "0:01:23", "remaining_time": "5:23:06"} +{"current_steps": 8, "total_steps": 1624, "loss": 0.8782, "learning_rate": 9.8159509202454e-07, "epoch": 0.0049261083743842365, "percentage": 0.49, "elapsed_time": "0:01:35", "remaining_time": "5:21:42"} +{"current_steps": 9, "total_steps": 1624, "loss": 0.9299, "learning_rate": 1.1042944785276075e-06, "epoch": 0.005541871921182266, "percentage": 0.55, "elapsed_time": "0:01:46", "remaining_time": "5:19:24"} +{"current_steps": 10, "total_steps": 1624, "loss": 0.8725, "learning_rate": 1.226993865030675e-06, "epoch": 0.006157635467980296, "percentage": 0.62, "elapsed_time": "0:01:58", "remaining_time": "5:18:20"} +{"current_steps": 11, "total_steps": 1624, "loss": 0.8709, "learning_rate": 1.3496932515337425e-06, "epoch": 0.0067733990147783255, "percentage": 0.68, "elapsed_time": "0:02:10", "remaining_time": "5:17:54"} +{"current_steps": 12, "total_steps": 1624, "loss": 0.9015, "learning_rate": 1.47239263803681e-06, "epoch": 0.007389162561576354, "percentage": 0.74, "elapsed_time": "0:02:21", "remaining_time": "5:17:18"} +{"current_steps": 13, "total_steps": 1624, "loss": 0.8792, "learning_rate": 1.5950920245398775e-06, "epoch": 0.008004926108374385, "percentage": 0.8, "elapsed_time": "0:02:33", "remaining_time": "5:16:45"} +{"current_steps": 14, "total_steps": 1624, "loss": 0.893, "learning_rate": 1.717791411042945e-06, "epoch": 0.008620689655172414, "percentage": 0.86, "elapsed_time": "0:02:45", "remaining_time": "5:16:16"} +{"current_steps": 15, "total_steps": 1624, "loss": 0.8959, "learning_rate": 1.8404907975460124e-06, "epoch": 0.009236453201970444, "percentage": 0.92, "elapsed_time": "0:02:56", "remaining_time": "5:15:48"} +{"current_steps": 16, "total_steps": 1624, "loss": 0.9241, "learning_rate": 1.96319018404908e-06, "epoch": 0.009852216748768473, "percentage": 0.99, "elapsed_time": "0:03:08", "remaining_time": "5:15:24"} +{"current_steps": 17, "total_steps": 1624, "loss": 0.8673, "learning_rate": 2.085889570552147e-06, "epoch": 0.010467980295566502, "percentage": 1.05, "elapsed_time": "0:03:20", "remaining_time": "5:15:07"} +{"current_steps": 18, "total_steps": 1624, "loss": 0.8984, "learning_rate": 2.208588957055215e-06, "epoch": 0.011083743842364532, "percentage": 1.11, "elapsed_time": "0:03:31", "remaining_time": "5:14:48"} +{"current_steps": 19, "total_steps": 1624, "loss": 0.9279, "learning_rate": 2.331288343558282e-06, "epoch": 0.011699507389162561, "percentage": 1.17, "elapsed_time": "0:03:43", "remaining_time": "5:14:31"} +{"current_steps": 20, "total_steps": 1624, "loss": 0.8785, "learning_rate": 2.45398773006135e-06, "epoch": 0.012315270935960592, "percentage": 1.23, "elapsed_time": "0:03:55", "remaining_time": "5:14:09"} +{"current_steps": 21, "total_steps": 1624, "loss": 0.8702, "learning_rate": 2.5766871165644175e-06, "epoch": 0.01293103448275862, "percentage": 1.29, "elapsed_time": "0:04:06", "remaining_time": "5:13:23"} +{"current_steps": 22, "total_steps": 1624, "loss": 0.923, "learning_rate": 2.699386503067485e-06, "epoch": 0.013546798029556651, "percentage": 1.35, "elapsed_time": "0:04:18", "remaining_time": "5:13:10"} +{"current_steps": 23, "total_steps": 1624, "loss": 0.936, "learning_rate": 2.822085889570552e-06, "epoch": 0.01416256157635468, "percentage": 1.42, "elapsed_time": "0:04:29", "remaining_time": "5:12:54"} +{"current_steps": 24, "total_steps": 1624, "loss": 0.9027, "learning_rate": 2.94478527607362e-06, "epoch": 0.014778325123152709, "percentage": 1.48, "elapsed_time": "0:04:41", "remaining_time": "5:12:37"} +{"current_steps": 25, "total_steps": 1624, "loss": 0.8824, "learning_rate": 3.0674846625766875e-06, "epoch": 0.01539408866995074, "percentage": 1.54, "elapsed_time": "0:04:52", "remaining_time": "5:12:19"} +{"current_steps": 26, "total_steps": 1624, "loss": 0.8887, "learning_rate": 3.190184049079755e-06, "epoch": 0.01600985221674877, "percentage": 1.6, "elapsed_time": "0:05:04", "remaining_time": "5:11:50"} +{"current_steps": 27, "total_steps": 1624, "loss": 0.8917, "learning_rate": 3.312883435582822e-06, "epoch": 0.0166256157635468, "percentage": 1.66, "elapsed_time": "0:05:16", "remaining_time": "5:11:43"} +{"current_steps": 28, "total_steps": 1624, "loss": 0.876, "learning_rate": 3.43558282208589e-06, "epoch": 0.017241379310344827, "percentage": 1.72, "elapsed_time": "0:05:27", "remaining_time": "5:11:29"} +{"current_steps": 29, "total_steps": 1624, "loss": 0.9636, "learning_rate": 3.5582822085889574e-06, "epoch": 0.017857142857142856, "percentage": 1.79, "elapsed_time": "0:05:39", "remaining_time": "5:11:15"} +{"current_steps": 30, "total_steps": 1624, "loss": 0.8895, "learning_rate": 3.680981595092025e-06, "epoch": 0.01847290640394089, "percentage": 1.85, "elapsed_time": "0:05:51", "remaining_time": "5:10:59"} +{"current_steps": 31, "total_steps": 1624, "loss": 0.8944, "learning_rate": 3.8036809815950928e-06, "epoch": 0.019088669950738917, "percentage": 1.91, "elapsed_time": "0:06:02", "remaining_time": "5:10:38"} +{"current_steps": 32, "total_steps": 1624, "loss": 0.9025, "learning_rate": 3.92638036809816e-06, "epoch": 0.019704433497536946, "percentage": 1.97, "elapsed_time": "0:06:14", "remaining_time": "5:10:20"} +{"current_steps": 33, "total_steps": 1624, "loss": 0.9418, "learning_rate": 4.049079754601227e-06, "epoch": 0.020320197044334975, "percentage": 2.03, "elapsed_time": "0:06:25", "remaining_time": "5:10:03"} +{"current_steps": 34, "total_steps": 1624, "loss": 0.9037, "learning_rate": 4.171779141104294e-06, "epoch": 0.020935960591133004, "percentage": 2.09, "elapsed_time": "0:06:37", "remaining_time": "5:09:45"} +{"current_steps": 35, "total_steps": 1624, "loss": 0.8747, "learning_rate": 4.294478527607362e-06, "epoch": 0.021551724137931036, "percentage": 2.16, "elapsed_time": "0:06:49", "remaining_time": "5:09:30"} +{"current_steps": 36, "total_steps": 1624, "loss": 0.9108, "learning_rate": 4.41717791411043e-06, "epoch": 0.022167487684729065, "percentage": 2.22, "elapsed_time": "0:07:00", "remaining_time": "5:09:17"} +{"current_steps": 37, "total_steps": 1624, "loss": 0.8905, "learning_rate": 4.539877300613497e-06, "epoch": 0.022783251231527094, "percentage": 2.28, "elapsed_time": "0:07:12", "remaining_time": "5:09:04"} +{"current_steps": 38, "total_steps": 1624, "loss": 0.9038, "learning_rate": 4.662576687116564e-06, "epoch": 0.023399014778325122, "percentage": 2.34, "elapsed_time": "0:07:23", "remaining_time": "5:08:48"} +{"current_steps": 39, "total_steps": 1624, "loss": 0.8356, "learning_rate": 4.785276073619632e-06, "epoch": 0.02401477832512315, "percentage": 2.4, "elapsed_time": "0:07:35", "remaining_time": "5:08:35"} +{"current_steps": 40, "total_steps": 1624, "loss": 0.8527, "learning_rate": 4.9079754601227e-06, "epoch": 0.024630541871921183, "percentage": 2.46, "elapsed_time": "0:07:47", "remaining_time": "5:08:21"} +{"current_steps": 41, "total_steps": 1624, "loss": 0.93, "learning_rate": 5.030674846625767e-06, "epoch": 0.025246305418719212, "percentage": 2.52, "elapsed_time": "0:07:58", "remaining_time": "5:08:08"} +{"current_steps": 42, "total_steps": 1624, "loss": 0.8716, "learning_rate": 5.153374233128835e-06, "epoch": 0.02586206896551724, "percentage": 2.59, "elapsed_time": "0:08:10", "remaining_time": "5:07:57"} +{"current_steps": 43, "total_steps": 1624, "loss": 0.8739, "learning_rate": 5.276073619631902e-06, "epoch": 0.02647783251231527, "percentage": 2.65, "elapsed_time": "0:08:22", "remaining_time": "5:07:45"} +{"current_steps": 44, "total_steps": 1624, "loss": 0.8572, "learning_rate": 5.39877300613497e-06, "epoch": 0.027093596059113302, "percentage": 2.71, "elapsed_time": "0:08:33", "remaining_time": "5:07:26"} +{"current_steps": 45, "total_steps": 1624, "loss": 0.8847, "learning_rate": 5.521472392638038e-06, "epoch": 0.02770935960591133, "percentage": 2.77, "elapsed_time": "0:08:45", "remaining_time": "5:07:16"} +{"current_steps": 46, "total_steps": 1624, "loss": 0.8981, "learning_rate": 5.644171779141104e-06, "epoch": 0.02832512315270936, "percentage": 2.83, "elapsed_time": "0:08:57", "remaining_time": "5:07:03"} +{"current_steps": 47, "total_steps": 1624, "loss": 0.8737, "learning_rate": 5.766871165644172e-06, "epoch": 0.02894088669950739, "percentage": 2.89, "elapsed_time": "0:09:08", "remaining_time": "5:06:49"} +{"current_steps": 48, "total_steps": 1624, "loss": 0.8771, "learning_rate": 5.88957055214724e-06, "epoch": 0.029556650246305417, "percentage": 2.96, "elapsed_time": "0:09:20", "remaining_time": "5:06:37"} +{"current_steps": 49, "total_steps": 1624, "loss": 0.8989, "learning_rate": 6.012269938650307e-06, "epoch": 0.03017241379310345, "percentage": 3.02, "elapsed_time": "0:09:31", "remaining_time": "5:06:12"} +{"current_steps": 50, "total_steps": 1624, "loss": 0.8662, "learning_rate": 6.134969325153375e-06, "epoch": 0.03078817733990148, "percentage": 3.08, "elapsed_time": "0:09:43", "remaining_time": "5:06:00"} +{"current_steps": 51, "total_steps": 1624, "loss": 0.9014, "learning_rate": 6.257668711656443e-06, "epoch": 0.03140394088669951, "percentage": 3.14, "elapsed_time": "0:09:54", "remaining_time": "5:05:48"} +{"current_steps": 52, "total_steps": 1624, "loss": 0.9038, "learning_rate": 6.38036809815951e-06, "epoch": 0.03201970443349754, "percentage": 3.2, "elapsed_time": "0:10:06", "remaining_time": "5:05:35"} +{"current_steps": 53, "total_steps": 1624, "loss": 0.9061, "learning_rate": 6.503067484662578e-06, "epoch": 0.03263546798029557, "percentage": 3.26, "elapsed_time": "0:10:18", "remaining_time": "5:05:23"} +{"current_steps": 54, "total_steps": 1624, "loss": 0.9009, "learning_rate": 6.625766871165644e-06, "epoch": 0.0332512315270936, "percentage": 3.33, "elapsed_time": "0:10:29", "remaining_time": "5:05:09"} +{"current_steps": 55, "total_steps": 1624, "loss": 0.8998, "learning_rate": 6.748466257668712e-06, "epoch": 0.033866995073891626, "percentage": 3.39, "elapsed_time": "0:10:41", "remaining_time": "5:04:57"} +{"current_steps": 56, "total_steps": 1624, "loss": 0.9023, "learning_rate": 6.87116564417178e-06, "epoch": 0.034482758620689655, "percentage": 3.45, "elapsed_time": "0:10:53", "remaining_time": "5:04:45"} +{"current_steps": 57, "total_steps": 1624, "loss": 0.8892, "learning_rate": 6.993865030674847e-06, "epoch": 0.035098522167487683, "percentage": 3.51, "elapsed_time": "0:11:04", "remaining_time": "5:04:34"} +{"current_steps": 58, "total_steps": 1624, "loss": 0.825, "learning_rate": 7.116564417177915e-06, "epoch": 0.03571428571428571, "percentage": 3.57, "elapsed_time": "0:11:16", "remaining_time": "5:04:23"} +{"current_steps": 59, "total_steps": 1624, "loss": 0.8899, "learning_rate": 7.239263803680983e-06, "epoch": 0.03633004926108374, "percentage": 3.63, "elapsed_time": "0:11:28", "remaining_time": "5:04:13"} +{"current_steps": 60, "total_steps": 1624, "loss": 0.9305, "learning_rate": 7.36196319018405e-06, "epoch": 0.03694581280788178, "percentage": 3.69, "elapsed_time": "0:11:39", "remaining_time": "5:04:01"} +{"current_steps": 61, "total_steps": 1624, "loss": 0.9698, "learning_rate": 7.484662576687118e-06, "epoch": 0.037561576354679806, "percentage": 3.76, "elapsed_time": "0:11:51", "remaining_time": "5:03:48"} +{"current_steps": 62, "total_steps": 1624, "loss": 0.9213, "learning_rate": 7.6073619631901856e-06, "epoch": 0.038177339901477834, "percentage": 3.82, "elapsed_time": "0:12:02", "remaining_time": "5:03:25"} +{"current_steps": 63, "total_steps": 1624, "loss": 0.9086, "learning_rate": 7.730061349693252e-06, "epoch": 0.03879310344827586, "percentage": 3.88, "elapsed_time": "0:12:14", "remaining_time": "5:03:12"} +{"current_steps": 64, "total_steps": 1624, "loss": 0.8597, "learning_rate": 7.85276073619632e-06, "epoch": 0.03940886699507389, "percentage": 3.94, "elapsed_time": "0:12:25", "remaining_time": "5:02:58"} +{"current_steps": 65, "total_steps": 1624, "loss": 0.8635, "learning_rate": 7.975460122699386e-06, "epoch": 0.04002463054187192, "percentage": 4.0, "elapsed_time": "0:12:37", "remaining_time": "5:02:47"} +{"current_steps": 66, "total_steps": 1624, "loss": 0.87, "learning_rate": 8.098159509202455e-06, "epoch": 0.04064039408866995, "percentage": 4.06, "elapsed_time": "0:12:49", "remaining_time": "5:02:35"} +{"current_steps": 67, "total_steps": 1624, "loss": 0.8677, "learning_rate": 8.220858895705522e-06, "epoch": 0.04125615763546798, "percentage": 4.13, "elapsed_time": "0:13:00", "remaining_time": "5:02:24"} +{"current_steps": 68, "total_steps": 1624, "loss": 0.8876, "learning_rate": 8.343558282208589e-06, "epoch": 0.04187192118226601, "percentage": 4.19, "elapsed_time": "0:13:12", "remaining_time": "5:02:12"} +{"current_steps": 69, "total_steps": 1624, "loss": 0.8995, "learning_rate": 8.466257668711658e-06, "epoch": 0.042487684729064036, "percentage": 4.25, "elapsed_time": "0:13:24", "remaining_time": "5:02:03"} +{"current_steps": 70, "total_steps": 1624, "loss": 0.9233, "learning_rate": 8.588957055214725e-06, "epoch": 0.04310344827586207, "percentage": 4.31, "elapsed_time": "0:13:35", "remaining_time": "5:01:50"} +{"current_steps": 71, "total_steps": 1624, "loss": 0.8836, "learning_rate": 8.711656441717792e-06, "epoch": 0.0437192118226601, "percentage": 4.37, "elapsed_time": "0:13:47", "remaining_time": "5:01:39"} +{"current_steps": 72, "total_steps": 1624, "loss": 0.9117, "learning_rate": 8.83435582822086e-06, "epoch": 0.04433497536945813, "percentage": 4.43, "elapsed_time": "0:13:59", "remaining_time": "5:01:28"} +{"current_steps": 73, "total_steps": 1624, "loss": 0.8882, "learning_rate": 8.957055214723927e-06, "epoch": 0.04495073891625616, "percentage": 4.5, "elapsed_time": "0:14:10", "remaining_time": "5:01:16"} +{"current_steps": 74, "total_steps": 1624, "loss": 0.8904, "learning_rate": 9.079754601226994e-06, "epoch": 0.04556650246305419, "percentage": 4.56, "elapsed_time": "0:14:22", "remaining_time": "5:01:05"} +{"current_steps": 75, "total_steps": 1624, "loss": 0.8935, "learning_rate": 9.202453987730062e-06, "epoch": 0.046182266009852216, "percentage": 4.62, "elapsed_time": "0:14:34", "remaining_time": "5:00:54"} +{"current_steps": 76, "total_steps": 1624, "loss": 0.8952, "learning_rate": 9.325153374233129e-06, "epoch": 0.046798029556650245, "percentage": 4.68, "elapsed_time": "0:14:45", "remaining_time": "5:00:41"} +{"current_steps": 77, "total_steps": 1624, "loss": 0.9039, "learning_rate": 9.447852760736197e-06, "epoch": 0.04741379310344827, "percentage": 4.74, "elapsed_time": "0:14:57", "remaining_time": "5:00:29"} +{"current_steps": 78, "total_steps": 1624, "loss": 0.9451, "learning_rate": 9.570552147239264e-06, "epoch": 0.0480295566502463, "percentage": 4.8, "elapsed_time": "0:15:09", "remaining_time": "5:00:17"} +{"current_steps": 79, "total_steps": 1624, "loss": 0.9319, "learning_rate": 9.693251533742331e-06, "epoch": 0.04864532019704434, "percentage": 4.86, "elapsed_time": "0:15:20", "remaining_time": "5:00:06"} +{"current_steps": 80, "total_steps": 1624, "loss": 0.8606, "learning_rate": 9.8159509202454e-06, "epoch": 0.04926108374384237, "percentage": 4.93, "elapsed_time": "0:15:32", "remaining_time": "4:59:56"} +{"current_steps": 81, "total_steps": 1624, "loss": 0.8148, "learning_rate": 9.938650306748467e-06, "epoch": 0.049876847290640396, "percentage": 4.99, "elapsed_time": "0:15:44", "remaining_time": "4:59:43"} +{"current_steps": 82, "total_steps": 1624, "loss": 0.893, "learning_rate": 1.0061349693251534e-05, "epoch": 0.050492610837438424, "percentage": 5.05, "elapsed_time": "0:15:55", "remaining_time": "4:59:23"} +{"current_steps": 83, "total_steps": 1624, "loss": 0.906, "learning_rate": 1.0184049079754601e-05, "epoch": 0.05110837438423645, "percentage": 5.11, "elapsed_time": "0:16:06", "remaining_time": "4:59:11"} +{"current_steps": 84, "total_steps": 1624, "loss": 0.9136, "learning_rate": 1.030674846625767e-05, "epoch": 0.05172413793103448, "percentage": 5.17, "elapsed_time": "0:16:18", "remaining_time": "4:58:57"} +{"current_steps": 85, "total_steps": 1624, "loss": 0.8915, "learning_rate": 1.0429447852760737e-05, "epoch": 0.05233990147783251, "percentage": 5.23, "elapsed_time": "0:16:29", "remaining_time": "4:58:42"} +{"current_steps": 86, "total_steps": 1624, "loss": 0.8798, "learning_rate": 1.0552147239263804e-05, "epoch": 0.05295566502463054, "percentage": 5.3, "elapsed_time": "0:16:41", "remaining_time": "4:58:30"} +{"current_steps": 87, "total_steps": 1624, "loss": 0.9065, "learning_rate": 1.0674846625766873e-05, "epoch": 0.05357142857142857, "percentage": 5.36, "elapsed_time": "0:16:53", "remaining_time": "4:58:19"} +{"current_steps": 88, "total_steps": 1624, "loss": 0.8876, "learning_rate": 1.079754601226994e-05, "epoch": 0.054187192118226604, "percentage": 5.42, "elapsed_time": "0:17:04", "remaining_time": "4:58:08"} +{"current_steps": 89, "total_steps": 1624, "loss": 0.8921, "learning_rate": 1.0920245398773005e-05, "epoch": 0.05480295566502463, "percentage": 5.48, "elapsed_time": "0:17:16", "remaining_time": "4:57:56"} +{"current_steps": 90, "total_steps": 1624, "loss": 0.9345, "learning_rate": 1.1042944785276076e-05, "epoch": 0.05541871921182266, "percentage": 5.54, "elapsed_time": "0:17:28", "remaining_time": "4:57:45"} +{"current_steps": 91, "total_steps": 1624, "loss": 0.9218, "learning_rate": 1.1165644171779141e-05, "epoch": 0.05603448275862069, "percentage": 5.6, "elapsed_time": "0:17:39", "remaining_time": "4:57:33"} +{"current_steps": 92, "total_steps": 1624, "loss": 0.8605, "learning_rate": 1.1288343558282208e-05, "epoch": 0.05665024630541872, "percentage": 5.67, "elapsed_time": "0:17:51", "remaining_time": "4:57:18"} +{"current_steps": 93, "total_steps": 1624, "loss": 0.9085, "learning_rate": 1.1411042944785277e-05, "epoch": 0.05726600985221675, "percentage": 5.73, "elapsed_time": "0:18:02", "remaining_time": "4:57:07"} +{"current_steps": 94, "total_steps": 1624, "loss": 0.9419, "learning_rate": 1.1533742331288344e-05, "epoch": 0.05788177339901478, "percentage": 5.79, "elapsed_time": "0:18:14", "remaining_time": "4:56:55"} +{"current_steps": 95, "total_steps": 1624, "loss": 0.905, "learning_rate": 1.1656441717791411e-05, "epoch": 0.058497536945812806, "percentage": 5.85, "elapsed_time": "0:18:26", "remaining_time": "4:56:43"} +{"current_steps": 96, "total_steps": 1624, "loss": 0.8799, "learning_rate": 1.177914110429448e-05, "epoch": 0.059113300492610835, "percentage": 5.91, "elapsed_time": "0:18:37", "remaining_time": "4:56:31"} +{"current_steps": 97, "total_steps": 1624, "loss": 0.9008, "learning_rate": 1.1901840490797547e-05, "epoch": 0.05972906403940887, "percentage": 5.97, "elapsed_time": "0:18:49", "remaining_time": "4:56:20"} +{"current_steps": 98, "total_steps": 1624, "loss": 0.8512, "learning_rate": 1.2024539877300614e-05, "epoch": 0.0603448275862069, "percentage": 6.03, "elapsed_time": "0:19:00", "remaining_time": "4:56:04"} +{"current_steps": 99, "total_steps": 1624, "loss": 0.8698, "learning_rate": 1.2147239263803683e-05, "epoch": 0.06096059113300493, "percentage": 6.1, "elapsed_time": "0:19:12", "remaining_time": "4:55:54"} +{"current_steps": 100, "total_steps": 1624, "loss": 0.8933, "learning_rate": 1.226993865030675e-05, "epoch": 0.06157635467980296, "percentage": 6.16, "elapsed_time": "0:19:24", "remaining_time": "4:55:42"} +{"current_steps": 101, "total_steps": 1624, "loss": 0.8242, "learning_rate": 1.2392638036809817e-05, "epoch": 0.062192118226600986, "percentage": 6.22, "elapsed_time": "0:19:35", "remaining_time": "4:55:32"} +{"current_steps": 102, "total_steps": 1624, "loss": 0.8868, "learning_rate": 1.2515337423312886e-05, "epoch": 0.06280788177339902, "percentage": 6.28, "elapsed_time": "0:19:47", "remaining_time": "4:55:20"} +{"current_steps": 103, "total_steps": 1624, "loss": 0.8941, "learning_rate": 1.2638036809815953e-05, "epoch": 0.06342364532019705, "percentage": 6.34, "elapsed_time": "0:19:59", "remaining_time": "4:55:10"} +{"current_steps": 104, "total_steps": 1624, "loss": 0.9045, "learning_rate": 1.276073619631902e-05, "epoch": 0.06403940886699508, "percentage": 6.4, "elapsed_time": "0:20:10", "remaining_time": "4:54:58"} +{"current_steps": 105, "total_steps": 1624, "loss": 0.9033, "learning_rate": 1.2883435582822085e-05, "epoch": 0.06465517241379311, "percentage": 6.47, "elapsed_time": "0:20:22", "remaining_time": "4:54:47"} +{"current_steps": 106, "total_steps": 1624, "loss": 0.9086, "learning_rate": 1.3006134969325156e-05, "epoch": 0.06527093596059114, "percentage": 6.53, "elapsed_time": "0:20:34", "remaining_time": "4:54:35"} +{"current_steps": 107, "total_steps": 1624, "loss": 0.8819, "learning_rate": 1.3128834355828221e-05, "epoch": 0.06588669950738917, "percentage": 6.59, "elapsed_time": "0:20:45", "remaining_time": "4:54:23"} +{"current_steps": 108, "total_steps": 1624, "loss": 0.8535, "learning_rate": 1.3251533742331288e-05, "epoch": 0.0665024630541872, "percentage": 6.65, "elapsed_time": "0:20:57", "remaining_time": "4:54:11"} +{"current_steps": 109, "total_steps": 1624, "loss": 0.927, "learning_rate": 1.3374233128834357e-05, "epoch": 0.06711822660098522, "percentage": 6.71, "elapsed_time": "0:21:09", "remaining_time": "4:53:58"} +{"current_steps": 110, "total_steps": 1624, "loss": 0.9484, "learning_rate": 1.3496932515337424e-05, "epoch": 0.06773399014778325, "percentage": 6.77, "elapsed_time": "0:21:20", "remaining_time": "4:53:39"} +{"current_steps": 111, "total_steps": 1624, "loss": 0.8959, "learning_rate": 1.3619631901840491e-05, "epoch": 0.06834975369458128, "percentage": 6.83, "elapsed_time": "0:21:31", "remaining_time": "4:53:29"} +{"current_steps": 112, "total_steps": 1624, "loss": 0.9292, "learning_rate": 1.374233128834356e-05, "epoch": 0.06896551724137931, "percentage": 6.9, "elapsed_time": "0:21:43", "remaining_time": "4:53:17"} +{"current_steps": 113, "total_steps": 1624, "loss": 0.957, "learning_rate": 1.3865030674846627e-05, "epoch": 0.06958128078817734, "percentage": 6.96, "elapsed_time": "0:21:55", "remaining_time": "4:53:06"} +{"current_steps": 114, "total_steps": 1624, "loss": 0.9032, "learning_rate": 1.3987730061349694e-05, "epoch": 0.07019704433497537, "percentage": 7.02, "elapsed_time": "0:22:06", "remaining_time": "4:52:55"} +{"current_steps": 115, "total_steps": 1624, "loss": 0.8709, "learning_rate": 1.4110429447852763e-05, "epoch": 0.0708128078817734, "percentage": 7.08, "elapsed_time": "0:22:18", "remaining_time": "4:52:44"} +{"current_steps": 116, "total_steps": 1624, "loss": 0.9885, "learning_rate": 1.423312883435583e-05, "epoch": 0.07142857142857142, "percentage": 7.14, "elapsed_time": "0:22:30", "remaining_time": "4:52:31"} +{"current_steps": 117, "total_steps": 1624, "loss": 0.9268, "learning_rate": 1.4355828220858897e-05, "epoch": 0.07204433497536945, "percentage": 7.2, "elapsed_time": "0:22:41", "remaining_time": "4:52:20"} +{"current_steps": 118, "total_steps": 1624, "loss": 0.9083, "learning_rate": 1.4478527607361965e-05, "epoch": 0.07266009852216748, "percentage": 7.27, "elapsed_time": "0:22:53", "remaining_time": "4:52:09"} +{"current_steps": 119, "total_steps": 1624, "loss": 0.9136, "learning_rate": 1.4601226993865032e-05, "epoch": 0.07327586206896551, "percentage": 7.33, "elapsed_time": "0:23:05", "remaining_time": "4:51:58"} +{"current_steps": 120, "total_steps": 1624, "loss": 0.933, "learning_rate": 1.47239263803681e-05, "epoch": 0.07389162561576355, "percentage": 7.39, "elapsed_time": "0:23:16", "remaining_time": "4:51:45"} +{"current_steps": 121, "total_steps": 1624, "loss": 0.9421, "learning_rate": 1.4846625766871168e-05, "epoch": 0.07450738916256158, "percentage": 7.45, "elapsed_time": "0:23:28", "remaining_time": "4:51:34"} +{"current_steps": 122, "total_steps": 1624, "loss": 0.9199, "learning_rate": 1.4969325153374235e-05, "epoch": 0.07512315270935961, "percentage": 7.51, "elapsed_time": "0:23:40", "remaining_time": "4:51:22"} +{"current_steps": 123, "total_steps": 1624, "loss": 0.864, "learning_rate": 1.50920245398773e-05, "epoch": 0.07573891625615764, "percentage": 7.57, "elapsed_time": "0:23:51", "remaining_time": "4:51:11"} +{"current_steps": 124, "total_steps": 1624, "loss": 0.9103, "learning_rate": 1.5214723926380371e-05, "epoch": 0.07635467980295567, "percentage": 7.64, "elapsed_time": "0:24:03", "remaining_time": "4:51:00"} +{"current_steps": 125, "total_steps": 1624, "loss": 0.9673, "learning_rate": 1.5337423312883436e-05, "epoch": 0.0769704433497537, "percentage": 7.7, "elapsed_time": "0:24:15", "remaining_time": "4:50:48"} +{"current_steps": 126, "total_steps": 1624, "loss": 0.8376, "learning_rate": 1.5460122699386504e-05, "epoch": 0.07758620689655173, "percentage": 7.76, "elapsed_time": "0:24:26", "remaining_time": "4:50:38"} +{"current_steps": 127, "total_steps": 1624, "loss": 0.9278, "learning_rate": 1.5582822085889574e-05, "epoch": 0.07820197044334976, "percentage": 7.82, "elapsed_time": "0:24:38", "remaining_time": "4:50:26"} +{"current_steps": 128, "total_steps": 1624, "loss": 0.9049, "learning_rate": 1.570552147239264e-05, "epoch": 0.07881773399014778, "percentage": 7.88, "elapsed_time": "0:24:49", "remaining_time": "4:50:11"} +{"current_steps": 129, "total_steps": 1624, "loss": 0.9281, "learning_rate": 1.5828220858895708e-05, "epoch": 0.07943349753694581, "percentage": 7.94, "elapsed_time": "0:25:01", "remaining_time": "4:49:59"} +{"current_steps": 130, "total_steps": 1624, "loss": 0.9245, "learning_rate": 1.5950920245398772e-05, "epoch": 0.08004926108374384, "percentage": 8.0, "elapsed_time": "0:25:13", "remaining_time": "4:49:48"} +{"current_steps": 131, "total_steps": 1624, "loss": 0.8744, "learning_rate": 1.6073619631901842e-05, "epoch": 0.08066502463054187, "percentage": 8.07, "elapsed_time": "0:25:24", "remaining_time": "4:49:36"} +{"current_steps": 132, "total_steps": 1624, "loss": 0.8532, "learning_rate": 1.619631901840491e-05, "epoch": 0.0812807881773399, "percentage": 8.13, "elapsed_time": "0:25:36", "remaining_time": "4:49:26"} +{"current_steps": 133, "total_steps": 1624, "loss": 0.9194, "learning_rate": 1.6319018404907976e-05, "epoch": 0.08189655172413793, "percentage": 8.19, "elapsed_time": "0:25:47", "remaining_time": "4:49:13"} +{"current_steps": 134, "total_steps": 1624, "loss": 0.8426, "learning_rate": 1.6441717791411043e-05, "epoch": 0.08251231527093596, "percentage": 8.25, "elapsed_time": "0:25:59", "remaining_time": "4:49:01"} +{"current_steps": 135, "total_steps": 1624, "loss": 0.863, "learning_rate": 1.656441717791411e-05, "epoch": 0.08312807881773399, "percentage": 8.31, "elapsed_time": "0:26:11", "remaining_time": "4:48:49"} +{"current_steps": 136, "total_steps": 1624, "loss": 0.9064, "learning_rate": 1.6687116564417178e-05, "epoch": 0.08374384236453201, "percentage": 8.37, "elapsed_time": "0:26:22", "remaining_time": "4:48:37"} +{"current_steps": 137, "total_steps": 1624, "loss": 0.901, "learning_rate": 1.6809815950920248e-05, "epoch": 0.08435960591133004, "percentage": 8.44, "elapsed_time": "0:26:34", "remaining_time": "4:48:25"} +{"current_steps": 138, "total_steps": 1624, "loss": 0.8712, "learning_rate": 1.6932515337423315e-05, "epoch": 0.08497536945812807, "percentage": 8.5, "elapsed_time": "0:26:46", "remaining_time": "4:48:14"} +{"current_steps": 139, "total_steps": 1624, "loss": 0.9301, "learning_rate": 1.7055214723926382e-05, "epoch": 0.08559113300492611, "percentage": 8.56, "elapsed_time": "0:26:57", "remaining_time": "4:48:02"} +{"current_steps": 140, "total_steps": 1624, "loss": 0.9006, "learning_rate": 1.717791411042945e-05, "epoch": 0.08620689655172414, "percentage": 8.62, "elapsed_time": "0:27:09", "remaining_time": "4:47:50"} +{"current_steps": 141, "total_steps": 1624, "loss": 0.939, "learning_rate": 1.7300613496932516e-05, "epoch": 0.08682266009852217, "percentage": 8.68, "elapsed_time": "0:27:20", "remaining_time": "4:47:38"} +{"current_steps": 142, "total_steps": 1624, "loss": 0.9306, "learning_rate": 1.7423312883435583e-05, "epoch": 0.0874384236453202, "percentage": 8.74, "elapsed_time": "0:27:32", "remaining_time": "4:47:27"} +{"current_steps": 143, "total_steps": 1624, "loss": 0.8856, "learning_rate": 1.7546012269938654e-05, "epoch": 0.08805418719211823, "percentage": 8.81, "elapsed_time": "0:27:44", "remaining_time": "4:47:15"} +{"current_steps": 144, "total_steps": 1624, "loss": 0.937, "learning_rate": 1.766871165644172e-05, "epoch": 0.08866995073891626, "percentage": 8.87, "elapsed_time": "0:27:55", "remaining_time": "4:47:04"} +{"current_steps": 145, "total_steps": 1624, "loss": 0.9989, "learning_rate": 1.7791411042944788e-05, "epoch": 0.08928571428571429, "percentage": 8.93, "elapsed_time": "0:28:07", "remaining_time": "4:46:51"} +{"current_steps": 146, "total_steps": 1624, "loss": 0.9146, "learning_rate": 1.7914110429447855e-05, "epoch": 0.08990147783251232, "percentage": 8.99, "elapsed_time": "0:28:18", "remaining_time": "4:46:39"} +{"current_steps": 147, "total_steps": 1624, "loss": 0.8781, "learning_rate": 1.8036809815950922e-05, "epoch": 0.09051724137931035, "percentage": 9.05, "elapsed_time": "0:28:30", "remaining_time": "4:46:27"} +{"current_steps": 148, "total_steps": 1624, "loss": 0.9056, "learning_rate": 1.815950920245399e-05, "epoch": 0.09113300492610837, "percentage": 9.11, "elapsed_time": "0:28:42", "remaining_time": "4:46:15"} +{"current_steps": 149, "total_steps": 1624, "loss": 0.9271, "learning_rate": 1.828220858895706e-05, "epoch": 0.0917487684729064, "percentage": 9.17, "elapsed_time": "0:28:53", "remaining_time": "4:46:04"} +{"current_steps": 150, "total_steps": 1624, "loss": 0.884, "learning_rate": 1.8404907975460123e-05, "epoch": 0.09236453201970443, "percentage": 9.24, "elapsed_time": "0:29:05", "remaining_time": "4:45:52"} +{"current_steps": 151, "total_steps": 1624, "loss": 0.9388, "learning_rate": 1.852760736196319e-05, "epoch": 0.09298029556650246, "percentage": 9.3, "elapsed_time": "0:29:17", "remaining_time": "4:45:41"} +{"current_steps": 152, "total_steps": 1624, "loss": 0.8917, "learning_rate": 1.8650306748466257e-05, "epoch": 0.09359605911330049, "percentage": 9.36, "elapsed_time": "0:29:28", "remaining_time": "4:45:28"} +{"current_steps": 153, "total_steps": 1624, "loss": 0.8968, "learning_rate": 1.8773006134969328e-05, "epoch": 0.09421182266009852, "percentage": 9.42, "elapsed_time": "0:29:40", "remaining_time": "4:45:16"} +{"current_steps": 154, "total_steps": 1624, "loss": 0.904, "learning_rate": 1.8895705521472395e-05, "epoch": 0.09482758620689655, "percentage": 9.48, "elapsed_time": "0:29:51", "remaining_time": "4:45:05"} +{"current_steps": 155, "total_steps": 1624, "loss": 0.9187, "learning_rate": 1.9018404907975462e-05, "epoch": 0.09544334975369458, "percentage": 9.54, "elapsed_time": "0:30:03", "remaining_time": "4:44:53"} +{"current_steps": 156, "total_steps": 1624, "loss": 0.897, "learning_rate": 1.914110429447853e-05, "epoch": 0.0960591133004926, "percentage": 9.61, "elapsed_time": "0:30:15", "remaining_time": "4:44:42"} +{"current_steps": 157, "total_steps": 1624, "loss": 0.9004, "learning_rate": 1.9263803680981596e-05, "epoch": 0.09667487684729065, "percentage": 9.67, "elapsed_time": "0:30:26", "remaining_time": "4:44:30"} +{"current_steps": 158, "total_steps": 1624, "loss": 0.9323, "learning_rate": 1.9386503067484663e-05, "epoch": 0.09729064039408868, "percentage": 9.73, "elapsed_time": "0:30:38", "remaining_time": "4:44:19"} +{"current_steps": 159, "total_steps": 1624, "loss": 0.8634, "learning_rate": 1.9509202453987733e-05, "epoch": 0.0979064039408867, "percentage": 9.79, "elapsed_time": "0:30:50", "remaining_time": "4:44:08"} +{"current_steps": 160, "total_steps": 1624, "loss": 0.9281, "learning_rate": 1.96319018404908e-05, "epoch": 0.09852216748768473, "percentage": 9.85, "elapsed_time": "0:31:01", "remaining_time": "4:43:56"} +{"current_steps": 161, "total_steps": 1624, "loss": 0.8292, "learning_rate": 1.9754601226993868e-05, "epoch": 0.09913793103448276, "percentage": 9.91, "elapsed_time": "0:31:13", "remaining_time": "4:43:45"} +{"current_steps": 162, "total_steps": 1624, "loss": 0.9487, "learning_rate": 1.9877300613496935e-05, "epoch": 0.09975369458128079, "percentage": 9.98, "elapsed_time": "0:31:25", "remaining_time": "4:43:33"} +{"current_steps": 163, "total_steps": 1624, "loss": 0.8809, "learning_rate": 2e-05, "epoch": 0.10036945812807882, "percentage": 10.04, "elapsed_time": "0:31:36", "remaining_time": "4:43:23"} +{"current_steps": 164, "total_steps": 1624, "loss": 0.9359, "learning_rate": 1.9999976880994384e-05, "epoch": 0.10098522167487685, "percentage": 10.1, "elapsed_time": "0:31:48", "remaining_time": "4:43:12"} +{"current_steps": 165, "total_steps": 1624, "loss": 0.9256, "learning_rate": 1.999990752408443e-05, "epoch": 0.10160098522167488, "percentage": 10.16, "elapsed_time": "0:32:00", "remaining_time": "4:43:01"} +{"current_steps": 166, "total_steps": 1624, "loss": 0.9179, "learning_rate": 1.9999791929590823e-05, "epoch": 0.1022167487684729, "percentage": 10.22, "elapsed_time": "0:32:12", "remaining_time": "4:42:49"} +{"current_steps": 167, "total_steps": 1624, "loss": 0.9515, "learning_rate": 1.999963009804806e-05, "epoch": 0.10283251231527094, "percentage": 10.28, "elapsed_time": "0:32:23", "remaining_time": "4:42:37"} +{"current_steps": 168, "total_steps": 1624, "loss": 0.8692, "learning_rate": 1.999942203020442e-05, "epoch": 0.10344827586206896, "percentage": 10.34, "elapsed_time": "0:32:35", "remaining_time": "4:42:26"} +{"current_steps": 169, "total_steps": 1624, "loss": 0.946, "learning_rate": 1.9999167727021954e-05, "epoch": 0.10406403940886699, "percentage": 10.41, "elapsed_time": "0:32:47", "remaining_time": "4:42:14"} +{"current_steps": 170, "total_steps": 1624, "loss": 0.9476, "learning_rate": 1.9998867189676517e-05, "epoch": 0.10467980295566502, "percentage": 10.47, "elapsed_time": "0:32:58", "remaining_time": "4:42:04"} +{"current_steps": 171, "total_steps": 1624, "loss": 0.9276, "learning_rate": 1.9998520419557736e-05, "epoch": 0.10529556650246305, "percentage": 10.53, "elapsed_time": "0:33:10", "remaining_time": "4:41:50"} +{"current_steps": 172, "total_steps": 1624, "loss": 0.9155, "learning_rate": 1.9998127418269004e-05, "epoch": 0.10591133004926108, "percentage": 10.59, "elapsed_time": "0:33:21", "remaining_time": "4:41:39"} +{"current_steps": 173, "total_steps": 1624, "loss": 0.8802, "learning_rate": 1.999768818762748e-05, "epoch": 0.10652709359605911, "percentage": 10.65, "elapsed_time": "0:33:33", "remaining_time": "4:41:28"} +{"current_steps": 174, "total_steps": 1624, "loss": 0.9195, "learning_rate": 1.9997202729664085e-05, "epoch": 0.10714285714285714, "percentage": 10.71, "elapsed_time": "0:33:45", "remaining_time": "4:41:15"} +{"current_steps": 175, "total_steps": 1624, "loss": 0.9636, "learning_rate": 1.999667104662347e-05, "epoch": 0.10775862068965517, "percentage": 10.78, "elapsed_time": "0:33:56", "remaining_time": "4:41:00"} +{"current_steps": 176, "total_steps": 1624, "loss": 0.8944, "learning_rate": 1.999609314096404e-05, "epoch": 0.10837438423645321, "percentage": 10.84, "elapsed_time": "0:34:07", "remaining_time": "4:40:47"} +{"current_steps": 177, "total_steps": 1624, "loss": 0.9175, "learning_rate": 1.9995469015357914e-05, "epoch": 0.10899014778325124, "percentage": 10.9, "elapsed_time": "0:34:18", "remaining_time": "4:40:31"} +{"current_steps": 178, "total_steps": 1624, "loss": 0.8957, "learning_rate": 1.9994798672690922e-05, "epoch": 0.10960591133004927, "percentage": 10.96, "elapsed_time": "0:34:30", "remaining_time": "4:40:20"} +{"current_steps": 179, "total_steps": 1624, "loss": 0.9004, "learning_rate": 1.9994082116062602e-05, "epoch": 0.1102216748768473, "percentage": 11.02, "elapsed_time": "0:34:42", "remaining_time": "4:40:09"} +{"current_steps": 180, "total_steps": 1624, "loss": 0.9362, "learning_rate": 1.9993319348786157e-05, "epoch": 0.11083743842364532, "percentage": 11.08, "elapsed_time": "0:34:53", "remaining_time": "4:39:58"} +{"current_steps": 181, "total_steps": 1624, "loss": 0.9279, "learning_rate": 1.9992510374388484e-05, "epoch": 0.11145320197044335, "percentage": 11.15, "elapsed_time": "0:35:05", "remaining_time": "4:39:47"} +{"current_steps": 182, "total_steps": 1624, "loss": 0.9286, "learning_rate": 1.999165519661011e-05, "epoch": 0.11206896551724138, "percentage": 11.21, "elapsed_time": "0:35:17", "remaining_time": "4:39:33"} +{"current_steps": 183, "total_steps": 1624, "loss": 0.8916, "learning_rate": 1.9990753819405212e-05, "epoch": 0.11268472906403941, "percentage": 11.27, "elapsed_time": "0:35:28", "remaining_time": "4:39:22"} +{"current_steps": 184, "total_steps": 1624, "loss": 0.9197, "learning_rate": 1.9989806246941583e-05, "epoch": 0.11330049261083744, "percentage": 11.33, "elapsed_time": "0:35:40", "remaining_time": "4:39:11"} +{"current_steps": 185, "total_steps": 1624, "loss": 0.9119, "learning_rate": 1.9988812483600597e-05, "epoch": 0.11391625615763547, "percentage": 11.39, "elapsed_time": "0:35:52", "remaining_time": "4:39:00"} +{"current_steps": 186, "total_steps": 1624, "loss": 0.8968, "learning_rate": 1.998777253397723e-05, "epoch": 0.1145320197044335, "percentage": 11.45, "elapsed_time": "0:36:03", "remaining_time": "4:38:49"} +{"current_steps": 187, "total_steps": 1624, "loss": 0.8868, "learning_rate": 1.998668640288e-05, "epoch": 0.11514778325123153, "percentage": 11.51, "elapsed_time": "0:36:15", "remaining_time": "4:38:37"} +{"current_steps": 188, "total_steps": 1624, "loss": 0.9162, "learning_rate": 1.9985554095330958e-05, "epoch": 0.11576354679802955, "percentage": 11.58, "elapsed_time": "0:36:27", "remaining_time": "4:38:26"} +{"current_steps": 189, "total_steps": 1624, "loss": 0.8906, "learning_rate": 1.9984375616565666e-05, "epoch": 0.11637931034482758, "percentage": 11.64, "elapsed_time": "0:36:38", "remaining_time": "4:38:15"} +{"current_steps": 190, "total_steps": 1624, "loss": 0.8908, "learning_rate": 1.9983150972033186e-05, "epoch": 0.11699507389162561, "percentage": 11.7, "elapsed_time": "0:36:50", "remaining_time": "4:38:03"} +{"current_steps": 191, "total_steps": 1624, "loss": 0.9494, "learning_rate": 1.9981880167396022e-05, "epoch": 0.11761083743842364, "percentage": 11.76, "elapsed_time": "0:37:02", "remaining_time": "4:37:50"} +{"current_steps": 192, "total_steps": 1624, "loss": 0.8865, "learning_rate": 1.998056320853012e-05, "epoch": 0.11822660098522167, "percentage": 11.82, "elapsed_time": "0:37:13", "remaining_time": "4:37:39"} +{"current_steps": 193, "total_steps": 1624, "loss": 0.8903, "learning_rate": 1.9979200101524844e-05, "epoch": 0.1188423645320197, "percentage": 11.88, "elapsed_time": "0:37:25", "remaining_time": "4:37:26"} +{"current_steps": 194, "total_steps": 1624, "loss": 0.9442, "learning_rate": 1.9977790852682924e-05, "epoch": 0.11945812807881774, "percentage": 11.95, "elapsed_time": "0:37:36", "remaining_time": "4:37:13"} +{"current_steps": 195, "total_steps": 1624, "loss": 0.9609, "learning_rate": 1.9976335468520452e-05, "epoch": 0.12007389162561577, "percentage": 12.01, "elapsed_time": "0:37:48", "remaining_time": "4:37:01"} +{"current_steps": 196, "total_steps": 1624, "loss": 0.9521, "learning_rate": 1.9974833955766832e-05, "epoch": 0.1206896551724138, "percentage": 12.07, "elapsed_time": "0:37:59", "remaining_time": "4:36:50"} +{"current_steps": 197, "total_steps": 1624, "loss": 0.947, "learning_rate": 1.9973286321364753e-05, "epoch": 0.12130541871921183, "percentage": 12.13, "elapsed_time": "0:38:11", "remaining_time": "4:36:39"} +{"current_steps": 198, "total_steps": 1624, "loss": 0.9816, "learning_rate": 1.997169257247018e-05, "epoch": 0.12192118226600986, "percentage": 12.19, "elapsed_time": "0:38:23", "remaining_time": "4:36:28"} +{"current_steps": 199, "total_steps": 1624, "loss": 0.8986, "learning_rate": 1.9970052716452284e-05, "epoch": 0.12253694581280788, "percentage": 12.25, "elapsed_time": "0:38:34", "remaining_time": "4:36:17"} +{"current_steps": 200, "total_steps": 1624, "loss": 0.9206, "learning_rate": 1.9968366760893437e-05, "epoch": 0.12315270935960591, "percentage": 12.32, "elapsed_time": "0:38:46", "remaining_time": "4:36:05"} +{"current_steps": 200, "total_steps": 1624, "eval_loss": 0.9238145351409912, "epoch": 0.12315270935960591, "percentage": 12.32, "elapsed_time": "0:47:30", "remaining_time": "5:38:13"} +{"current_steps": 201, "total_steps": 1624, "loss": 0.898, "learning_rate": 1.996663471358916e-05, "epoch": 0.12376847290640394, "percentage": 12.38, "elapsed_time": "0:47:41", "remaining_time": "5:37:41"} +{"current_steps": 202, "total_steps": 1624, "loss": 0.9178, "learning_rate": 1.9964856582548094e-05, "epoch": 0.12438423645320197, "percentage": 12.44, "elapsed_time": "0:47:53", "remaining_time": "5:37:08"} +{"current_steps": 203, "total_steps": 1624, "loss": 0.8903, "learning_rate": 1.9963032375991965e-05, "epoch": 0.125, "percentage": 12.5, "elapsed_time": "0:48:05", "remaining_time": "5:36:37"} +{"current_steps": 204, "total_steps": 1624, "loss": 0.8789, "learning_rate": 1.9961162102355543e-05, "epoch": 0.12561576354679804, "percentage": 12.56, "elapsed_time": "0:48:16", "remaining_time": "5:36:05"} +{"current_steps": 205, "total_steps": 1624, "loss": 0.8971, "learning_rate": 1.9959245770286602e-05, "epoch": 0.12623152709359606, "percentage": 12.62, "elapsed_time": "0:48:28", "remaining_time": "5:35:32"} +{"current_steps": 206, "total_steps": 1624, "loss": 0.8547, "learning_rate": 1.9957283388645875e-05, "epoch": 0.1268472906403941, "percentage": 12.68, "elapsed_time": "0:48:40", "remaining_time": "5:35:00"} +{"current_steps": 207, "total_steps": 1624, "loss": 0.9061, "learning_rate": 1.9955274966507027e-05, "epoch": 0.12746305418719212, "percentage": 12.75, "elapsed_time": "0:48:51", "remaining_time": "5:34:28"} +{"current_steps": 208, "total_steps": 1624, "loss": 0.8874, "learning_rate": 1.9953220513156604e-05, "epoch": 0.12807881773399016, "percentage": 12.81, "elapsed_time": "0:49:03", "remaining_time": "5:33:56"} +{"current_steps": 209, "total_steps": 1624, "loss": 0.97, "learning_rate": 1.995112003809399e-05, "epoch": 0.12869458128078817, "percentage": 12.87, "elapsed_time": "0:49:14", "remaining_time": "5:33:25"} +{"current_steps": 210, "total_steps": 1624, "loss": 0.9274, "learning_rate": 1.994897355103136e-05, "epoch": 0.12931034482758622, "percentage": 12.93, "elapsed_time": "0:49:26", "remaining_time": "5:32:53"} +{"current_steps": 211, "total_steps": 1624, "loss": 0.9238, "learning_rate": 1.9946781061893648e-05, "epoch": 0.12992610837438423, "percentage": 12.99, "elapsed_time": "0:49:38", "remaining_time": "5:32:22"} +{"current_steps": 212, "total_steps": 1624, "loss": 0.9107, "learning_rate": 1.9944542580818485e-05, "epoch": 0.13054187192118227, "percentage": 13.05, "elapsed_time": "0:49:49", "remaining_time": "5:31:52"} +{"current_steps": 213, "total_steps": 1624, "loss": 0.8782, "learning_rate": 1.9942258118156165e-05, "epoch": 0.1311576354679803, "percentage": 13.12, "elapsed_time": "0:50:01", "remaining_time": "5:31:22"} +{"current_steps": 214, "total_steps": 1624, "loss": 0.9398, "learning_rate": 1.9939927684469584e-05, "epoch": 0.13177339901477833, "percentage": 13.18, "elapsed_time": "0:50:13", "remaining_time": "5:30:52"} +{"current_steps": 215, "total_steps": 1624, "loss": 0.9165, "learning_rate": 1.9937551290534208e-05, "epoch": 0.13238916256157635, "percentage": 13.24, "elapsed_time": "0:50:24", "remaining_time": "5:30:22"} +{"current_steps": 216, "total_steps": 1624, "loss": 0.961, "learning_rate": 1.993512894733801e-05, "epoch": 0.1330049261083744, "percentage": 13.3, "elapsed_time": "0:50:36", "remaining_time": "5:29:53"} +{"current_steps": 217, "total_steps": 1624, "loss": 0.9108, "learning_rate": 1.993266066608142e-05, "epoch": 0.1336206896551724, "percentage": 13.36, "elapsed_time": "0:50:48", "remaining_time": "5:29:23"} +{"current_steps": 218, "total_steps": 1624, "loss": 0.8972, "learning_rate": 1.9930146458177282e-05, "epoch": 0.13423645320197045, "percentage": 13.42, "elapsed_time": "0:50:59", "remaining_time": "5:28:54"} +{"current_steps": 219, "total_steps": 1624, "loss": 0.9325, "learning_rate": 1.9927586335250796e-05, "epoch": 0.13485221674876846, "percentage": 13.49, "elapsed_time": "0:51:11", "remaining_time": "5:28:25"} +{"current_steps": 220, "total_steps": 1624, "loss": 0.9378, "learning_rate": 1.9924980309139455e-05, "epoch": 0.1354679802955665, "percentage": 13.55, "elapsed_time": "0:51:22", "remaining_time": "5:27:53"} +{"current_steps": 221, "total_steps": 1624, "loss": 0.9712, "learning_rate": 1.9922328391893007e-05, "epoch": 0.13608374384236452, "percentage": 13.61, "elapsed_time": "0:51:34", "remaining_time": "5:27:25"} +{"current_steps": 222, "total_steps": 1624, "loss": 0.916, "learning_rate": 1.9919630595773397e-05, "epoch": 0.13669950738916256, "percentage": 13.67, "elapsed_time": "0:51:46", "remaining_time": "5:26:56"} +{"current_steps": 223, "total_steps": 1624, "loss": 0.8949, "learning_rate": 1.991688693325469e-05, "epoch": 0.1373152709359606, "percentage": 13.73, "elapsed_time": "0:51:57", "remaining_time": "5:26:27"} +{"current_steps": 224, "total_steps": 1624, "loss": 0.9634, "learning_rate": 1.9914097417023043e-05, "epoch": 0.13793103448275862, "percentage": 13.79, "elapsed_time": "0:52:09", "remaining_time": "5:25:59"} +{"current_steps": 225, "total_steps": 1624, "loss": 0.8878, "learning_rate": 1.9911262059976614e-05, "epoch": 0.13854679802955666, "percentage": 13.85, "elapsed_time": "0:52:21", "remaining_time": "5:25:30"} +{"current_steps": 226, "total_steps": 1624, "loss": 0.9097, "learning_rate": 1.9908380875225534e-05, "epoch": 0.13916256157635468, "percentage": 13.92, "elapsed_time": "0:52:32", "remaining_time": "5:25:01"} +{"current_steps": 227, "total_steps": 1624, "loss": 0.9234, "learning_rate": 1.9905453876091835e-05, "epoch": 0.13977832512315272, "percentage": 13.98, "elapsed_time": "0:52:44", "remaining_time": "5:24:33"} +{"current_steps": 228, "total_steps": 1624, "loss": 0.9224, "learning_rate": 1.9902481076109372e-05, "epoch": 0.14039408866995073, "percentage": 14.04, "elapsed_time": "0:52:55", "remaining_time": "5:24:03"} +{"current_steps": 229, "total_steps": 1624, "loss": 0.9598, "learning_rate": 1.9899462489023783e-05, "epoch": 0.14100985221674878, "percentage": 14.1, "elapsed_time": "0:53:07", "remaining_time": "5:23:35"} +{"current_steps": 230, "total_steps": 1624, "loss": 0.9105, "learning_rate": 1.9896398128792413e-05, "epoch": 0.1416256157635468, "percentage": 14.16, "elapsed_time": "0:53:18", "remaining_time": "5:23:06"} +{"current_steps": 231, "total_steps": 1624, "loss": 0.9319, "learning_rate": 1.9893288009584258e-05, "epoch": 0.14224137931034483, "percentage": 14.22, "elapsed_time": "0:53:30", "remaining_time": "5:22:38"} +{"current_steps": 232, "total_steps": 1624, "loss": 0.8645, "learning_rate": 1.9890132145779885e-05, "epoch": 0.14285714285714285, "percentage": 14.29, "elapsed_time": "0:53:41", "remaining_time": "5:22:11"} +{"current_steps": 233, "total_steps": 1624, "loss": 0.9667, "learning_rate": 1.9886930551971385e-05, "epoch": 0.1434729064039409, "percentage": 14.35, "elapsed_time": "0:53:53", "remaining_time": "5:21:43"} +{"current_steps": 234, "total_steps": 1624, "loss": 0.9563, "learning_rate": 1.988368324296229e-05, "epoch": 0.1440886699507389, "percentage": 14.41, "elapsed_time": "0:54:05", "remaining_time": "5:21:16"} +{"current_steps": 235, "total_steps": 1624, "loss": 0.9612, "learning_rate": 1.988039023376751e-05, "epoch": 0.14470443349753695, "percentage": 14.47, "elapsed_time": "0:54:16", "remaining_time": "5:20:46"} +{"current_steps": 236, "total_steps": 1624, "loss": 0.9468, "learning_rate": 1.9877051539613265e-05, "epoch": 0.14532019704433496, "percentage": 14.53, "elapsed_time": "0:54:27", "remaining_time": "5:20:19"} +{"current_steps": 237, "total_steps": 1624, "loss": 0.9307, "learning_rate": 1.9873667175937016e-05, "epoch": 0.145935960591133, "percentage": 14.59, "elapsed_time": "0:54:39", "remaining_time": "5:19:52"} +{"current_steps": 238, "total_steps": 1624, "loss": 0.8995, "learning_rate": 1.9870237158387385e-05, "epoch": 0.14655172413793102, "percentage": 14.66, "elapsed_time": "0:54:51", "remaining_time": "5:19:26"} +{"current_steps": 239, "total_steps": 1624, "loss": 0.8784, "learning_rate": 1.9866761502824088e-05, "epoch": 0.14716748768472906, "percentage": 14.72, "elapsed_time": "0:55:02", "remaining_time": "5:18:59"} +{"current_steps": 240, "total_steps": 1624, "loss": 0.9312, "learning_rate": 1.9863240225317868e-05, "epoch": 0.1477832512315271, "percentage": 14.78, "elapsed_time": "0:55:14", "remaining_time": "5:18:32"} +{"current_steps": 241, "total_steps": 1624, "loss": 0.9232, "learning_rate": 1.9859673342150413e-05, "epoch": 0.14839901477832512, "percentage": 14.84, "elapsed_time": "0:55:25", "remaining_time": "5:18:06"} +{"current_steps": 242, "total_steps": 1624, "loss": 0.9733, "learning_rate": 1.985606086981428e-05, "epoch": 0.14901477832512317, "percentage": 14.9, "elapsed_time": "0:55:37", "remaining_time": "5:17:39"} +{"current_steps": 243, "total_steps": 1624, "loss": 0.8951, "learning_rate": 1.9852402825012823e-05, "epoch": 0.14963054187192118, "percentage": 14.96, "elapsed_time": "0:55:49", "remaining_time": "5:17:13"} +{"current_steps": 244, "total_steps": 1624, "loss": 0.9506, "learning_rate": 1.984869922466011e-05, "epoch": 0.15024630541871922, "percentage": 15.02, "elapsed_time": "0:56:00", "remaining_time": "5:16:47"} +{"current_steps": 245, "total_steps": 1624, "loss": 0.9271, "learning_rate": 1.984495008588086e-05, "epoch": 0.15086206896551724, "percentage": 15.09, "elapsed_time": "0:56:12", "remaining_time": "5:16:21"} +{"current_steps": 246, "total_steps": 1624, "loss": 0.9018, "learning_rate": 1.984115542601034e-05, "epoch": 0.15147783251231528, "percentage": 15.15, "elapsed_time": "0:56:24", "remaining_time": "5:15:56"} +{"current_steps": 247, "total_steps": 1624, "loss": 0.9174, "learning_rate": 1.9837315262594307e-05, "epoch": 0.1520935960591133, "percentage": 15.21, "elapsed_time": "0:56:35", "remaining_time": "5:15:31"} +{"current_steps": 248, "total_steps": 1624, "loss": 0.9074, "learning_rate": 1.9833429613388905e-05, "epoch": 0.15270935960591134, "percentage": 15.27, "elapsed_time": "0:56:47", "remaining_time": "5:15:06"} +{"current_steps": 249, "total_steps": 1624, "loss": 0.9517, "learning_rate": 1.9829498496360607e-05, "epoch": 0.15332512315270935, "percentage": 15.33, "elapsed_time": "0:56:59", "remaining_time": "5:14:41"} +{"current_steps": 250, "total_steps": 1624, "loss": 0.9525, "learning_rate": 1.982552192968612e-05, "epoch": 0.1539408866995074, "percentage": 15.39, "elapsed_time": "0:57:10", "remaining_time": "5:14:15"} +{"current_steps": 251, "total_steps": 1624, "loss": 0.8825, "learning_rate": 1.9821499931752292e-05, "epoch": 0.1545566502463054, "percentage": 15.46, "elapsed_time": "0:57:22", "remaining_time": "5:13:50"} +{"current_steps": 252, "total_steps": 1624, "loss": 0.9389, "learning_rate": 1.9817432521156047e-05, "epoch": 0.15517241379310345, "percentage": 15.52, "elapsed_time": "0:57:33", "remaining_time": "5:13:22"} +{"current_steps": 253, "total_steps": 1624, "loss": 0.9004, "learning_rate": 1.9813319716704278e-05, "epoch": 0.15578817733990147, "percentage": 15.58, "elapsed_time": "0:57:45", "remaining_time": "5:12:57"} +{"current_steps": 254, "total_steps": 1624, "loss": 0.9323, "learning_rate": 1.9809161537413775e-05, "epoch": 0.1564039408866995, "percentage": 15.64, "elapsed_time": "0:57:56", "remaining_time": "5:12:32"} +{"current_steps": 255, "total_steps": 1624, "loss": 0.8722, "learning_rate": 1.9804958002511137e-05, "epoch": 0.15701970443349753, "percentage": 15.7, "elapsed_time": "0:58:08", "remaining_time": "5:12:07"} +{"current_steps": 256, "total_steps": 1624, "loss": 0.9731, "learning_rate": 1.9800709131432665e-05, "epoch": 0.15763546798029557, "percentage": 15.76, "elapsed_time": "0:58:19", "remaining_time": "5:11:42"} +{"current_steps": 257, "total_steps": 1624, "loss": 0.9175, "learning_rate": 1.9796414943824304e-05, "epoch": 0.15825123152709358, "percentage": 15.83, "elapsed_time": "0:58:31", "remaining_time": "5:11:17"} +{"current_steps": 258, "total_steps": 1624, "loss": 0.9774, "learning_rate": 1.9792075459541518e-05, "epoch": 0.15886699507389163, "percentage": 15.89, "elapsed_time": "0:58:43", "remaining_time": "5:10:53"} +{"current_steps": 259, "total_steps": 1624, "loss": 0.9063, "learning_rate": 1.9787690698649217e-05, "epoch": 0.15948275862068967, "percentage": 15.95, "elapsed_time": "0:58:54", "remaining_time": "5:10:28"} +{"current_steps": 260, "total_steps": 1624, "loss": 0.9499, "learning_rate": 1.9783260681421667e-05, "epoch": 0.16009852216748768, "percentage": 16.01, "elapsed_time": "0:59:06", "remaining_time": "5:10:04"} +{"current_steps": 261, "total_steps": 1624, "loss": 0.9439, "learning_rate": 1.9778785428342386e-05, "epoch": 0.16071428571428573, "percentage": 16.07, "elapsed_time": "0:59:18", "remaining_time": "5:09:40"} +{"current_steps": 262, "total_steps": 1624, "loss": 0.912, "learning_rate": 1.9774264960104056e-05, "epoch": 0.16133004926108374, "percentage": 16.13, "elapsed_time": "0:59:29", "remaining_time": "5:09:16"} +{"current_steps": 263, "total_steps": 1624, "loss": 0.9536, "learning_rate": 1.9769699297608416e-05, "epoch": 0.16194581280788178, "percentage": 16.19, "elapsed_time": "0:59:41", "remaining_time": "5:08:52"} +{"current_steps": 264, "total_steps": 1624, "loss": 0.9161, "learning_rate": 1.976508846196619e-05, "epoch": 0.1625615763546798, "percentage": 16.26, "elapsed_time": "0:59:52", "remaining_time": "5:08:29"} +{"current_steps": 265, "total_steps": 1624, "loss": 0.8949, "learning_rate": 1.9760432474496963e-05, "epoch": 0.16317733990147784, "percentage": 16.32, "elapsed_time": "1:00:04", "remaining_time": "5:08:05"} +{"current_steps": 266, "total_steps": 1624, "loss": 0.9499, "learning_rate": 1.9755731356729094e-05, "epoch": 0.16379310344827586, "percentage": 16.38, "elapsed_time": "1:00:16", "remaining_time": "5:07:42"} +{"current_steps": 267, "total_steps": 1624, "loss": 0.9131, "learning_rate": 1.975098513039961e-05, "epoch": 0.1644088669950739, "percentage": 16.44, "elapsed_time": "1:00:28", "remaining_time": "5:07:19"} +{"current_steps": 268, "total_steps": 1624, "loss": 0.9412, "learning_rate": 1.9746193817454128e-05, "epoch": 0.16502463054187191, "percentage": 16.5, "elapsed_time": "1:00:39", "remaining_time": "5:06:55"} +{"current_steps": 269, "total_steps": 1624, "loss": 0.9435, "learning_rate": 1.974135744004672e-05, "epoch": 0.16564039408866996, "percentage": 16.56, "elapsed_time": "1:00:51", "remaining_time": "5:06:32"} +{"current_steps": 270, "total_steps": 1624, "loss": 0.9556, "learning_rate": 1.973647602053984e-05, "epoch": 0.16625615763546797, "percentage": 16.63, "elapsed_time": "1:01:03", "remaining_time": "5:06:09"} +{"current_steps": 271, "total_steps": 1624, "loss": 0.9096, "learning_rate": 1.973154958150419e-05, "epoch": 0.16687192118226601, "percentage": 16.69, "elapsed_time": "1:01:14", "remaining_time": "5:05:46"} +{"current_steps": 272, "total_steps": 1624, "loss": 0.96, "learning_rate": 1.9726578145718654e-05, "epoch": 0.16748768472906403, "percentage": 16.75, "elapsed_time": "1:01:26", "remaining_time": "5:05:23"} +{"current_steps": 273, "total_steps": 1624, "loss": 0.9149, "learning_rate": 1.972156173617016e-05, "epoch": 0.16810344827586207, "percentage": 16.81, "elapsed_time": "1:01:38", "remaining_time": "5:05:00"} +{"current_steps": 274, "total_steps": 1624, "loss": 0.9513, "learning_rate": 1.9716500376053586e-05, "epoch": 0.1687192118226601, "percentage": 16.87, "elapsed_time": "1:01:49", "remaining_time": "5:04:37"} +{"current_steps": 275, "total_steps": 1624, "loss": 0.9454, "learning_rate": 1.9711394088771658e-05, "epoch": 0.16933497536945813, "percentage": 16.93, "elapsed_time": "1:02:01", "remaining_time": "5:04:15"} +{"current_steps": 276, "total_steps": 1624, "loss": 0.9286, "learning_rate": 1.9706242897934826e-05, "epoch": 0.16995073891625614, "percentage": 17.0, "elapsed_time": "1:02:13", "remaining_time": "5:03:52"} +{"current_steps": 277, "total_steps": 1624, "loss": 0.9573, "learning_rate": 1.9701046827361175e-05, "epoch": 0.1705665024630542, "percentage": 17.06, "elapsed_time": "1:02:24", "remaining_time": "5:03:30"} +{"current_steps": 278, "total_steps": 1624, "loss": 0.9396, "learning_rate": 1.9695805901076308e-05, "epoch": 0.17118226600985223, "percentage": 17.12, "elapsed_time": "1:02:36", "remaining_time": "5:03:06"} +{"current_steps": 279, "total_steps": 1624, "loss": 0.9913, "learning_rate": 1.969052014331322e-05, "epoch": 0.17179802955665024, "percentage": 17.18, "elapsed_time": "1:02:47", "remaining_time": "5:02:44"} +{"current_steps": 280, "total_steps": 1624, "loss": 0.8888, "learning_rate": 1.9685189578512206e-05, "epoch": 0.1724137931034483, "percentage": 17.24, "elapsed_time": "1:02:59", "remaining_time": "5:02:22"} +{"current_steps": 281, "total_steps": 1624, "loss": 0.9284, "learning_rate": 1.9679814231320736e-05, "epoch": 0.1730295566502463, "percentage": 17.3, "elapsed_time": "1:03:11", "remaining_time": "5:02:00"} +{"current_steps": 282, "total_steps": 1624, "loss": 0.9136, "learning_rate": 1.9674394126593346e-05, "epoch": 0.17364532019704434, "percentage": 17.36, "elapsed_time": "1:03:23", "remaining_time": "5:01:38"} +{"current_steps": 283, "total_steps": 1624, "loss": 0.9674, "learning_rate": 1.9668929289391524e-05, "epoch": 0.17426108374384236, "percentage": 17.43, "elapsed_time": "1:03:34", "remaining_time": "5:01:15"} +{"current_steps": 284, "total_steps": 1624, "loss": 0.9228, "learning_rate": 1.966341974498359e-05, "epoch": 0.1748768472906404, "percentage": 17.49, "elapsed_time": "1:03:46", "remaining_time": "5:00:52"} +{"current_steps": 285, "total_steps": 1624, "loss": 0.9479, "learning_rate": 1.9657865518844578e-05, "epoch": 0.17549261083743842, "percentage": 17.55, "elapsed_time": "1:03:57", "remaining_time": "5:00:30"} +{"current_steps": 286, "total_steps": 1624, "loss": 0.9237, "learning_rate": 1.965226663665613e-05, "epoch": 0.17610837438423646, "percentage": 17.61, "elapsed_time": "1:04:09", "remaining_time": "5:00:08"} +{"current_steps": 287, "total_steps": 1624, "loss": 0.9581, "learning_rate": 1.9646623124306363e-05, "epoch": 0.17672413793103448, "percentage": 17.67, "elapsed_time": "1:04:20", "remaining_time": "4:59:45"} +{"current_steps": 288, "total_steps": 1624, "loss": 0.9371, "learning_rate": 1.9640935007889755e-05, "epoch": 0.17733990147783252, "percentage": 17.73, "elapsed_time": "1:04:32", "remaining_time": "4:59:23"} +{"current_steps": 289, "total_steps": 1624, "loss": 0.8789, "learning_rate": 1.9635202313707028e-05, "epoch": 0.17795566502463053, "percentage": 17.8, "elapsed_time": "1:04:44", "remaining_time": "4:59:01"} +{"current_steps": 290, "total_steps": 1624, "loss": 0.919, "learning_rate": 1.962942506826501e-05, "epoch": 0.17857142857142858, "percentage": 17.86, "elapsed_time": "1:04:55", "remaining_time": "4:58:40"} +{"current_steps": 291, "total_steps": 1624, "loss": 0.9342, "learning_rate": 1.9623603298276545e-05, "epoch": 0.1791871921182266, "percentage": 17.92, "elapsed_time": "1:05:07", "remaining_time": "4:58:18"} +{"current_steps": 292, "total_steps": 1624, "loss": 0.9177, "learning_rate": 1.9617737030660338e-05, "epoch": 0.17980295566502463, "percentage": 17.98, "elapsed_time": "1:05:19", "remaining_time": "4:57:57"} +{"current_steps": 293, "total_steps": 1624, "loss": 0.9093, "learning_rate": 1.961182629254084e-05, "epoch": 0.18041871921182265, "percentage": 18.04, "elapsed_time": "1:05:30", "remaining_time": "4:57:36"} +{"current_steps": 294, "total_steps": 1624, "loss": 0.9792, "learning_rate": 1.960587111124813e-05, "epoch": 0.1810344827586207, "percentage": 18.1, "elapsed_time": "1:05:42", "remaining_time": "4:57:14"} +{"current_steps": 295, "total_steps": 1624, "loss": 0.8945, "learning_rate": 1.9599871514317785e-05, "epoch": 0.1816502463054187, "percentage": 18.17, "elapsed_time": "1:05:54", "remaining_time": "4:56:53"} +{"current_steps": 296, "total_steps": 1624, "loss": 0.9692, "learning_rate": 1.9593827529490744e-05, "epoch": 0.18226600985221675, "percentage": 18.23, "elapsed_time": "1:06:05", "remaining_time": "4:56:32"} +{"current_steps": 297, "total_steps": 1624, "loss": 0.9245, "learning_rate": 1.9587739184713192e-05, "epoch": 0.1828817733990148, "percentage": 18.29, "elapsed_time": "1:06:17", "remaining_time": "4:56:10"} +{"current_steps": 298, "total_steps": 1624, "loss": 0.9227, "learning_rate": 1.9581606508136426e-05, "epoch": 0.1834975369458128, "percentage": 18.35, "elapsed_time": "1:06:28", "remaining_time": "4:55:49"} +{"current_steps": 299, "total_steps": 1624, "loss": 0.9356, "learning_rate": 1.957542952811672e-05, "epoch": 0.18411330049261085, "percentage": 18.41, "elapsed_time": "1:06:40", "remaining_time": "4:55:28"} +{"current_steps": 300, "total_steps": 1624, "loss": 0.9471, "learning_rate": 1.9569208273215204e-05, "epoch": 0.18472906403940886, "percentage": 18.47, "elapsed_time": "1:06:52", "remaining_time": "4:55:07"} +{"current_steps": 301, "total_steps": 1624, "loss": 0.8914, "learning_rate": 1.9562942772197726e-05, "epoch": 0.1853448275862069, "percentage": 18.53, "elapsed_time": "1:07:04", "remaining_time": "4:54:47"} +{"current_steps": 302, "total_steps": 1624, "loss": 0.9204, "learning_rate": 1.9556633054034707e-05, "epoch": 0.18596059113300492, "percentage": 18.6, "elapsed_time": "1:07:15", "remaining_time": "4:54:25"} +{"current_steps": 303, "total_steps": 1624, "loss": 0.9682, "learning_rate": 1.9550279147901037e-05, "epoch": 0.18657635467980296, "percentage": 18.66, "elapsed_time": "1:07:26", "remaining_time": "4:54:03"} +{"current_steps": 304, "total_steps": 1624, "loss": 0.9374, "learning_rate": 1.9543881083175914e-05, "epoch": 0.18719211822660098, "percentage": 18.72, "elapsed_time": "1:07:38", "remaining_time": "4:53:42"} +{"current_steps": 305, "total_steps": 1624, "loss": 0.8969, "learning_rate": 1.953743888944271e-05, "epoch": 0.18780788177339902, "percentage": 18.78, "elapsed_time": "1:07:49", "remaining_time": "4:53:21"} +{"current_steps": 306, "total_steps": 1624, "loss": 0.9164, "learning_rate": 1.9530952596488857e-05, "epoch": 0.18842364532019704, "percentage": 18.84, "elapsed_time": "1:08:01", "remaining_time": "4:52:59"} +{"current_steps": 307, "total_steps": 1624, "loss": 0.9479, "learning_rate": 1.9524422234305677e-05, "epoch": 0.18903940886699508, "percentage": 18.9, "elapsed_time": "1:08:13", "remaining_time": "4:52:39"} +{"current_steps": 308, "total_steps": 1624, "loss": 0.9316, "learning_rate": 1.951784783308827e-05, "epoch": 0.1896551724137931, "percentage": 18.97, "elapsed_time": "1:08:24", "remaining_time": "4:52:18"} +{"current_steps": 309, "total_steps": 1624, "loss": 0.9249, "learning_rate": 1.9511229423235357e-05, "epoch": 0.19027093596059114, "percentage": 19.03, "elapsed_time": "1:08:36", "remaining_time": "4:51:58"} +{"current_steps": 310, "total_steps": 1624, "loss": 0.9088, "learning_rate": 1.950456703534915e-05, "epoch": 0.19088669950738915, "percentage": 19.09, "elapsed_time": "1:08:48", "remaining_time": "4:51:37"} +{"current_steps": 311, "total_steps": 1624, "loss": 0.9009, "learning_rate": 1.9497860700235208e-05, "epoch": 0.1915024630541872, "percentage": 19.15, "elapsed_time": "1:08:59", "remaining_time": "4:51:17"} +{"current_steps": 312, "total_steps": 1624, "loss": 0.8736, "learning_rate": 1.9491110448902286e-05, "epoch": 0.1921182266009852, "percentage": 19.21, "elapsed_time": "1:09:11", "remaining_time": "4:50:56"} +{"current_steps": 313, "total_steps": 1624, "loss": 0.9398, "learning_rate": 1.9484316312562204e-05, "epoch": 0.19273399014778325, "percentage": 19.27, "elapsed_time": "1:09:22", "remaining_time": "4:50:36"} +{"current_steps": 314, "total_steps": 1624, "loss": 0.9214, "learning_rate": 1.9477478322629704e-05, "epoch": 0.1933497536945813, "percentage": 19.33, "elapsed_time": "1:09:34", "remaining_time": "4:50:15"} +{"current_steps": 315, "total_steps": 1624, "loss": 0.9892, "learning_rate": 1.9470596510722285e-05, "epoch": 0.1939655172413793, "percentage": 19.4, "elapsed_time": "1:09:46", "remaining_time": "4:49:55"} +{"current_steps": 316, "total_steps": 1624, "loss": 0.923, "learning_rate": 1.946367090866008e-05, "epoch": 0.19458128078817735, "percentage": 19.46, "elapsed_time": "1:09:57", "remaining_time": "4:49:35"} +{"current_steps": 317, "total_steps": 1624, "loss": 0.9619, "learning_rate": 1.945670154846569e-05, "epoch": 0.19519704433497537, "percentage": 19.52, "elapsed_time": "1:10:09", "remaining_time": "4:49:15"} +{"current_steps": 318, "total_steps": 1624, "loss": 0.9252, "learning_rate": 1.944968846236406e-05, "epoch": 0.1958128078817734, "percentage": 19.58, "elapsed_time": "1:10:21", "remaining_time": "4:48:56"} +{"current_steps": 319, "total_steps": 1624, "loss": 0.9373, "learning_rate": 1.9442631682782295e-05, "epoch": 0.19642857142857142, "percentage": 19.64, "elapsed_time": "1:10:32", "remaining_time": "4:48:35"} +{"current_steps": 320, "total_steps": 1624, "loss": 0.9409, "learning_rate": 1.9435531242349545e-05, "epoch": 0.19704433497536947, "percentage": 19.7, "elapsed_time": "1:10:44", "remaining_time": "4:48:15"} +{"current_steps": 321, "total_steps": 1624, "loss": 0.9056, "learning_rate": 1.942838717389684e-05, "epoch": 0.19766009852216748, "percentage": 19.77, "elapsed_time": "1:10:56", "remaining_time": "4:47:56"} +{"current_steps": 322, "total_steps": 1624, "loss": 0.9413, "learning_rate": 1.942119951045692e-05, "epoch": 0.19827586206896552, "percentage": 19.83, "elapsed_time": "1:11:07", "remaining_time": "4:47:36"} +{"current_steps": 323, "total_steps": 1624, "loss": 0.909, "learning_rate": 1.9413968285264122e-05, "epoch": 0.19889162561576354, "percentage": 19.89, "elapsed_time": "1:11:19", "remaining_time": "4:47:16"} +{"current_steps": 324, "total_steps": 1624, "loss": 0.9248, "learning_rate": 1.9406693531754192e-05, "epoch": 0.19950738916256158, "percentage": 19.95, "elapsed_time": "1:11:30", "remaining_time": "4:46:56"} +{"current_steps": 325, "total_steps": 1624, "loss": 0.9464, "learning_rate": 1.9399375283564134e-05, "epoch": 0.2001231527093596, "percentage": 20.01, "elapsed_time": "1:11:42", "remaining_time": "4:46:35"} +{"current_steps": 326, "total_steps": 1624, "loss": 0.9011, "learning_rate": 1.9392013574532083e-05, "epoch": 0.20073891625615764, "percentage": 20.07, "elapsed_time": "1:11:53", "remaining_time": "4:46:15"} +{"current_steps": 327, "total_steps": 1624, "loss": 0.9463, "learning_rate": 1.938460843869711e-05, "epoch": 0.20135467980295566, "percentage": 20.14, "elapsed_time": "1:12:05", "remaining_time": "4:45:55"} +{"current_steps": 328, "total_steps": 1624, "loss": 0.9009, "learning_rate": 1.9377159910299094e-05, "epoch": 0.2019704433497537, "percentage": 20.2, "elapsed_time": "1:12:16", "remaining_time": "4:45:36"} +{"current_steps": 329, "total_steps": 1624, "loss": 0.8944, "learning_rate": 1.936966802377855e-05, "epoch": 0.2025862068965517, "percentage": 20.26, "elapsed_time": "1:12:28", "remaining_time": "4:45:16"} +{"current_steps": 330, "total_steps": 1624, "loss": 0.9446, "learning_rate": 1.9362132813776472e-05, "epoch": 0.20320197044334976, "percentage": 20.32, "elapsed_time": "1:12:40", "remaining_time": "4:44:57"} +{"current_steps": 331, "total_steps": 1624, "loss": 0.87, "learning_rate": 1.9354554315134166e-05, "epoch": 0.20381773399014777, "percentage": 20.38, "elapsed_time": "1:12:51", "remaining_time": "4:44:38"} +{"current_steps": 332, "total_steps": 1624, "loss": 0.8935, "learning_rate": 1.934693256289311e-05, "epoch": 0.2044334975369458, "percentage": 20.44, "elapsed_time": "1:13:03", "remaining_time": "4:44:18"} +{"current_steps": 333, "total_steps": 1624, "loss": 0.9022, "learning_rate": 1.9339267592294764e-05, "epoch": 0.20504926108374386, "percentage": 20.5, "elapsed_time": "1:13:15", "remaining_time": "4:43:59"} +{"current_steps": 334, "total_steps": 1624, "loss": 0.9036, "learning_rate": 1.9331559438780432e-05, "epoch": 0.20566502463054187, "percentage": 20.57, "elapsed_time": "1:13:26", "remaining_time": "4:43:40"} +{"current_steps": 335, "total_steps": 1624, "loss": 0.9322, "learning_rate": 1.9323808137991084e-05, "epoch": 0.2062807881773399, "percentage": 20.63, "elapsed_time": "1:13:38", "remaining_time": "4:43:21"} +{"current_steps": 336, "total_steps": 1624, "loss": 0.8618, "learning_rate": 1.9316013725767192e-05, "epoch": 0.20689655172413793, "percentage": 20.69, "elapsed_time": "1:13:50", "remaining_time": "4:43:02"} +{"current_steps": 337, "total_steps": 1624, "loss": 0.927, "learning_rate": 1.9308176238148565e-05, "epoch": 0.20751231527093597, "percentage": 20.75, "elapsed_time": "1:14:01", "remaining_time": "4:42:43"} +{"current_steps": 338, "total_steps": 1624, "loss": 0.9205, "learning_rate": 1.930029571137419e-05, "epoch": 0.20812807881773399, "percentage": 20.81, "elapsed_time": "1:14:13", "remaining_time": "4:42:24"} +{"current_steps": 339, "total_steps": 1624, "loss": 0.9071, "learning_rate": 1.9292372181882052e-05, "epoch": 0.20874384236453203, "percentage": 20.87, "elapsed_time": "1:14:25", "remaining_time": "4:42:05"} +{"current_steps": 340, "total_steps": 1624, "loss": 0.9236, "learning_rate": 1.9284405686308982e-05, "epoch": 0.20935960591133004, "percentage": 20.94, "elapsed_time": "1:14:36", "remaining_time": "4:41:46"} +{"current_steps": 341, "total_steps": 1624, "loss": 0.9078, "learning_rate": 1.9276396261490468e-05, "epoch": 0.20997536945812809, "percentage": 21.0, "elapsed_time": "1:14:48", "remaining_time": "4:41:26"} +{"current_steps": 342, "total_steps": 1624, "loss": 0.9274, "learning_rate": 1.9268343944460494e-05, "epoch": 0.2105911330049261, "percentage": 21.06, "elapsed_time": "1:14:59", "remaining_time": "4:41:06"} +{"current_steps": 343, "total_steps": 1624, "loss": 0.9724, "learning_rate": 1.9260248772451378e-05, "epoch": 0.21120689655172414, "percentage": 21.12, "elapsed_time": "1:15:11", "remaining_time": "4:40:47"} +{"current_steps": 344, "total_steps": 1624, "loss": 0.9021, "learning_rate": 1.9252110782893582e-05, "epoch": 0.21182266009852216, "percentage": 21.18, "elapsed_time": "1:15:22", "remaining_time": "4:40:29"} +{"current_steps": 345, "total_steps": 1624, "loss": 0.924, "learning_rate": 1.924393001341555e-05, "epoch": 0.2124384236453202, "percentage": 21.24, "elapsed_time": "1:15:34", "remaining_time": "4:40:10"} +{"current_steps": 346, "total_steps": 1624, "loss": 0.9589, "learning_rate": 1.923570650184354e-05, "epoch": 0.21305418719211822, "percentage": 21.31, "elapsed_time": "1:15:46", "remaining_time": "4:39:52"} +{"current_steps": 347, "total_steps": 1624, "loss": 0.8703, "learning_rate": 1.922744028620143e-05, "epoch": 0.21366995073891626, "percentage": 21.37, "elapsed_time": "1:15:57", "remaining_time": "4:39:33"} +{"current_steps": 348, "total_steps": 1624, "loss": 0.9003, "learning_rate": 1.9219131404710555e-05, "epoch": 0.21428571428571427, "percentage": 21.43, "elapsed_time": "1:16:09", "remaining_time": "4:39:14"} +{"current_steps": 349, "total_steps": 1624, "loss": 0.9327, "learning_rate": 1.921077989578953e-05, "epoch": 0.21490147783251232, "percentage": 21.49, "elapsed_time": "1:16:21", "remaining_time": "4:38:56"} +{"current_steps": 350, "total_steps": 1624, "loss": 0.9183, "learning_rate": 1.9202385798054073e-05, "epoch": 0.21551724137931033, "percentage": 21.55, "elapsed_time": "1:16:32", "remaining_time": "4:38:37"} +{"current_steps": 351, "total_steps": 1624, "loss": 0.8979, "learning_rate": 1.9193949150316825e-05, "epoch": 0.21613300492610837, "percentage": 21.61, "elapsed_time": "1:16:44", "remaining_time": "4:38:19"} +{"current_steps": 352, "total_steps": 1624, "loss": 0.9009, "learning_rate": 1.9185469991587166e-05, "epoch": 0.21674876847290642, "percentage": 21.67, "elapsed_time": "1:16:56", "remaining_time": "4:38:00"} +{"current_steps": 353, "total_steps": 1624, "loss": 0.9458, "learning_rate": 1.917694836107104e-05, "epoch": 0.21736453201970443, "percentage": 21.74, "elapsed_time": "1:17:07", "remaining_time": "4:37:42"} +{"current_steps": 354, "total_steps": 1624, "loss": 0.9498, "learning_rate": 1.916838429817077e-05, "epoch": 0.21798029556650247, "percentage": 21.8, "elapsed_time": "1:17:19", "remaining_time": "4:37:24"} +{"current_steps": 355, "total_steps": 1624, "loss": 0.9272, "learning_rate": 1.9159777842484878e-05, "epoch": 0.2185960591133005, "percentage": 21.86, "elapsed_time": "1:17:30", "remaining_time": "4:37:05"} +{"current_steps": 356, "total_steps": 1624, "loss": 0.901, "learning_rate": 1.915112903380791e-05, "epoch": 0.21921182266009853, "percentage": 21.92, "elapsed_time": "1:17:42", "remaining_time": "4:36:47"} +{"current_steps": 357, "total_steps": 1624, "loss": 0.9209, "learning_rate": 1.914243791213023e-05, "epoch": 0.21982758620689655, "percentage": 21.98, "elapsed_time": "1:17:53", "remaining_time": "4:36:27"} +{"current_steps": 358, "total_steps": 1624, "loss": 0.9557, "learning_rate": 1.913370451763786e-05, "epoch": 0.2204433497536946, "percentage": 22.04, "elapsed_time": "1:18:05", "remaining_time": "4:36:08"} +{"current_steps": 359, "total_steps": 1624, "loss": 0.9782, "learning_rate": 1.912492889071228e-05, "epoch": 0.2210591133004926, "percentage": 22.11, "elapsed_time": "1:18:16", "remaining_time": "4:35:50"} +{"current_steps": 360, "total_steps": 1624, "loss": 0.9208, "learning_rate": 1.911611107193024e-05, "epoch": 0.22167487684729065, "percentage": 22.17, "elapsed_time": "1:18:28", "remaining_time": "4:35:32"} +{"current_steps": 361, "total_steps": 1624, "loss": 0.9122, "learning_rate": 1.9107251102063582e-05, "epoch": 0.22229064039408866, "percentage": 22.23, "elapsed_time": "1:18:40", "remaining_time": "4:35:13"} +{"current_steps": 362, "total_steps": 1624, "loss": 0.954, "learning_rate": 1.909834902207905e-05, "epoch": 0.2229064039408867, "percentage": 22.29, "elapsed_time": "1:18:51", "remaining_time": "4:34:55"} +{"current_steps": 363, "total_steps": 1624, "loss": 0.9485, "learning_rate": 1.908940487313808e-05, "epoch": 0.22352216748768472, "percentage": 22.35, "elapsed_time": "1:19:03", "remaining_time": "4:34:37"} +{"current_steps": 364, "total_steps": 1624, "loss": 0.9053, "learning_rate": 1.908041869659665e-05, "epoch": 0.22413793103448276, "percentage": 22.41, "elapsed_time": "1:19:15", "remaining_time": "4:34:19"} +{"current_steps": 365, "total_steps": 1624, "loss": 0.8733, "learning_rate": 1.9071390534005045e-05, "epoch": 0.22475369458128078, "percentage": 22.48, "elapsed_time": "1:19:26", "remaining_time": "4:34:01"} +{"current_steps": 366, "total_steps": 1624, "loss": 0.9484, "learning_rate": 1.90623204271077e-05, "epoch": 0.22536945812807882, "percentage": 22.54, "elapsed_time": "1:19:38", "remaining_time": "4:33:44"} +{"current_steps": 367, "total_steps": 1624, "loss": 0.9453, "learning_rate": 1.905320841784298e-05, "epoch": 0.22598522167487683, "percentage": 22.6, "elapsed_time": "1:19:50", "remaining_time": "4:33:26"} +{"current_steps": 368, "total_steps": 1624, "loss": 0.9228, "learning_rate": 1.9044054548343005e-05, "epoch": 0.22660098522167488, "percentage": 22.66, "elapsed_time": "1:20:01", "remaining_time": "4:33:07"} +{"current_steps": 369, "total_steps": 1624, "loss": 0.9252, "learning_rate": 1.9034858860933444e-05, "epoch": 0.2272167487684729, "percentage": 22.72, "elapsed_time": "1:20:13", "remaining_time": "4:32:49"} +{"current_steps": 370, "total_steps": 1624, "loss": 0.9229, "learning_rate": 1.9025621398133333e-05, "epoch": 0.22783251231527094, "percentage": 22.78, "elapsed_time": "1:20:24", "remaining_time": "4:32:32"} +{"current_steps": 371, "total_steps": 1624, "loss": 0.9104, "learning_rate": 1.901634220265486e-05, "epoch": 0.22844827586206898, "percentage": 22.84, "elapsed_time": "1:20:36", "remaining_time": "4:32:14"} +{"current_steps": 372, "total_steps": 1624, "loss": 0.9104, "learning_rate": 1.900702131740318e-05, "epoch": 0.229064039408867, "percentage": 22.91, "elapsed_time": "1:20:48", "remaining_time": "4:31:56"} +{"current_steps": 373, "total_steps": 1624, "loss": 0.9293, "learning_rate": 1.8997658785476215e-05, "epoch": 0.22967980295566504, "percentage": 22.97, "elapsed_time": "1:20:59", "remaining_time": "4:31:38"} +{"current_steps": 374, "total_steps": 1624, "loss": 0.8788, "learning_rate": 1.898825465016444e-05, "epoch": 0.23029556650246305, "percentage": 23.03, "elapsed_time": "1:21:11", "remaining_time": "4:31:20"} +{"current_steps": 375, "total_steps": 1624, "loss": 0.9282, "learning_rate": 1.8978808954950722e-05, "epoch": 0.2309113300492611, "percentage": 23.09, "elapsed_time": "1:21:22", "remaining_time": "4:31:03"} +{"current_steps": 376, "total_steps": 1624, "loss": 0.9055, "learning_rate": 1.8969321743510067e-05, "epoch": 0.2315270935960591, "percentage": 23.15, "elapsed_time": "1:21:34", "remaining_time": "4:30:45"} +{"current_steps": 377, "total_steps": 1624, "loss": 0.933, "learning_rate": 1.895979305970946e-05, "epoch": 0.23214285714285715, "percentage": 23.21, "elapsed_time": "1:21:45", "remaining_time": "4:30:27"} +{"current_steps": 378, "total_steps": 1624, "loss": 0.9455, "learning_rate": 1.8950222947607627e-05, "epoch": 0.23275862068965517, "percentage": 23.28, "elapsed_time": "1:21:57", "remaining_time": "4:30:09"} +{"current_steps": 379, "total_steps": 1624, "loss": 0.9306, "learning_rate": 1.894061145145488e-05, "epoch": 0.2333743842364532, "percentage": 23.34, "elapsed_time": "1:22:09", "remaining_time": "4:29:52"} +{"current_steps": 380, "total_steps": 1624, "loss": 0.8855, "learning_rate": 1.8930958615692854e-05, "epoch": 0.23399014778325122, "percentage": 23.4, "elapsed_time": "1:22:20", "remaining_time": "4:29:35"} +{"current_steps": 381, "total_steps": 1624, "loss": 0.9159, "learning_rate": 1.8921264484954344e-05, "epoch": 0.23460591133004927, "percentage": 23.46, "elapsed_time": "1:22:32", "remaining_time": "4:29:17"} +{"current_steps": 382, "total_steps": 1624, "loss": 0.9729, "learning_rate": 1.8911529104063093e-05, "epoch": 0.23522167487684728, "percentage": 23.52, "elapsed_time": "1:22:44", "remaining_time": "4:29:00"} +{"current_steps": 383, "total_steps": 1624, "loss": 0.9278, "learning_rate": 1.890175251803355e-05, "epoch": 0.23583743842364532, "percentage": 23.58, "elapsed_time": "1:22:55", "remaining_time": "4:28:42"} +{"current_steps": 384, "total_steps": 1624, "loss": 0.9291, "learning_rate": 1.8891934772070715e-05, "epoch": 0.23645320197044334, "percentage": 23.65, "elapsed_time": "1:23:07", "remaining_time": "4:28:24"} +{"current_steps": 385, "total_steps": 1624, "loss": 0.9513, "learning_rate": 1.8882075911569887e-05, "epoch": 0.23706896551724138, "percentage": 23.71, "elapsed_time": "1:23:18", "remaining_time": "4:28:07"} +{"current_steps": 386, "total_steps": 1624, "loss": 0.9219, "learning_rate": 1.887217598211648e-05, "epoch": 0.2376847290640394, "percentage": 23.77, "elapsed_time": "1:23:30", "remaining_time": "4:27:50"} +{"current_steps": 387, "total_steps": 1624, "loss": 0.9393, "learning_rate": 1.8862235029485803e-05, "epoch": 0.23830049261083744, "percentage": 23.83, "elapsed_time": "1:23:41", "remaining_time": "4:27:31"} +{"current_steps": 388, "total_steps": 1624, "loss": 0.9137, "learning_rate": 1.8852253099642835e-05, "epoch": 0.23891625615763548, "percentage": 23.89, "elapsed_time": "1:23:53", "remaining_time": "4:27:13"} +{"current_steps": 389, "total_steps": 1624, "loss": 0.9315, "learning_rate": 1.884223023874204e-05, "epoch": 0.2395320197044335, "percentage": 23.95, "elapsed_time": "1:24:05", "remaining_time": "4:26:56"} +{"current_steps": 390, "total_steps": 1624, "loss": 0.9118, "learning_rate": 1.8832166493127128e-05, "epoch": 0.24014778325123154, "percentage": 24.01, "elapsed_time": "1:24:16", "remaining_time": "4:26:40"} +{"current_steps": 391, "total_steps": 1624, "loss": 0.9073, "learning_rate": 1.8822061909330866e-05, "epoch": 0.24076354679802955, "percentage": 24.08, "elapsed_time": "1:24:28", "remaining_time": "4:26:22"} +{"current_steps": 392, "total_steps": 1624, "loss": 0.9107, "learning_rate": 1.881191653407483e-05, "epoch": 0.2413793103448276, "percentage": 24.14, "elapsed_time": "1:24:39", "remaining_time": "4:26:04"} +{"current_steps": 393, "total_steps": 1624, "loss": 0.9677, "learning_rate": 1.8801730414269227e-05, "epoch": 0.2419950738916256, "percentage": 24.2, "elapsed_time": "1:24:51", "remaining_time": "4:25:48"} +{"current_steps": 394, "total_steps": 1624, "loss": 0.8769, "learning_rate": 1.8791503597012643e-05, "epoch": 0.24261083743842365, "percentage": 24.26, "elapsed_time": "1:25:03", "remaining_time": "4:25:31"} +{"current_steps": 395, "total_steps": 1624, "loss": 0.8859, "learning_rate": 1.8781236129591847e-05, "epoch": 0.24322660098522167, "percentage": 24.32, "elapsed_time": "1:25:14", "remaining_time": "4:25:14"} +{"current_steps": 396, "total_steps": 1624, "loss": 0.8929, "learning_rate": 1.8770928059481574e-05, "epoch": 0.2438423645320197, "percentage": 24.38, "elapsed_time": "1:25:26", "remaining_time": "4:24:57"} +{"current_steps": 397, "total_steps": 1624, "loss": 0.931, "learning_rate": 1.8760579434344283e-05, "epoch": 0.24445812807881773, "percentage": 24.45, "elapsed_time": "1:25:38", "remaining_time": "4:24:40"} +{"current_steps": 398, "total_steps": 1624, "loss": 0.9126, "learning_rate": 1.8750190302029955e-05, "epoch": 0.24507389162561577, "percentage": 24.51, "elapsed_time": "1:25:49", "remaining_time": "4:24:23"} +{"current_steps": 399, "total_steps": 1624, "loss": 0.9454, "learning_rate": 1.8739760710575882e-05, "epoch": 0.24568965517241378, "percentage": 24.57, "elapsed_time": "1:26:01", "remaining_time": "4:24:06"} +{"current_steps": 400, "total_steps": 1624, "loss": 0.9521, "learning_rate": 1.8729290708206412e-05, "epoch": 0.24630541871921183, "percentage": 24.63, "elapsed_time": "1:26:12", "remaining_time": "4:23:48"} +{"current_steps": 400, "total_steps": 1624, "eval_loss": 0.9253853559494019, "epoch": 0.24630541871921183, "percentage": 24.63, "elapsed_time": "1:34:57", "remaining_time": "4:50:33"} +{"current_steps": 401, "total_steps": 1624, "loss": 0.8913, "learning_rate": 1.8718780343332757e-05, "epoch": 0.24692118226600984, "percentage": 24.69, "elapsed_time": "1:35:08", "remaining_time": "4:50:11"} +{"current_steps": 402, "total_steps": 1624, "loss": 0.9002, "learning_rate": 1.8708229664552754e-05, "epoch": 0.24753694581280788, "percentage": 24.75, "elapsed_time": "1:35:20", "remaining_time": "4:49:48"} +{"current_steps": 403, "total_steps": 1624, "loss": 0.9632, "learning_rate": 1.8697638720650647e-05, "epoch": 0.2481527093596059, "percentage": 24.82, "elapsed_time": "1:35:32", "remaining_time": "4:49:26"} +{"current_steps": 404, "total_steps": 1624, "loss": 0.9064, "learning_rate": 1.868700756059685e-05, "epoch": 0.24876847290640394, "percentage": 24.88, "elapsed_time": "1:35:43", "remaining_time": "4:49:04"} +{"current_steps": 405, "total_steps": 1624, "loss": 0.9532, "learning_rate": 1.867633623354773e-05, "epoch": 0.24938423645320196, "percentage": 24.94, "elapsed_time": "1:35:55", "remaining_time": "4:48:42"} +{"current_steps": 406, "total_steps": 1624, "loss": 0.9043, "learning_rate": 1.8665624788845387e-05, "epoch": 0.25, "percentage": 25.0, "elapsed_time": "1:36:06", "remaining_time": "4:48:20"} +{"current_steps": 407, "total_steps": 1624, "loss": 0.8773, "learning_rate": 1.8654873276017408e-05, "epoch": 0.25061576354679804, "percentage": 25.06, "elapsed_time": "1:36:18", "remaining_time": "4:47:58"} +{"current_steps": 408, "total_steps": 1624, "loss": 0.9036, "learning_rate": 1.864408174477665e-05, "epoch": 0.2512315270935961, "percentage": 25.12, "elapsed_time": "1:36:30", "remaining_time": "4:47:36"} +{"current_steps": 409, "total_steps": 1624, "loss": 0.9698, "learning_rate": 1.863325024502101e-05, "epoch": 0.2518472906403941, "percentage": 25.18, "elapsed_time": "1:36:41", "remaining_time": "4:47:15"} +{"current_steps": 410, "total_steps": 1624, "loss": 0.8766, "learning_rate": 1.8622378826833186e-05, "epoch": 0.2524630541871921, "percentage": 25.25, "elapsed_time": "1:36:53", "remaining_time": "4:46:53"} +{"current_steps": 411, "total_steps": 1624, "loss": 0.9552, "learning_rate": 1.861146754048045e-05, "epoch": 0.25307881773399016, "percentage": 25.31, "elapsed_time": "1:37:05", "remaining_time": "4:46:32"} +{"current_steps": 412, "total_steps": 1624, "loss": 0.9361, "learning_rate": 1.860051643641443e-05, "epoch": 0.2536945812807882, "percentage": 25.37, "elapsed_time": "1:37:16", "remaining_time": "4:46:10"} +{"current_steps": 413, "total_steps": 1624, "loss": 0.9022, "learning_rate": 1.8589525565270846e-05, "epoch": 0.2543103448275862, "percentage": 25.43, "elapsed_time": "1:37:28", "remaining_time": "4:45:49"} +{"current_steps": 414, "total_steps": 1624, "loss": 0.9004, "learning_rate": 1.8578494977869304e-05, "epoch": 0.25492610837438423, "percentage": 25.49, "elapsed_time": "1:37:40", "remaining_time": "4:45:27"} +{"current_steps": 415, "total_steps": 1624, "loss": 0.8995, "learning_rate": 1.856742472521304e-05, "epoch": 0.2555418719211823, "percentage": 25.55, "elapsed_time": "1:37:51", "remaining_time": "4:45:05"} +{"current_steps": 416, "total_steps": 1624, "loss": 0.913, "learning_rate": 1.8556314858488708e-05, "epoch": 0.2561576354679803, "percentage": 25.62, "elapsed_time": "1:38:02", "remaining_time": "4:44:43"} +{"current_steps": 417, "total_steps": 1624, "loss": 0.8776, "learning_rate": 1.8545165429066123e-05, "epoch": 0.2567733990147783, "percentage": 25.68, "elapsed_time": "1:38:14", "remaining_time": "4:44:21"} +{"current_steps": 418, "total_steps": 1624, "loss": 0.908, "learning_rate": 1.853397648849802e-05, "epoch": 0.25738916256157635, "percentage": 25.74, "elapsed_time": "1:38:26", "remaining_time": "4:44:00"} +{"current_steps": 419, "total_steps": 1624, "loss": 0.9376, "learning_rate": 1.8522748088519838e-05, "epoch": 0.2580049261083744, "percentage": 25.8, "elapsed_time": "1:38:37", "remaining_time": "4:43:38"} +{"current_steps": 420, "total_steps": 1624, "loss": 0.9249, "learning_rate": 1.8511480281049475e-05, "epoch": 0.25862068965517243, "percentage": 25.86, "elapsed_time": "1:38:49", "remaining_time": "4:43:17"} +{"current_steps": 421, "total_steps": 1624, "loss": 0.8685, "learning_rate": 1.8500173118187018e-05, "epoch": 0.2592364532019704, "percentage": 25.92, "elapsed_time": "1:39:01", "remaining_time": "4:42:56"} +{"current_steps": 422, "total_steps": 1624, "loss": 0.9511, "learning_rate": 1.8488826652214552e-05, "epoch": 0.25985221674876846, "percentage": 25.99, "elapsed_time": "1:39:12", "remaining_time": "4:42:35"} +{"current_steps": 423, "total_steps": 1624, "loss": 0.9329, "learning_rate": 1.8477440935595873e-05, "epoch": 0.2604679802955665, "percentage": 26.05, "elapsed_time": "1:39:24", "remaining_time": "4:42:14"} +{"current_steps": 424, "total_steps": 1624, "loss": 0.9283, "learning_rate": 1.846601602097627e-05, "epoch": 0.26108374384236455, "percentage": 26.11, "elapsed_time": "1:39:35", "remaining_time": "4:41:53"} +{"current_steps": 425, "total_steps": 1624, "loss": 0.9121, "learning_rate": 1.8454551961182276e-05, "epoch": 0.2616995073891626, "percentage": 26.17, "elapsed_time": "1:39:47", "remaining_time": "4:41:31"} +{"current_steps": 426, "total_steps": 1624, "loss": 0.9187, "learning_rate": 1.8443048809221424e-05, "epoch": 0.2623152709359606, "percentage": 26.23, "elapsed_time": "1:39:59", "remaining_time": "4:41:10"} +{"current_steps": 427, "total_steps": 1624, "loss": 0.8825, "learning_rate": 1.8431506618282e-05, "epoch": 0.2629310344827586, "percentage": 26.29, "elapsed_time": "1:40:10", "remaining_time": "4:40:49"} +{"current_steps": 428, "total_steps": 1624, "loss": 0.8942, "learning_rate": 1.8419925441732803e-05, "epoch": 0.26354679802955666, "percentage": 26.35, "elapsed_time": "1:40:22", "remaining_time": "4:40:28"} +{"current_steps": 429, "total_steps": 1624, "loss": 0.972, "learning_rate": 1.8408305333122888e-05, "epoch": 0.2641625615763547, "percentage": 26.42, "elapsed_time": "1:40:33", "remaining_time": "4:40:06"} +{"current_steps": 430, "total_steps": 1624, "loss": 0.922, "learning_rate": 1.8396646346181327e-05, "epoch": 0.2647783251231527, "percentage": 26.48, "elapsed_time": "1:40:45", "remaining_time": "4:39:46"} +{"current_steps": 431, "total_steps": 1624, "loss": 0.9083, "learning_rate": 1.8384948534816954e-05, "epoch": 0.26539408866995073, "percentage": 26.54, "elapsed_time": "1:40:56", "remaining_time": "4:39:25"} +{"current_steps": 432, "total_steps": 1624, "loss": 0.8711, "learning_rate": 1.8373211953118124e-05, "epoch": 0.2660098522167488, "percentage": 26.6, "elapsed_time": "1:41:08", "remaining_time": "4:39:04"} +{"current_steps": 433, "total_steps": 1624, "loss": 0.9084, "learning_rate": 1.8361436655352456e-05, "epoch": 0.2666256157635468, "percentage": 26.66, "elapsed_time": "1:41:20", "remaining_time": "4:38:43"} +{"current_steps": 434, "total_steps": 1624, "loss": 0.8877, "learning_rate": 1.8349622695966588e-05, "epoch": 0.2672413793103448, "percentage": 26.72, "elapsed_time": "1:41:31", "remaining_time": "4:38:23"} +{"current_steps": 435, "total_steps": 1624, "loss": 0.9261, "learning_rate": 1.8337770129585918e-05, "epoch": 0.26785714285714285, "percentage": 26.79, "elapsed_time": "1:41:43", "remaining_time": "4:38:02"} +{"current_steps": 436, "total_steps": 1624, "loss": 0.9418, "learning_rate": 1.832587901101435e-05, "epoch": 0.2684729064039409, "percentage": 26.85, "elapsed_time": "1:41:55", "remaining_time": "4:37:42"} +{"current_steps": 437, "total_steps": 1624, "loss": 0.919, "learning_rate": 1.831394939523406e-05, "epoch": 0.26908866995073893, "percentage": 26.91, "elapsed_time": "1:42:06", "remaining_time": "4:37:21"} +{"current_steps": 438, "total_steps": 1624, "loss": 0.9626, "learning_rate": 1.8301981337405214e-05, "epoch": 0.2697044334975369, "percentage": 26.97, "elapsed_time": "1:42:18", "remaining_time": "4:37:01"} +{"current_steps": 439, "total_steps": 1624, "loss": 0.9226, "learning_rate": 1.828997489286573e-05, "epoch": 0.27032019704433496, "percentage": 27.03, "elapsed_time": "1:42:30", "remaining_time": "4:36:41"} +{"current_steps": 440, "total_steps": 1624, "loss": 0.8887, "learning_rate": 1.8277930117131025e-05, "epoch": 0.270935960591133, "percentage": 27.09, "elapsed_time": "1:42:41", "remaining_time": "4:36:21"} +{"current_steps": 441, "total_steps": 1624, "loss": 0.8925, "learning_rate": 1.8265847065893738e-05, "epoch": 0.27155172413793105, "percentage": 27.16, "elapsed_time": "1:42:53", "remaining_time": "4:36:00"} +{"current_steps": 442, "total_steps": 1624, "loss": 0.9039, "learning_rate": 1.8253725795023504e-05, "epoch": 0.27216748768472904, "percentage": 27.22, "elapsed_time": "1:43:05", "remaining_time": "4:35:40"} +{"current_steps": 443, "total_steps": 1624, "loss": 0.9051, "learning_rate": 1.8241566360566664e-05, "epoch": 0.2727832512315271, "percentage": 27.28, "elapsed_time": "1:43:16", "remaining_time": "4:35:19"} +{"current_steps": 444, "total_steps": 1624, "loss": 0.9687, "learning_rate": 1.8229368818746026e-05, "epoch": 0.2733990147783251, "percentage": 27.34, "elapsed_time": "1:43:28", "remaining_time": "4:34:59"} +{"current_steps": 445, "total_steps": 1624, "loss": 0.9379, "learning_rate": 1.8217133225960597e-05, "epoch": 0.27401477832512317, "percentage": 27.4, "elapsed_time": "1:43:39", "remaining_time": "4:34:39"} +{"current_steps": 446, "total_steps": 1624, "loss": 0.9228, "learning_rate": 1.8204859638785327e-05, "epoch": 0.2746305418719212, "percentage": 27.46, "elapsed_time": "1:43:51", "remaining_time": "4:34:19"} +{"current_steps": 447, "total_steps": 1624, "loss": 0.91, "learning_rate": 1.8192548113970838e-05, "epoch": 0.2752463054187192, "percentage": 27.52, "elapsed_time": "1:44:03", "remaining_time": "4:33:58"} +{"current_steps": 448, "total_steps": 1624, "loss": 0.9302, "learning_rate": 1.8180198708443172e-05, "epoch": 0.27586206896551724, "percentage": 27.59, "elapsed_time": "1:44:14", "remaining_time": "4:33:38"} +{"current_steps": 449, "total_steps": 1624, "loss": 0.9072, "learning_rate": 1.8167811479303533e-05, "epoch": 0.2764778325123153, "percentage": 27.65, "elapsed_time": "1:44:26", "remaining_time": "4:33:18"} +{"current_steps": 450, "total_steps": 1624, "loss": 0.9296, "learning_rate": 1.8155386483827995e-05, "epoch": 0.2770935960591133, "percentage": 27.71, "elapsed_time": "1:44:37", "remaining_time": "4:32:57"} +{"current_steps": 451, "total_steps": 1624, "loss": 0.8739, "learning_rate": 1.814292377946727e-05, "epoch": 0.2777093596059113, "percentage": 27.77, "elapsed_time": "1:44:49", "remaining_time": "4:32:37"} +{"current_steps": 452, "total_steps": 1624, "loss": 0.9258, "learning_rate": 1.813042342384642e-05, "epoch": 0.27832512315270935, "percentage": 27.83, "elapsed_time": "1:45:00", "remaining_time": "4:32:17"} +{"current_steps": 453, "total_steps": 1624, "loss": 0.9143, "learning_rate": 1.8117885474764613e-05, "epoch": 0.2789408866995074, "percentage": 27.89, "elapsed_time": "1:45:12", "remaining_time": "4:31:57"} +{"current_steps": 454, "total_steps": 1624, "loss": 0.9265, "learning_rate": 1.8105309990194823e-05, "epoch": 0.27955665024630544, "percentage": 27.96, "elapsed_time": "1:45:24", "remaining_time": "4:31:38"} +{"current_steps": 455, "total_steps": 1624, "loss": 0.9488, "learning_rate": 1.8092697028283598e-05, "epoch": 0.2801724137931034, "percentage": 28.02, "elapsed_time": "1:45:35", "remaining_time": "4:31:18"} +{"current_steps": 456, "total_steps": 1624, "loss": 0.917, "learning_rate": 1.8080046647350756e-05, "epoch": 0.28078817733990147, "percentage": 28.08, "elapsed_time": "1:45:47", "remaining_time": "4:30:58"} +{"current_steps": 457, "total_steps": 1624, "loss": 0.8987, "learning_rate": 1.8067358905889148e-05, "epoch": 0.2814039408866995, "percentage": 28.14, "elapsed_time": "1:45:59", "remaining_time": "4:30:38"} +{"current_steps": 458, "total_steps": 1624, "loss": 0.955, "learning_rate": 1.805463386256437e-05, "epoch": 0.28201970443349755, "percentage": 28.2, "elapsed_time": "1:46:10", "remaining_time": "4:30:18"} +{"current_steps": 459, "total_steps": 1624, "loss": 0.9581, "learning_rate": 1.8041871576214483e-05, "epoch": 0.28263546798029554, "percentage": 28.26, "elapsed_time": "1:46:22", "remaining_time": "4:29:59"} +{"current_steps": 460, "total_steps": 1624, "loss": 0.9161, "learning_rate": 1.8029072105849767e-05, "epoch": 0.2832512315270936, "percentage": 28.33, "elapsed_time": "1:46:34", "remaining_time": "4:29:40"} +{"current_steps": 461, "total_steps": 1624, "loss": 0.9411, "learning_rate": 1.8016235510652428e-05, "epoch": 0.2838669950738916, "percentage": 28.39, "elapsed_time": "1:46:45", "remaining_time": "4:29:20"} +{"current_steps": 462, "total_steps": 1624, "loss": 0.9729, "learning_rate": 1.8003361849976327e-05, "epoch": 0.28448275862068967, "percentage": 28.45, "elapsed_time": "1:46:57", "remaining_time": "4:29:00"} +{"current_steps": 463, "total_steps": 1624, "loss": 0.9271, "learning_rate": 1.799045118334671e-05, "epoch": 0.2850985221674877, "percentage": 28.51, "elapsed_time": "1:47:09", "remaining_time": "4:28:41"} +{"current_steps": 464, "total_steps": 1624, "loss": 0.9236, "learning_rate": 1.7977503570459936e-05, "epoch": 0.2857142857142857, "percentage": 28.57, "elapsed_time": "1:47:20", "remaining_time": "4:28:21"} +{"current_steps": 465, "total_steps": 1624, "loss": 0.9049, "learning_rate": 1.7964519071183188e-05, "epoch": 0.28633004926108374, "percentage": 28.63, "elapsed_time": "1:47:32", "remaining_time": "4:28:02"} +{"current_steps": 466, "total_steps": 1624, "loss": 0.9383, "learning_rate": 1.795149774555421e-05, "epoch": 0.2869458128078818, "percentage": 28.69, "elapsed_time": "1:47:43", "remaining_time": "4:27:41"} +{"current_steps": 467, "total_steps": 1624, "loss": 0.9521, "learning_rate": 1.793843965378102e-05, "epoch": 0.2875615763546798, "percentage": 28.76, "elapsed_time": "1:47:55", "remaining_time": "4:27:22"} +{"current_steps": 468, "total_steps": 1624, "loss": 0.9454, "learning_rate": 1.792534485624164e-05, "epoch": 0.2881773399014778, "percentage": 28.82, "elapsed_time": "1:48:06", "remaining_time": "4:27:02"} +{"current_steps": 469, "total_steps": 1624, "loss": 0.9125, "learning_rate": 1.791221341348381e-05, "epoch": 0.28879310344827586, "percentage": 28.88, "elapsed_time": "1:48:18", "remaining_time": "4:26:43"} +{"current_steps": 470, "total_steps": 1624, "loss": 0.9171, "learning_rate": 1.789904538622471e-05, "epoch": 0.2894088669950739, "percentage": 28.94, "elapsed_time": "1:48:29", "remaining_time": "4:26:23"} +{"current_steps": 471, "total_steps": 1624, "loss": 0.9387, "learning_rate": 1.7885840835350672e-05, "epoch": 0.29002463054187194, "percentage": 29.0, "elapsed_time": "1:48:41", "remaining_time": "4:26:04"} +{"current_steps": 472, "total_steps": 1624, "loss": 0.9215, "learning_rate": 1.7872599821916922e-05, "epoch": 0.29064039408866993, "percentage": 29.06, "elapsed_time": "1:48:52", "remaining_time": "4:25:44"} +{"current_steps": 473, "total_steps": 1624, "loss": 0.9019, "learning_rate": 1.785932240714727e-05, "epoch": 0.29125615763546797, "percentage": 29.13, "elapsed_time": "1:49:04", "remaining_time": "4:25:25"} +{"current_steps": 474, "total_steps": 1624, "loss": 0.8907, "learning_rate": 1.7846008652433843e-05, "epoch": 0.291871921182266, "percentage": 29.19, "elapsed_time": "1:49:16", "remaining_time": "4:25:06"} +{"current_steps": 475, "total_steps": 1624, "loss": 0.8937, "learning_rate": 1.7832658619336794e-05, "epoch": 0.29248768472906406, "percentage": 29.25, "elapsed_time": "1:49:27", "remaining_time": "4:24:47"} +{"current_steps": 476, "total_steps": 1624, "loss": 0.9434, "learning_rate": 1.7819272369584016e-05, "epoch": 0.29310344827586204, "percentage": 29.31, "elapsed_time": "1:49:39", "remaining_time": "4:24:28"} +{"current_steps": 477, "total_steps": 1624, "loss": 0.8875, "learning_rate": 1.780584996507087e-05, "epoch": 0.2937192118226601, "percentage": 29.37, "elapsed_time": "1:49:51", "remaining_time": "4:24:09"} +{"current_steps": 478, "total_steps": 1624, "loss": 0.9817, "learning_rate": 1.7792391467859886e-05, "epoch": 0.29433497536945813, "percentage": 29.43, "elapsed_time": "1:50:03", "remaining_time": "4:23:50"} +{"current_steps": 479, "total_steps": 1624, "loss": 0.9418, "learning_rate": 1.777889694018048e-05, "epoch": 0.29495073891625617, "percentage": 29.5, "elapsed_time": "1:50:14", "remaining_time": "4:23:31"} +{"current_steps": 480, "total_steps": 1624, "loss": 0.8751, "learning_rate": 1.7765366444428655e-05, "epoch": 0.2955665024630542, "percentage": 29.56, "elapsed_time": "1:50:26", "remaining_time": "4:23:12"} +{"current_steps": 481, "total_steps": 1624, "loss": 0.8999, "learning_rate": 1.7751800043166745e-05, "epoch": 0.2961822660098522, "percentage": 29.62, "elapsed_time": "1:50:37", "remaining_time": "4:22:53"} +{"current_steps": 482, "total_steps": 1624, "loss": 0.9561, "learning_rate": 1.7738197799123084e-05, "epoch": 0.29679802955665024, "percentage": 29.68, "elapsed_time": "1:50:49", "remaining_time": "4:22:33"} +{"current_steps": 483, "total_steps": 1624, "loss": 0.9393, "learning_rate": 1.7724559775191744e-05, "epoch": 0.2974137931034483, "percentage": 29.74, "elapsed_time": "1:51:00", "remaining_time": "4:22:14"} +{"current_steps": 484, "total_steps": 1624, "loss": 0.9038, "learning_rate": 1.7710886034432237e-05, "epoch": 0.29802955665024633, "percentage": 29.8, "elapsed_time": "1:51:12", "remaining_time": "4:21:55"} +{"current_steps": 485, "total_steps": 1624, "loss": 0.8836, "learning_rate": 1.7697176640069217e-05, "epoch": 0.2986453201970443, "percentage": 29.86, "elapsed_time": "1:51:23", "remaining_time": "4:21:36"} +{"current_steps": 486, "total_steps": 1624, "loss": 0.9541, "learning_rate": 1.7683431655492203e-05, "epoch": 0.29926108374384236, "percentage": 29.93, "elapsed_time": "1:51:35", "remaining_time": "4:21:18"} +{"current_steps": 487, "total_steps": 1624, "loss": 0.8789, "learning_rate": 1.7669651144255265e-05, "epoch": 0.2998768472906404, "percentage": 29.99, "elapsed_time": "1:51:47", "remaining_time": "4:20:59"} +{"current_steps": 488, "total_steps": 1624, "loss": 0.9184, "learning_rate": 1.765583517007675e-05, "epoch": 0.30049261083743845, "percentage": 30.05, "elapsed_time": "1:51:58", "remaining_time": "4:20:40"} +{"current_steps": 489, "total_steps": 1624, "loss": 0.8796, "learning_rate": 1.7641983796838972e-05, "epoch": 0.30110837438423643, "percentage": 30.11, "elapsed_time": "1:52:10", "remaining_time": "4:20:22"} +{"current_steps": 490, "total_steps": 1624, "loss": 0.886, "learning_rate": 1.762809708858793e-05, "epoch": 0.3017241379310345, "percentage": 30.17, "elapsed_time": "1:52:22", "remaining_time": "4:20:03"} +{"current_steps": 491, "total_steps": 1624, "loss": 0.9314, "learning_rate": 1.7614175109532998e-05, "epoch": 0.3023399014778325, "percentage": 30.23, "elapsed_time": "1:52:33", "remaining_time": "4:19:44"} +{"current_steps": 492, "total_steps": 1624, "loss": 0.9077, "learning_rate": 1.7600217924046637e-05, "epoch": 0.30295566502463056, "percentage": 30.3, "elapsed_time": "1:52:45", "remaining_time": "4:19:25"} +{"current_steps": 493, "total_steps": 1624, "loss": 0.933, "learning_rate": 1.7586225596664102e-05, "epoch": 0.30357142857142855, "percentage": 30.36, "elapsed_time": "1:52:56", "remaining_time": "4:19:06"} +{"current_steps": 494, "total_steps": 1624, "loss": 0.9347, "learning_rate": 1.757219819208313e-05, "epoch": 0.3041871921182266, "percentage": 30.42, "elapsed_time": "1:53:08", "remaining_time": "4:18:48"} +{"current_steps": 495, "total_steps": 1624, "loss": 0.8954, "learning_rate": 1.7558135775163645e-05, "epoch": 0.30480295566502463, "percentage": 30.48, "elapsed_time": "1:53:20", "remaining_time": "4:18:29"} +{"current_steps": 496, "total_steps": 1624, "loss": 0.925, "learning_rate": 1.7544038410927474e-05, "epoch": 0.3054187192118227, "percentage": 30.54, "elapsed_time": "1:53:31", "remaining_time": "4:18:10"} +{"current_steps": 497, "total_steps": 1624, "loss": 0.9116, "learning_rate": 1.7529906164558023e-05, "epoch": 0.30603448275862066, "percentage": 30.6, "elapsed_time": "1:53:43", "remaining_time": "4:17:52"} +{"current_steps": 498, "total_steps": 1624, "loss": 0.9043, "learning_rate": 1.7515739101399983e-05, "epoch": 0.3066502463054187, "percentage": 30.67, "elapsed_time": "1:53:55", "remaining_time": "4:17:34"} +{"current_steps": 499, "total_steps": 1624, "loss": 0.9305, "learning_rate": 1.750153728695904e-05, "epoch": 0.30726600985221675, "percentage": 30.73, "elapsed_time": "1:54:06", "remaining_time": "4:17:16"} +{"current_steps": 500, "total_steps": 1624, "loss": 0.9034, "learning_rate": 1.7487300786901568e-05, "epoch": 0.3078817733990148, "percentage": 30.79, "elapsed_time": "1:54:18", "remaining_time": "4:16:57"} +{"current_steps": 501, "total_steps": 1624, "loss": 0.9193, "learning_rate": 1.74730296670543e-05, "epoch": 0.30849753694581283, "percentage": 30.85, "elapsed_time": "1:54:30", "remaining_time": "4:16:39"} +{"current_steps": 502, "total_steps": 1624, "loss": 0.8836, "learning_rate": 1.7458723993404065e-05, "epoch": 0.3091133004926108, "percentage": 30.91, "elapsed_time": "1:54:41", "remaining_time": "4:16:20"} +{"current_steps": 503, "total_steps": 1624, "loss": 0.9221, "learning_rate": 1.744438383209744e-05, "epoch": 0.30972906403940886, "percentage": 30.97, "elapsed_time": "1:54:53", "remaining_time": "4:16:02"} +{"current_steps": 504, "total_steps": 1624, "loss": 0.8649, "learning_rate": 1.74300092494405e-05, "epoch": 0.3103448275862069, "percentage": 31.03, "elapsed_time": "1:55:04", "remaining_time": "4:15:43"} +{"current_steps": 505, "total_steps": 1624, "loss": 0.9131, "learning_rate": 1.7415600311898436e-05, "epoch": 0.31096059113300495, "percentage": 31.1, "elapsed_time": "1:55:16", "remaining_time": "4:15:25"} +{"current_steps": 506, "total_steps": 1624, "loss": 0.8813, "learning_rate": 1.7401157086095317e-05, "epoch": 0.31157635467980294, "percentage": 31.16, "elapsed_time": "1:55:27", "remaining_time": "4:15:06"} +{"current_steps": 507, "total_steps": 1624, "loss": 0.8959, "learning_rate": 1.738667963881375e-05, "epoch": 0.312192118226601, "percentage": 31.22, "elapsed_time": "1:55:39", "remaining_time": "4:14:48"} +{"current_steps": 508, "total_steps": 1624, "loss": 0.8799, "learning_rate": 1.7372168036994566e-05, "epoch": 0.312807881773399, "percentage": 31.28, "elapsed_time": "1:55:50", "remaining_time": "4:14:30"} +{"current_steps": 509, "total_steps": 1624, "loss": 0.8842, "learning_rate": 1.7357622347736534e-05, "epoch": 0.31342364532019706, "percentage": 31.34, "elapsed_time": "1:56:02", "remaining_time": "4:14:12"} +{"current_steps": 510, "total_steps": 1624, "loss": 0.8797, "learning_rate": 1.734304263829602e-05, "epoch": 0.31403940886699505, "percentage": 31.4, "elapsed_time": "1:56:14", "remaining_time": "4:13:54"} +{"current_steps": 511, "total_steps": 1624, "loss": 0.9081, "learning_rate": 1.7328428976086706e-05, "epoch": 0.3146551724137931, "percentage": 31.47, "elapsed_time": "1:56:25", "remaining_time": "4:13:35"} +{"current_steps": 512, "total_steps": 1624, "loss": 0.8983, "learning_rate": 1.7313781428679256e-05, "epoch": 0.31527093596059114, "percentage": 31.53, "elapsed_time": "1:56:37", "remaining_time": "4:13:17"} +{"current_steps": 513, "total_steps": 1624, "loss": 0.8847, "learning_rate": 1.729910006380102e-05, "epoch": 0.3158866995073892, "percentage": 31.59, "elapsed_time": "1:56:48", "remaining_time": "4:12:59"} +{"current_steps": 514, "total_steps": 1624, "loss": 0.9088, "learning_rate": 1.728438494933571e-05, "epoch": 0.31650246305418717, "percentage": 31.65, "elapsed_time": "1:57:00", "remaining_time": "4:12:41"} +{"current_steps": 515, "total_steps": 1624, "loss": 0.9959, "learning_rate": 1.726963615332308e-05, "epoch": 0.3171182266009852, "percentage": 31.71, "elapsed_time": "1:57:12", "remaining_time": "4:12:23"} +{"current_steps": 516, "total_steps": 1624, "loss": 0.9134, "learning_rate": 1.725485374395864e-05, "epoch": 0.31773399014778325, "percentage": 31.77, "elapsed_time": "1:57:23", "remaining_time": "4:12:05"} +{"current_steps": 517, "total_steps": 1624, "loss": 0.946, "learning_rate": 1.7240037789593307e-05, "epoch": 0.3183497536945813, "percentage": 31.83, "elapsed_time": "1:57:35", "remaining_time": "4:11:47"} +{"current_steps": 518, "total_steps": 1624, "loss": 0.9262, "learning_rate": 1.7225188358733106e-05, "epoch": 0.31896551724137934, "percentage": 31.9, "elapsed_time": "1:57:47", "remaining_time": "4:11:29"} +{"current_steps": 519, "total_steps": 1624, "loss": 0.961, "learning_rate": 1.7210305520038857e-05, "epoch": 0.3195812807881773, "percentage": 31.96, "elapsed_time": "1:57:58", "remaining_time": "4:11:11"} +{"current_steps": 520, "total_steps": 1624, "loss": 0.9101, "learning_rate": 1.7195389342325843e-05, "epoch": 0.32019704433497537, "percentage": 32.02, "elapsed_time": "1:58:10", "remaining_time": "4:10:53"} +{"current_steps": 521, "total_steps": 1624, "loss": 0.8773, "learning_rate": 1.71804398945635e-05, "epoch": 0.3208128078817734, "percentage": 32.08, "elapsed_time": "1:58:22", "remaining_time": "4:10:35"} +{"current_steps": 522, "total_steps": 1624, "loss": 0.8525, "learning_rate": 1.7165457245875107e-05, "epoch": 0.32142857142857145, "percentage": 32.14, "elapsed_time": "1:58:33", "remaining_time": "4:10:17"} +{"current_steps": 523, "total_steps": 1624, "loss": 0.9189, "learning_rate": 1.7150441465537446e-05, "epoch": 0.32204433497536944, "percentage": 32.2, "elapsed_time": "1:58:45", "remaining_time": "4:10:00"} +{"current_steps": 524, "total_steps": 1624, "loss": 0.9246, "learning_rate": 1.7135392622980505e-05, "epoch": 0.3226600985221675, "percentage": 32.27, "elapsed_time": "1:58:56", "remaining_time": "4:09:41"} +{"current_steps": 525, "total_steps": 1624, "loss": 0.9219, "learning_rate": 1.7120310787787136e-05, "epoch": 0.3232758620689655, "percentage": 32.33, "elapsed_time": "1:59:08", "remaining_time": "4:09:23"} +{"current_steps": 526, "total_steps": 1624, "loss": 0.8776, "learning_rate": 1.7105196029692743e-05, "epoch": 0.32389162561576357, "percentage": 32.39, "elapsed_time": "1:59:19", "remaining_time": "4:09:05"} +{"current_steps": 527, "total_steps": 1624, "loss": 0.9422, "learning_rate": 1.7090048418584972e-05, "epoch": 0.32450738916256155, "percentage": 32.45, "elapsed_time": "1:59:31", "remaining_time": "4:08:47"} +{"current_steps": 528, "total_steps": 1624, "loss": 0.9431, "learning_rate": 1.707486802450335e-05, "epoch": 0.3251231527093596, "percentage": 32.51, "elapsed_time": "1:59:42", "remaining_time": "4:08:30"} +{"current_steps": 529, "total_steps": 1624, "loss": 0.9059, "learning_rate": 1.7059654917639008e-05, "epoch": 0.32573891625615764, "percentage": 32.57, "elapsed_time": "1:59:54", "remaining_time": "4:08:12"} +{"current_steps": 530, "total_steps": 1624, "loss": 0.9406, "learning_rate": 1.7044409168334327e-05, "epoch": 0.3263546798029557, "percentage": 32.64, "elapsed_time": "2:00:06", "remaining_time": "4:07:54"} +{"current_steps": 531, "total_steps": 1624, "loss": 0.9235, "learning_rate": 1.7029130847082615e-05, "epoch": 0.32697044334975367, "percentage": 32.7, "elapsed_time": "2:00:17", "remaining_time": "4:07:36"} +{"current_steps": 532, "total_steps": 1624, "loss": 0.9367, "learning_rate": 1.70138200245278e-05, "epoch": 0.3275862068965517, "percentage": 32.76, "elapsed_time": "2:00:29", "remaining_time": "4:07:19"} +{"current_steps": 533, "total_steps": 1624, "loss": 0.8206, "learning_rate": 1.699847677146407e-05, "epoch": 0.32820197044334976, "percentage": 32.82, "elapsed_time": "2:00:40", "remaining_time": "4:07:01"} +{"current_steps": 534, "total_steps": 1624, "loss": 0.9269, "learning_rate": 1.698310115883558e-05, "epoch": 0.3288177339901478, "percentage": 32.88, "elapsed_time": "2:00:52", "remaining_time": "4:06:43"} +{"current_steps": 535, "total_steps": 1624, "loss": 0.942, "learning_rate": 1.696769325773611e-05, "epoch": 0.3294334975369458, "percentage": 32.94, "elapsed_time": "2:01:04", "remaining_time": "4:06:26"} +{"current_steps": 536, "total_steps": 1624, "loss": 0.9796, "learning_rate": 1.6952253139408723e-05, "epoch": 0.33004926108374383, "percentage": 33.0, "elapsed_time": "2:01:15", "remaining_time": "4:06:09"} +{"current_steps": 537, "total_steps": 1624, "loss": 0.9108, "learning_rate": 1.6936780875245462e-05, "epoch": 0.33066502463054187, "percentage": 33.07, "elapsed_time": "2:01:27", "remaining_time": "4:05:51"} +{"current_steps": 538, "total_steps": 1624, "loss": 0.9077, "learning_rate": 1.692127653678699e-05, "epoch": 0.3312807881773399, "percentage": 33.13, "elapsed_time": "2:01:39", "remaining_time": "4:05:34"} +{"current_steps": 539, "total_steps": 1624, "loss": 0.9096, "learning_rate": 1.6905740195722296e-05, "epoch": 0.33189655172413796, "percentage": 33.19, "elapsed_time": "2:01:50", "remaining_time": "4:05:16"} +{"current_steps": 540, "total_steps": 1624, "loss": 0.9049, "learning_rate": 1.6890171923888323e-05, "epoch": 0.33251231527093594, "percentage": 33.25, "elapsed_time": "2:02:02", "remaining_time": "4:04:59"} +{"current_steps": 541, "total_steps": 1624, "loss": 0.9274, "learning_rate": 1.6874571793269665e-05, "epoch": 0.333128078817734, "percentage": 33.31, "elapsed_time": "2:02:14", "remaining_time": "4:04:41"} +{"current_steps": 542, "total_steps": 1624, "loss": 0.9015, "learning_rate": 1.6858939875998227e-05, "epoch": 0.33374384236453203, "percentage": 33.37, "elapsed_time": "2:02:25", "remaining_time": "4:04:24"} +{"current_steps": 543, "total_steps": 1624, "loss": 0.898, "learning_rate": 1.6843276244352884e-05, "epoch": 0.33435960591133007, "percentage": 33.44, "elapsed_time": "2:02:37", "remaining_time": "4:04:06"} +{"current_steps": 544, "total_steps": 1624, "loss": 0.8942, "learning_rate": 1.682758097075915e-05, "epoch": 0.33497536945812806, "percentage": 33.5, "elapsed_time": "2:02:48", "remaining_time": "4:03:49"} +{"current_steps": 545, "total_steps": 1624, "loss": 1.0005, "learning_rate": 1.6811854127788857e-05, "epoch": 0.3355911330049261, "percentage": 33.56, "elapsed_time": "2:03:00", "remaining_time": "4:03:31"} +{"current_steps": 546, "total_steps": 1624, "loss": 0.8829, "learning_rate": 1.679609578815979e-05, "epoch": 0.33620689655172414, "percentage": 33.62, "elapsed_time": "2:03:12", "remaining_time": "4:03:14"} +{"current_steps": 547, "total_steps": 1624, "loss": 0.9358, "learning_rate": 1.6780306024735384e-05, "epoch": 0.3368226600985222, "percentage": 33.68, "elapsed_time": "2:03:23", "remaining_time": "4:02:57"} +{"current_steps": 548, "total_steps": 1624, "loss": 0.9054, "learning_rate": 1.676448491052436e-05, "epoch": 0.3374384236453202, "percentage": 33.74, "elapsed_time": "2:03:35", "remaining_time": "4:02:40"} +{"current_steps": 549, "total_steps": 1624, "loss": 0.8995, "learning_rate": 1.6748632518680407e-05, "epoch": 0.3380541871921182, "percentage": 33.81, "elapsed_time": "2:03:46", "remaining_time": "4:02:21"} +{"current_steps": 550, "total_steps": 1624, "loss": 0.9369, "learning_rate": 1.6732748922501832e-05, "epoch": 0.33866995073891626, "percentage": 33.87, "elapsed_time": "2:03:58", "remaining_time": "4:02:04"} +{"current_steps": 551, "total_steps": 1624, "loss": 0.8633, "learning_rate": 1.6716834195431225e-05, "epoch": 0.3392857142857143, "percentage": 33.93, "elapsed_time": "2:04:09", "remaining_time": "4:01:47"} +{"current_steps": 552, "total_steps": 1624, "loss": 0.8997, "learning_rate": 1.6700888411055113e-05, "epoch": 0.3399014778325123, "percentage": 33.99, "elapsed_time": "2:04:21", "remaining_time": "4:01:30"} +{"current_steps": 553, "total_steps": 1624, "loss": 0.8989, "learning_rate": 1.6684911643103643e-05, "epoch": 0.34051724137931033, "percentage": 34.05, "elapsed_time": "2:04:33", "remaining_time": "4:01:13"} +{"current_steps": 554, "total_steps": 1624, "loss": 0.8753, "learning_rate": 1.6668903965450204e-05, "epoch": 0.3411330049261084, "percentage": 34.11, "elapsed_time": "2:04:44", "remaining_time": "4:00:56"} +{"current_steps": 555, "total_steps": 1624, "loss": 0.9274, "learning_rate": 1.6652865452111115e-05, "epoch": 0.3417487684729064, "percentage": 34.17, "elapsed_time": "2:04:56", "remaining_time": "4:00:38"} +{"current_steps": 556, "total_steps": 1624, "loss": 0.892, "learning_rate": 1.663679617724528e-05, "epoch": 0.34236453201970446, "percentage": 34.24, "elapsed_time": "2:05:08", "remaining_time": "4:00:21"} +{"current_steps": 557, "total_steps": 1624, "loss": 0.947, "learning_rate": 1.6620696215153816e-05, "epoch": 0.34298029556650245, "percentage": 34.3, "elapsed_time": "2:05:19", "remaining_time": "4:00:04"} +{"current_steps": 558, "total_steps": 1624, "loss": 0.8993, "learning_rate": 1.6604565640279755e-05, "epoch": 0.3435960591133005, "percentage": 34.36, "elapsed_time": "2:05:31", "remaining_time": "3:59:47"} +{"current_steps": 559, "total_steps": 1624, "loss": 0.9314, "learning_rate": 1.6588404527207665e-05, "epoch": 0.34421182266009853, "percentage": 34.42, "elapsed_time": "2:05:42", "remaining_time": "3:59:30"} +{"current_steps": 560, "total_steps": 1624, "loss": 0.986, "learning_rate": 1.657221295066332e-05, "epoch": 0.3448275862068966, "percentage": 34.48, "elapsed_time": "2:05:54", "remaining_time": "3:59:13"} +{"current_steps": 561, "total_steps": 1624, "loss": 0.8983, "learning_rate": 1.6555990985513352e-05, "epoch": 0.34544334975369456, "percentage": 34.54, "elapsed_time": "2:06:05", "remaining_time": "3:58:56"} +{"current_steps": 562, "total_steps": 1624, "loss": 0.9348, "learning_rate": 1.6539738706764895e-05, "epoch": 0.3460591133004926, "percentage": 34.61, "elapsed_time": "2:06:17", "remaining_time": "3:58:38"} +{"current_steps": 563, "total_steps": 1624, "loss": 0.9418, "learning_rate": 1.652345618956526e-05, "epoch": 0.34667487684729065, "percentage": 34.67, "elapsed_time": "2:06:29", "remaining_time": "3:58:22"} +{"current_steps": 564, "total_steps": 1624, "loss": 0.9218, "learning_rate": 1.6507143509201565e-05, "epoch": 0.3472906403940887, "percentage": 34.73, "elapsed_time": "2:06:40", "remaining_time": "3:58:05"} +{"current_steps": 565, "total_steps": 1624, "loss": 0.9247, "learning_rate": 1.6490800741100396e-05, "epoch": 0.3479064039408867, "percentage": 34.79, "elapsed_time": "2:06:52", "remaining_time": "3:57:47"} +{"current_steps": 566, "total_steps": 1624, "loss": 0.8839, "learning_rate": 1.6474427960827473e-05, "epoch": 0.3485221674876847, "percentage": 34.85, "elapsed_time": "2:07:03", "remaining_time": "3:57:31"} +{"current_steps": 567, "total_steps": 1624, "loss": 0.9638, "learning_rate": 1.645802524408727e-05, "epoch": 0.34913793103448276, "percentage": 34.91, "elapsed_time": "2:07:15", "remaining_time": "3:57:14"} +{"current_steps": 568, "total_steps": 1624, "loss": 0.9289, "learning_rate": 1.6441592666722686e-05, "epoch": 0.3497536945812808, "percentage": 34.98, "elapsed_time": "2:07:27", "remaining_time": "3:56:57"} +{"current_steps": 569, "total_steps": 1624, "loss": 0.9376, "learning_rate": 1.642513030471469e-05, "epoch": 0.3503694581280788, "percentage": 35.04, "elapsed_time": "2:07:39", "remaining_time": "3:56:40"} +{"current_steps": 570, "total_steps": 1624, "loss": 0.9258, "learning_rate": 1.6408638234181975e-05, "epoch": 0.35098522167487683, "percentage": 35.1, "elapsed_time": "2:07:50", "remaining_time": "3:56:24"} +{"current_steps": 571, "total_steps": 1624, "loss": 0.9249, "learning_rate": 1.6392116531380592e-05, "epoch": 0.3516009852216749, "percentage": 35.16, "elapsed_time": "2:08:02", "remaining_time": "3:56:07"} +{"current_steps": 572, "total_steps": 1624, "loss": 0.9235, "learning_rate": 1.6375565272703603e-05, "epoch": 0.3522167487684729, "percentage": 35.22, "elapsed_time": "2:08:14", "remaining_time": "3:55:50"} +{"current_steps": 573, "total_steps": 1624, "loss": 0.9341, "learning_rate": 1.635898453468075e-05, "epoch": 0.35283251231527096, "percentage": 35.28, "elapsed_time": "2:08:25", "remaining_time": "3:55:33"} +{"current_steps": 574, "total_steps": 1624, "loss": 0.9339, "learning_rate": 1.6342374393978056e-05, "epoch": 0.35344827586206895, "percentage": 35.34, "elapsed_time": "2:08:37", "remaining_time": "3:55:16"} +{"current_steps": 575, "total_steps": 1624, "loss": 0.9114, "learning_rate": 1.6325734927397514e-05, "epoch": 0.354064039408867, "percentage": 35.41, "elapsed_time": "2:08:48", "remaining_time": "3:55:00"} +{"current_steps": 576, "total_steps": 1624, "loss": 0.8837, "learning_rate": 1.6309066211876706e-05, "epoch": 0.35467980295566504, "percentage": 35.47, "elapsed_time": "2:09:00", "remaining_time": "3:54:43"} +{"current_steps": 577, "total_steps": 1624, "loss": 0.9221, "learning_rate": 1.6292368324488462e-05, "epoch": 0.3552955665024631, "percentage": 35.53, "elapsed_time": "2:09:11", "remaining_time": "3:54:26"} +{"current_steps": 578, "total_steps": 1624, "loss": 0.8985, "learning_rate": 1.6275641342440485e-05, "epoch": 0.35591133004926107, "percentage": 35.59, "elapsed_time": "2:09:23", "remaining_time": "3:54:09"} +{"current_steps": 579, "total_steps": 1624, "loss": 0.9436, "learning_rate": 1.625888534307502e-05, "epoch": 0.3565270935960591, "percentage": 35.65, "elapsed_time": "2:09:34", "remaining_time": "3:53:52"} +{"current_steps": 580, "total_steps": 1624, "loss": 0.9245, "learning_rate": 1.6242100403868472e-05, "epoch": 0.35714285714285715, "percentage": 35.71, "elapsed_time": "2:09:46", "remaining_time": "3:53:35"} +{"current_steps": 581, "total_steps": 1624, "loss": 0.8839, "learning_rate": 1.6225286602431062e-05, "epoch": 0.3577586206896552, "percentage": 35.78, "elapsed_time": "2:09:58", "remaining_time": "3:53:19"} +{"current_steps": 582, "total_steps": 1624, "loss": 0.9226, "learning_rate": 1.6208444016506466e-05, "epoch": 0.3583743842364532, "percentage": 35.84, "elapsed_time": "2:10:09", "remaining_time": "3:53:02"} +{"current_steps": 583, "total_steps": 1624, "loss": 0.9593, "learning_rate": 1.6191572723971453e-05, "epoch": 0.3589901477832512, "percentage": 35.9, "elapsed_time": "2:10:21", "remaining_time": "3:52:46"} +{"current_steps": 584, "total_steps": 1624, "loss": 0.9159, "learning_rate": 1.617467280283552e-05, "epoch": 0.35960591133004927, "percentage": 35.96, "elapsed_time": "2:10:33", "remaining_time": "3:52:29"} +{"current_steps": 585, "total_steps": 1624, "loss": 0.9188, "learning_rate": 1.615774433124054e-05, "epoch": 0.3602216748768473, "percentage": 36.02, "elapsed_time": "2:10:44", "remaining_time": "3:52:12"} +{"current_steps": 586, "total_steps": 1624, "loss": 0.8684, "learning_rate": 1.6140787387460406e-05, "epoch": 0.3608374384236453, "percentage": 36.08, "elapsed_time": "2:10:56", "remaining_time": "3:51:56"} +{"current_steps": 587, "total_steps": 1624, "loss": 0.9513, "learning_rate": 1.612380204990065e-05, "epoch": 0.36145320197044334, "percentage": 36.15, "elapsed_time": "2:11:07", "remaining_time": "3:51:38"} +{"current_steps": 588, "total_steps": 1624, "loss": 0.9143, "learning_rate": 1.6106788397098096e-05, "epoch": 0.3620689655172414, "percentage": 36.21, "elapsed_time": "2:11:18", "remaining_time": "3:51:21"} +{"current_steps": 589, "total_steps": 1624, "loss": 0.9104, "learning_rate": 1.608974650772049e-05, "epoch": 0.3626847290640394, "percentage": 36.27, "elapsed_time": "2:11:30", "remaining_time": "3:51:05"} +{"current_steps": 590, "total_steps": 1624, "loss": 0.8639, "learning_rate": 1.6072676460566136e-05, "epoch": 0.3633004926108374, "percentage": 36.33, "elapsed_time": "2:11:42", "remaining_time": "3:50:48"} +{"current_steps": 591, "total_steps": 1624, "loss": 0.9114, "learning_rate": 1.605557833456354e-05, "epoch": 0.36391625615763545, "percentage": 36.39, "elapsed_time": "2:11:53", "remaining_time": "3:50:32"} +{"current_steps": 592, "total_steps": 1624, "loss": 0.9514, "learning_rate": 1.6038452208771037e-05, "epoch": 0.3645320197044335, "percentage": 36.45, "elapsed_time": "2:12:05", "remaining_time": "3:50:15"} +{"current_steps": 593, "total_steps": 1624, "loss": 0.9175, "learning_rate": 1.602129816237643e-05, "epoch": 0.36514778325123154, "percentage": 36.51, "elapsed_time": "2:12:16", "remaining_time": "3:49:58"} +{"current_steps": 594, "total_steps": 1624, "loss": 0.9312, "learning_rate": 1.6004116274696612e-05, "epoch": 0.3657635467980296, "percentage": 36.58, "elapsed_time": "2:12:28", "remaining_time": "3:49:42"} +{"current_steps": 595, "total_steps": 1624, "loss": 0.9165, "learning_rate": 1.5986906625177215e-05, "epoch": 0.36637931034482757, "percentage": 36.64, "elapsed_time": "2:12:39", "remaining_time": "3:49:25"} +{"current_steps": 596, "total_steps": 1624, "loss": 0.8795, "learning_rate": 1.596966929339224e-05, "epoch": 0.3669950738916256, "percentage": 36.7, "elapsed_time": "2:12:51", "remaining_time": "3:49:09"} +{"current_steps": 597, "total_steps": 1624, "loss": 0.935, "learning_rate": 1.5952404359043677e-05, "epoch": 0.36761083743842365, "percentage": 36.76, "elapsed_time": "2:13:03", "remaining_time": "3:48:53"} +{"current_steps": 598, "total_steps": 1624, "loss": 0.9124, "learning_rate": 1.593511190196115e-05, "epoch": 0.3682266009852217, "percentage": 36.82, "elapsed_time": "2:13:14", "remaining_time": "3:48:36"} +{"current_steps": 599, "total_steps": 1624, "loss": 0.9255, "learning_rate": 1.5917792002101543e-05, "epoch": 0.3688423645320197, "percentage": 36.88, "elapsed_time": "2:13:26", "remaining_time": "3:48:20"} +{"current_steps": 600, "total_steps": 1624, "loss": 0.9654, "learning_rate": 1.590044473954863e-05, "epoch": 0.3694581280788177, "percentage": 36.95, "elapsed_time": "2:13:38", "remaining_time": "3:48:04"} +{"current_steps": 600, "total_steps": 1624, "eval_loss": 0.9203624129295349, "epoch": 0.3694581280788177, "percentage": 36.95, "elapsed_time": "2:22:21", "remaining_time": "4:02:57"} +{"current_steps": 601, "total_steps": 1624, "loss": 0.9504, "learning_rate": 1.5883070194512695e-05, "epoch": 0.37007389162561577, "percentage": 37.01, "elapsed_time": "2:22:32", "remaining_time": "4:02:37"} +{"current_steps": 602, "total_steps": 1624, "loss": 0.9456, "learning_rate": 1.586566844733019e-05, "epoch": 0.3706896551724138, "percentage": 37.07, "elapsed_time": "2:22:44", "remaining_time": "4:02:19"} +{"current_steps": 603, "total_steps": 1624, "loss": 0.8882, "learning_rate": 1.5848239578463325e-05, "epoch": 0.3713054187192118, "percentage": 37.13, "elapsed_time": "2:22:55", "remaining_time": "4:02:00"} +{"current_steps": 604, "total_steps": 1624, "loss": 0.9211, "learning_rate": 1.5830783668499728e-05, "epoch": 0.37192118226600984, "percentage": 37.19, "elapsed_time": "2:23:07", "remaining_time": "4:01:42"} +{"current_steps": 605, "total_steps": 1624, "loss": 0.941, "learning_rate": 1.5813300798152048e-05, "epoch": 0.3725369458128079, "percentage": 37.25, "elapsed_time": "2:23:19", "remaining_time": "4:01:24"} +{"current_steps": 606, "total_steps": 1624, "loss": 0.946, "learning_rate": 1.579579104825761e-05, "epoch": 0.3731527093596059, "percentage": 37.32, "elapsed_time": "2:23:31", "remaining_time": "4:01:05"} +{"current_steps": 607, "total_steps": 1624, "loss": 0.8616, "learning_rate": 1.5778254499778006e-05, "epoch": 0.3737684729064039, "percentage": 37.38, "elapsed_time": "2:23:42", "remaining_time": "4:00:47"} +{"current_steps": 608, "total_steps": 1624, "loss": 0.9579, "learning_rate": 1.5760691233798758e-05, "epoch": 0.37438423645320196, "percentage": 37.44, "elapsed_time": "2:23:54", "remaining_time": "4:00:28"} +{"current_steps": 609, "total_steps": 1624, "loss": 0.9551, "learning_rate": 1.574310133152891e-05, "epoch": 0.375, "percentage": 37.5, "elapsed_time": "2:24:06", "remaining_time": "4:00:10"} +{"current_steps": 610, "total_steps": 1624, "loss": 0.8762, "learning_rate": 1.5725484874300673e-05, "epoch": 0.37561576354679804, "percentage": 37.56, "elapsed_time": "2:24:17", "remaining_time": "3:59:51"} +{"current_steps": 611, "total_steps": 1624, "loss": 0.9508, "learning_rate": 1.570784194356904e-05, "epoch": 0.3762315270935961, "percentage": 37.62, "elapsed_time": "2:24:29", "remaining_time": "3:59:33"} +{"current_steps": 612, "total_steps": 1624, "loss": 0.9226, "learning_rate": 1.569017262091141e-05, "epoch": 0.3768472906403941, "percentage": 37.68, "elapsed_time": "2:24:41", "remaining_time": "3:59:15"} +{"current_steps": 613, "total_steps": 1624, "loss": 0.9345, "learning_rate": 1.567247698802723e-05, "epoch": 0.3774630541871921, "percentage": 37.75, "elapsed_time": "2:24:52", "remaining_time": "3:58:56"} +{"current_steps": 614, "total_steps": 1624, "loss": 0.9145, "learning_rate": 1.5654755126737574e-05, "epoch": 0.37807881773399016, "percentage": 37.81, "elapsed_time": "2:25:04", "remaining_time": "3:58:38"} +{"current_steps": 615, "total_steps": 1624, "loss": 0.9158, "learning_rate": 1.5637007118984814e-05, "epoch": 0.3786945812807882, "percentage": 37.87, "elapsed_time": "2:25:16", "remaining_time": "3:58:19"} +{"current_steps": 616, "total_steps": 1624, "loss": 0.9134, "learning_rate": 1.56192330468322e-05, "epoch": 0.3793103448275862, "percentage": 37.93, "elapsed_time": "2:25:27", "remaining_time": "3:58:01"} +{"current_steps": 617, "total_steps": 1624, "loss": 0.9373, "learning_rate": 1.560143299246351e-05, "epoch": 0.37992610837438423, "percentage": 37.99, "elapsed_time": "2:25:39", "remaining_time": "3:57:43"} +{"current_steps": 618, "total_steps": 1624, "loss": 0.9046, "learning_rate": 1.5583607038182656e-05, "epoch": 0.3805418719211823, "percentage": 38.05, "elapsed_time": "2:25:50", "remaining_time": "3:57:25"} +{"current_steps": 619, "total_steps": 1624, "loss": 0.8825, "learning_rate": 1.55657552664133e-05, "epoch": 0.3811576354679803, "percentage": 38.12, "elapsed_time": "2:26:02", "remaining_time": "3:57:06"} +{"current_steps": 620, "total_steps": 1624, "loss": 0.9311, "learning_rate": 1.5547877759698498e-05, "epoch": 0.3817733990147783, "percentage": 38.18, "elapsed_time": "2:26:14", "remaining_time": "3:56:48"} +{"current_steps": 621, "total_steps": 1624, "loss": 0.8446, "learning_rate": 1.5529974600700277e-05, "epoch": 0.38238916256157635, "percentage": 38.24, "elapsed_time": "2:26:25", "remaining_time": "3:56:30"} +{"current_steps": 622, "total_steps": 1624, "loss": 0.9478, "learning_rate": 1.551204587219928e-05, "epoch": 0.3830049261083744, "percentage": 38.3, "elapsed_time": "2:26:37", "remaining_time": "3:56:12"} +{"current_steps": 623, "total_steps": 1624, "loss": 0.8809, "learning_rate": 1.5494091657094384e-05, "epoch": 0.38362068965517243, "percentage": 38.36, "elapsed_time": "2:26:49", "remaining_time": "3:55:53"} +{"current_steps": 624, "total_steps": 1624, "loss": 0.9154, "learning_rate": 1.5476112038402314e-05, "epoch": 0.3842364532019704, "percentage": 38.42, "elapsed_time": "2:27:00", "remaining_time": "3:55:35"} +{"current_steps": 625, "total_steps": 1624, "loss": 0.8891, "learning_rate": 1.5458107099257245e-05, "epoch": 0.38485221674876846, "percentage": 38.49, "elapsed_time": "2:27:12", "remaining_time": "3:55:17"} +{"current_steps": 626, "total_steps": 1624, "loss": 0.9237, "learning_rate": 1.544007692291044e-05, "epoch": 0.3854679802955665, "percentage": 38.55, "elapsed_time": "2:27:24", "remaining_time": "3:55:00"} +{"current_steps": 627, "total_steps": 1624, "loss": 0.9111, "learning_rate": 1.5422021592729845e-05, "epoch": 0.38608374384236455, "percentage": 38.61, "elapsed_time": "2:27:35", "remaining_time": "3:54:41"} +{"current_steps": 628, "total_steps": 1624, "loss": 0.9974, "learning_rate": 1.540394119219972e-05, "epoch": 0.3866995073891626, "percentage": 38.67, "elapsed_time": "2:27:47", "remaining_time": "3:54:23"} +{"current_steps": 629, "total_steps": 1624, "loss": 0.8757, "learning_rate": 1.5385835804920234e-05, "epoch": 0.3873152709359606, "percentage": 38.73, "elapsed_time": "2:27:59", "remaining_time": "3:54:05"} +{"current_steps": 630, "total_steps": 1624, "loss": 0.8777, "learning_rate": 1.5367705514607107e-05, "epoch": 0.3879310344827586, "percentage": 38.79, "elapsed_time": "2:28:10", "remaining_time": "3:53:47"} +{"current_steps": 631, "total_steps": 1624, "loss": 0.8855, "learning_rate": 1.534955040509119e-05, "epoch": 0.38854679802955666, "percentage": 38.85, "elapsed_time": "2:28:22", "remaining_time": "3:53:29"} +{"current_steps": 632, "total_steps": 1624, "loss": 0.9275, "learning_rate": 1.5331370560318097e-05, "epoch": 0.3891625615763547, "percentage": 38.92, "elapsed_time": "2:28:33", "remaining_time": "3:53:11"} +{"current_steps": 633, "total_steps": 1624, "loss": 0.9067, "learning_rate": 1.5313166064347814e-05, "epoch": 0.3897783251231527, "percentage": 38.98, "elapsed_time": "2:28:45", "remaining_time": "3:52:53"} +{"current_steps": 634, "total_steps": 1624, "loss": 0.8741, "learning_rate": 1.5294937001354314e-05, "epoch": 0.39039408866995073, "percentage": 39.04, "elapsed_time": "2:28:56", "remaining_time": "3:52:35"} +{"current_steps": 635, "total_steps": 1624, "loss": 0.9062, "learning_rate": 1.527668345562516e-05, "epoch": 0.3910098522167488, "percentage": 39.1, "elapsed_time": "2:29:08", "remaining_time": "3:52:17"} +{"current_steps": 636, "total_steps": 1624, "loss": 0.9312, "learning_rate": 1.5258405511561117e-05, "epoch": 0.3916256157635468, "percentage": 39.16, "elapsed_time": "2:29:20", "remaining_time": "3:51:59"} +{"current_steps": 637, "total_steps": 1624, "loss": 0.8762, "learning_rate": 1.5240103253675756e-05, "epoch": 0.3922413793103448, "percentage": 39.22, "elapsed_time": "2:29:31", "remaining_time": "3:51:41"} +{"current_steps": 638, "total_steps": 1624, "loss": 0.8842, "learning_rate": 1.5221776766595082e-05, "epoch": 0.39285714285714285, "percentage": 39.29, "elapsed_time": "2:29:43", "remaining_time": "3:51:23"} +{"current_steps": 639, "total_steps": 1624, "loss": 0.9171, "learning_rate": 1.5203426135057134e-05, "epoch": 0.3934729064039409, "percentage": 39.35, "elapsed_time": "2:29:55", "remaining_time": "3:51:05"} +{"current_steps": 640, "total_steps": 1624, "loss": 0.8989, "learning_rate": 1.518505144391157e-05, "epoch": 0.39408866995073893, "percentage": 39.41, "elapsed_time": "2:30:06", "remaining_time": "3:50:48"} +{"current_steps": 641, "total_steps": 1624, "loss": 0.9284, "learning_rate": 1.516665277811932e-05, "epoch": 0.3947044334975369, "percentage": 39.47, "elapsed_time": "2:30:18", "remaining_time": "3:50:30"} +{"current_steps": 642, "total_steps": 1624, "loss": 0.9198, "learning_rate": 1.5148230222752146e-05, "epoch": 0.39532019704433496, "percentage": 39.53, "elapsed_time": "2:30:30", "remaining_time": "3:50:12"} +{"current_steps": 643, "total_steps": 1624, "loss": 0.9884, "learning_rate": 1.5129783862992282e-05, "epoch": 0.395935960591133, "percentage": 39.59, "elapsed_time": "2:30:42", "remaining_time": "3:49:55"} +{"current_steps": 644, "total_steps": 1624, "loss": 0.904, "learning_rate": 1.511131378413203e-05, "epoch": 0.39655172413793105, "percentage": 39.66, "elapsed_time": "2:30:53", "remaining_time": "3:49:37"} +{"current_steps": 645, "total_steps": 1624, "loss": 0.9306, "learning_rate": 1.5092820071573358e-05, "epoch": 0.39716748768472904, "percentage": 39.72, "elapsed_time": "2:31:05", "remaining_time": "3:49:19"} +{"current_steps": 646, "total_steps": 1624, "loss": 0.8944, "learning_rate": 1.5074302810827516e-05, "epoch": 0.3977832512315271, "percentage": 39.78, "elapsed_time": "2:31:16", "remaining_time": "3:49:01"} +{"current_steps": 647, "total_steps": 1624, "loss": 0.8717, "learning_rate": 1.5055762087514641e-05, "epoch": 0.3983990147783251, "percentage": 39.84, "elapsed_time": "2:31:28", "remaining_time": "3:48:43"} +{"current_steps": 648, "total_steps": 1624, "loss": 0.9329, "learning_rate": 1.503719798736334e-05, "epoch": 0.39901477832512317, "percentage": 39.9, "elapsed_time": "2:31:40", "remaining_time": "3:48:26"} +{"current_steps": 649, "total_steps": 1624, "loss": 0.8441, "learning_rate": 1.5018610596210328e-05, "epoch": 0.3996305418719212, "percentage": 39.96, "elapsed_time": "2:31:51", "remaining_time": "3:48:08"} +{"current_steps": 650, "total_steps": 1624, "loss": 0.8626, "learning_rate": 1.5000000000000002e-05, "epoch": 0.4002463054187192, "percentage": 40.02, "elapsed_time": "2:32:03", "remaining_time": "3:47:50"} +{"current_steps": 651, "total_steps": 1624, "loss": 0.9094, "learning_rate": 1.4981366284784058e-05, "epoch": 0.40086206896551724, "percentage": 40.09, "elapsed_time": "2:32:15", "remaining_time": "3:47:33"} +{"current_steps": 652, "total_steps": 1624, "loss": 0.9038, "learning_rate": 1.4962709536721087e-05, "epoch": 0.4014778325123153, "percentage": 40.15, "elapsed_time": "2:32:26", "remaining_time": "3:47:15"} +{"current_steps": 653, "total_steps": 1624, "loss": 0.9452, "learning_rate": 1.4944029842076184e-05, "epoch": 0.4020935960591133, "percentage": 40.21, "elapsed_time": "2:32:38", "remaining_time": "3:46:58"} +{"current_steps": 654, "total_steps": 1624, "loss": 0.9049, "learning_rate": 1.4925327287220546e-05, "epoch": 0.4027093596059113, "percentage": 40.27, "elapsed_time": "2:32:50", "remaining_time": "3:46:41"} +{"current_steps": 655, "total_steps": 1624, "loss": 0.8923, "learning_rate": 1.490660195863106e-05, "epoch": 0.40332512315270935, "percentage": 40.33, "elapsed_time": "2:33:01", "remaining_time": "3:46:23"} +{"current_steps": 656, "total_steps": 1624, "loss": 0.9204, "learning_rate": 1.4887853942889928e-05, "epoch": 0.4039408866995074, "percentage": 40.39, "elapsed_time": "2:33:13", "remaining_time": "3:46:06"} +{"current_steps": 657, "total_steps": 1624, "loss": 0.9405, "learning_rate": 1.486908332668424e-05, "epoch": 0.40455665024630544, "percentage": 40.46, "elapsed_time": "2:33:25", "remaining_time": "3:45:48"} +{"current_steps": 658, "total_steps": 1624, "loss": 0.9296, "learning_rate": 1.4850290196805595e-05, "epoch": 0.4051724137931034, "percentage": 40.52, "elapsed_time": "2:33:36", "remaining_time": "3:45:31"} +{"current_steps": 659, "total_steps": 1624, "loss": 0.8995, "learning_rate": 1.4831474640149686e-05, "epoch": 0.40578817733990147, "percentage": 40.58, "elapsed_time": "2:33:48", "remaining_time": "3:45:13"} +{"current_steps": 660, "total_steps": 1624, "loss": 0.9031, "learning_rate": 1.4812636743715912e-05, "epoch": 0.4064039408866995, "percentage": 40.64, "elapsed_time": "2:33:59", "remaining_time": "3:44:55"} +{"current_steps": 661, "total_steps": 1624, "loss": 0.9057, "learning_rate": 1.4793776594606953e-05, "epoch": 0.40701970443349755, "percentage": 40.7, "elapsed_time": "2:34:11", "remaining_time": "3:44:37"} +{"current_steps": 662, "total_steps": 1624, "loss": 0.9258, "learning_rate": 1.477489428002839e-05, "epoch": 0.40763546798029554, "percentage": 40.76, "elapsed_time": "2:34:22", "remaining_time": "3:44:20"} +{"current_steps": 663, "total_steps": 1624, "loss": 0.9632, "learning_rate": 1.4755989887288287e-05, "epoch": 0.4082512315270936, "percentage": 40.83, "elapsed_time": "2:34:34", "remaining_time": "3:44:02"} +{"current_steps": 664, "total_steps": 1624, "loss": 0.9178, "learning_rate": 1.4737063503796803e-05, "epoch": 0.4088669950738916, "percentage": 40.89, "elapsed_time": "2:34:46", "remaining_time": "3:43:45"} +{"current_steps": 665, "total_steps": 1624, "loss": 0.9208, "learning_rate": 1.4718115217065766e-05, "epoch": 0.40948275862068967, "percentage": 40.95, "elapsed_time": "2:34:57", "remaining_time": "3:43:28"} +{"current_steps": 666, "total_steps": 1624, "loss": 0.9079, "learning_rate": 1.4699145114708286e-05, "epoch": 0.4100985221674877, "percentage": 41.01, "elapsed_time": "2:35:09", "remaining_time": "3:43:10"} +{"current_steps": 667, "total_steps": 1624, "loss": 0.9374, "learning_rate": 1.4680153284438345e-05, "epoch": 0.4107142857142857, "percentage": 41.07, "elapsed_time": "2:35:21", "remaining_time": "3:42:53"} +{"current_steps": 668, "total_steps": 1624, "loss": 0.904, "learning_rate": 1.4661139814070388e-05, "epoch": 0.41133004926108374, "percentage": 41.13, "elapsed_time": "2:35:32", "remaining_time": "3:42:36"} +{"current_steps": 669, "total_steps": 1624, "loss": 0.977, "learning_rate": 1.4642104791518925e-05, "epoch": 0.4119458128078818, "percentage": 41.19, "elapsed_time": "2:35:44", "remaining_time": "3:42:19"} +{"current_steps": 670, "total_steps": 1624, "loss": 0.9435, "learning_rate": 1.462304830479811e-05, "epoch": 0.4125615763546798, "percentage": 41.26, "elapsed_time": "2:35:56", "remaining_time": "3:42:02"} +{"current_steps": 671, "total_steps": 1624, "loss": 0.9159, "learning_rate": 1.4603970442021347e-05, "epoch": 0.4131773399014778, "percentage": 41.32, "elapsed_time": "2:36:07", "remaining_time": "3:41:44"} +{"current_steps": 672, "total_steps": 1624, "loss": 0.8934, "learning_rate": 1.458487129140088e-05, "epoch": 0.41379310344827586, "percentage": 41.38, "elapsed_time": "2:36:19", "remaining_time": "3:41:27"} +{"current_steps": 673, "total_steps": 1624, "loss": 0.9294, "learning_rate": 1.4565750941247387e-05, "epoch": 0.4144088669950739, "percentage": 41.44, "elapsed_time": "2:36:31", "remaining_time": "3:41:10"} +{"current_steps": 674, "total_steps": 1624, "loss": 0.8515, "learning_rate": 1.454660947996956e-05, "epoch": 0.41502463054187194, "percentage": 41.5, "elapsed_time": "2:36:42", "remaining_time": "3:40:53"} +{"current_steps": 675, "total_steps": 1624, "loss": 0.8734, "learning_rate": 1.4527446996073714e-05, "epoch": 0.41564039408866993, "percentage": 41.56, "elapsed_time": "2:36:54", "remaining_time": "3:40:35"} +{"current_steps": 676, "total_steps": 1624, "loss": 0.9217, "learning_rate": 1.4508263578163358e-05, "epoch": 0.41625615763546797, "percentage": 41.63, "elapsed_time": "2:37:05", "remaining_time": "3:40:18"} +{"current_steps": 677, "total_steps": 1624, "loss": 0.9419, "learning_rate": 1.4489059314938803e-05, "epoch": 0.416871921182266, "percentage": 41.69, "elapsed_time": "2:37:17", "remaining_time": "3:40:01"} +{"current_steps": 678, "total_steps": 1624, "loss": 0.9307, "learning_rate": 1.4469834295196743e-05, "epoch": 0.41748768472906406, "percentage": 41.75, "elapsed_time": "2:37:29", "remaining_time": "3:39:44"} +{"current_steps": 679, "total_steps": 1624, "loss": 0.8495, "learning_rate": 1.4450588607829848e-05, "epoch": 0.41810344827586204, "percentage": 41.81, "elapsed_time": "2:37:40", "remaining_time": "3:39:27"} +{"current_steps": 680, "total_steps": 1624, "loss": 0.9298, "learning_rate": 1.4431322341826348e-05, "epoch": 0.4187192118226601, "percentage": 41.87, "elapsed_time": "2:37:52", "remaining_time": "3:39:10"} +{"current_steps": 681, "total_steps": 1624, "loss": 0.9229, "learning_rate": 1.4412035586269624e-05, "epoch": 0.41933497536945813, "percentage": 41.93, "elapsed_time": "2:38:04", "remaining_time": "3:38:53"} +{"current_steps": 682, "total_steps": 1624, "loss": 0.9196, "learning_rate": 1.4392728430337801e-05, "epoch": 0.41995073891625617, "percentage": 42.0, "elapsed_time": "2:38:15", "remaining_time": "3:38:36"} +{"current_steps": 683, "total_steps": 1624, "loss": 0.9202, "learning_rate": 1.437340096330332e-05, "epoch": 0.4205665024630542, "percentage": 42.06, "elapsed_time": "2:38:27", "remaining_time": "3:38:19"} +{"current_steps": 684, "total_steps": 1624, "loss": 0.9126, "learning_rate": 1.4354053274532558e-05, "epoch": 0.4211822660098522, "percentage": 42.12, "elapsed_time": "2:38:39", "remaining_time": "3:38:02"} +{"current_steps": 685, "total_steps": 1624, "loss": 0.868, "learning_rate": 1.433468545348537e-05, "epoch": 0.42179802955665024, "percentage": 42.18, "elapsed_time": "2:38:50", "remaining_time": "3:37:45"} +{"current_steps": 686, "total_steps": 1624, "loss": 0.9238, "learning_rate": 1.4315297589714709e-05, "epoch": 0.4224137931034483, "percentage": 42.24, "elapsed_time": "2:39:02", "remaining_time": "3:37:28"} +{"current_steps": 687, "total_steps": 1624, "loss": 0.9972, "learning_rate": 1.429588977286621e-05, "epoch": 0.42302955665024633, "percentage": 42.3, "elapsed_time": "2:39:14", "remaining_time": "3:37:11"} +{"current_steps": 688, "total_steps": 1624, "loss": 0.9195, "learning_rate": 1.427646209267775e-05, "epoch": 0.4236453201970443, "percentage": 42.36, "elapsed_time": "2:39:25", "remaining_time": "3:36:54"} +{"current_steps": 689, "total_steps": 1624, "loss": 0.8992, "learning_rate": 1.4257014638979056e-05, "epoch": 0.42426108374384236, "percentage": 42.43, "elapsed_time": "2:39:37", "remaining_time": "3:36:37"} +{"current_steps": 690, "total_steps": 1624, "loss": 0.8421, "learning_rate": 1.4237547501691298e-05, "epoch": 0.4248768472906404, "percentage": 42.49, "elapsed_time": "2:39:49", "remaining_time": "3:36:20"} +{"current_steps": 691, "total_steps": 1624, "loss": 0.8563, "learning_rate": 1.4218060770826636e-05, "epoch": 0.42549261083743845, "percentage": 42.55, "elapsed_time": "2:40:01", "remaining_time": "3:36:03"} +{"current_steps": 692, "total_steps": 1624, "loss": 0.9477, "learning_rate": 1.4198554536487844e-05, "epoch": 0.42610837438423643, "percentage": 42.61, "elapsed_time": "2:40:12", "remaining_time": "3:35:46"} +{"current_steps": 693, "total_steps": 1624, "loss": 0.9262, "learning_rate": 1.4179028888867868e-05, "epoch": 0.4267241379310345, "percentage": 42.67, "elapsed_time": "2:40:24", "remaining_time": "3:35:29"} +{"current_steps": 694, "total_steps": 1624, "loss": 0.9373, "learning_rate": 1.415948391824942e-05, "epoch": 0.4273399014778325, "percentage": 42.73, "elapsed_time": "2:40:35", "remaining_time": "3:35:12"} +{"current_steps": 695, "total_steps": 1624, "loss": 0.9538, "learning_rate": 1.4139919715004558e-05, "epoch": 0.42795566502463056, "percentage": 42.8, "elapsed_time": "2:40:47", "remaining_time": "3:34:55"} +{"current_steps": 696, "total_steps": 1624, "loss": 0.937, "learning_rate": 1.4120336369594266e-05, "epoch": 0.42857142857142855, "percentage": 42.86, "elapsed_time": "2:40:59", "remaining_time": "3:34:38"} +{"current_steps": 697, "total_steps": 1624, "loss": 0.8941, "learning_rate": 1.4100733972568038e-05, "epoch": 0.4291871921182266, "percentage": 42.92, "elapsed_time": "2:41:10", "remaining_time": "3:34:22"} +{"current_steps": 698, "total_steps": 1624, "loss": 0.9012, "learning_rate": 1.408111261456346e-05, "epoch": 0.42980295566502463, "percentage": 42.98, "elapsed_time": "2:41:22", "remaining_time": "3:34:05"} +{"current_steps": 699, "total_steps": 1624, "loss": 0.9038, "learning_rate": 1.406147238630579e-05, "epoch": 0.4304187192118227, "percentage": 43.04, "elapsed_time": "2:41:33", "remaining_time": "3:33:47"} +{"current_steps": 700, "total_steps": 1624, "loss": 0.8678, "learning_rate": 1.4041813378607534e-05, "epoch": 0.43103448275862066, "percentage": 43.1, "elapsed_time": "2:41:45", "remaining_time": "3:33:31"} +{"current_steps": 701, "total_steps": 1624, "loss": 0.9431, "learning_rate": 1.4022135682368041e-05, "epoch": 0.4316502463054187, "percentage": 43.17, "elapsed_time": "2:41:57", "remaining_time": "3:33:14"} +{"current_steps": 702, "total_steps": 1624, "loss": 0.9279, "learning_rate": 1.400243938857306e-05, "epoch": 0.43226600985221675, "percentage": 43.23, "elapsed_time": "2:42:08", "remaining_time": "3:32:57"} +{"current_steps": 703, "total_steps": 1624, "loss": 0.9409, "learning_rate": 1.3982724588294334e-05, "epoch": 0.4328817733990148, "percentage": 43.29, "elapsed_time": "2:42:20", "remaining_time": "3:32:40"} +{"current_steps": 704, "total_steps": 1624, "loss": 0.9551, "learning_rate": 1.3962991372689181e-05, "epoch": 0.43349753694581283, "percentage": 43.35, "elapsed_time": "2:42:31", "remaining_time": "3:32:23"} +{"current_steps": 705, "total_steps": 1624, "loss": 0.9008, "learning_rate": 1.3943239833000068e-05, "epoch": 0.4341133004926108, "percentage": 43.41, "elapsed_time": "2:42:43", "remaining_time": "3:32:07"} +{"current_steps": 706, "total_steps": 1624, "loss": 0.9186, "learning_rate": 1.3923470060554185e-05, "epoch": 0.43472906403940886, "percentage": 43.47, "elapsed_time": "2:42:55", "remaining_time": "3:31:50"} +{"current_steps": 707, "total_steps": 1624, "loss": 0.9629, "learning_rate": 1.3903682146763027e-05, "epoch": 0.4353448275862069, "percentage": 43.53, "elapsed_time": "2:43:06", "remaining_time": "3:31:33"} +{"current_steps": 708, "total_steps": 1624, "loss": 0.8787, "learning_rate": 1.3883876183121974e-05, "epoch": 0.43596059113300495, "percentage": 43.6, "elapsed_time": "2:43:18", "remaining_time": "3:31:16"} +{"current_steps": 709, "total_steps": 1624, "loss": 0.9121, "learning_rate": 1.3864052261209859e-05, "epoch": 0.43657635467980294, "percentage": 43.66, "elapsed_time": "2:43:29", "remaining_time": "3:31:00"} +{"current_steps": 710, "total_steps": 1624, "loss": 0.9093, "learning_rate": 1.3844210472688557e-05, "epoch": 0.437192118226601, "percentage": 43.72, "elapsed_time": "2:43:41", "remaining_time": "3:30:43"} +{"current_steps": 711, "total_steps": 1624, "loss": 0.9282, "learning_rate": 1.3824350909302553e-05, "epoch": 0.437807881773399, "percentage": 43.78, "elapsed_time": "2:43:53", "remaining_time": "3:30:27"} +{"current_steps": 712, "total_steps": 1624, "loss": 0.9147, "learning_rate": 1.3804473662878519e-05, "epoch": 0.43842364532019706, "percentage": 43.84, "elapsed_time": "2:44:04", "remaining_time": "3:30:10"} +{"current_steps": 713, "total_steps": 1624, "loss": 0.8942, "learning_rate": 1.3784578825324885e-05, "epoch": 0.43903940886699505, "percentage": 43.9, "elapsed_time": "2:44:16", "remaining_time": "3:29:53"} +{"current_steps": 714, "total_steps": 1624, "loss": 0.9101, "learning_rate": 1.3764666488631431e-05, "epoch": 0.4396551724137931, "percentage": 43.97, "elapsed_time": "2:44:27", "remaining_time": "3:29:36"} +{"current_steps": 715, "total_steps": 1624, "loss": 0.9133, "learning_rate": 1.3744736744868832e-05, "epoch": 0.44027093596059114, "percentage": 44.03, "elapsed_time": "2:44:39", "remaining_time": "3:29:20"} +{"current_steps": 716, "total_steps": 1624, "loss": 0.9139, "learning_rate": 1.3724789686188266e-05, "epoch": 0.4408866995073892, "percentage": 44.09, "elapsed_time": "2:44:51", "remaining_time": "3:29:03"} +{"current_steps": 717, "total_steps": 1624, "loss": 0.9236, "learning_rate": 1.3704825404820965e-05, "epoch": 0.44150246305418717, "percentage": 44.15, "elapsed_time": "2:45:02", "remaining_time": "3:28:47"} +{"current_steps": 718, "total_steps": 1624, "loss": 0.9677, "learning_rate": 1.368484399307779e-05, "epoch": 0.4421182266009852, "percentage": 44.21, "elapsed_time": "2:45:14", "remaining_time": "3:28:30"} +{"current_steps": 719, "total_steps": 1624, "loss": 0.8712, "learning_rate": 1.3664845543348823e-05, "epoch": 0.44273399014778325, "percentage": 44.27, "elapsed_time": "2:45:26", "remaining_time": "3:28:13"} +{"current_steps": 720, "total_steps": 1624, "loss": 0.9226, "learning_rate": 1.3644830148102915e-05, "epoch": 0.4433497536945813, "percentage": 44.33, "elapsed_time": "2:45:37", "remaining_time": "3:27:57"} +{"current_steps": 721, "total_steps": 1624, "loss": 0.9199, "learning_rate": 1.3624797899887272e-05, "epoch": 0.44396551724137934, "percentage": 44.4, "elapsed_time": "2:45:49", "remaining_time": "3:27:41"} +{"current_steps": 722, "total_steps": 1624, "loss": 0.9181, "learning_rate": 1.360474889132703e-05, "epoch": 0.4445812807881773, "percentage": 44.46, "elapsed_time": "2:46:01", "remaining_time": "3:27:24"} +{"current_steps": 723, "total_steps": 1624, "loss": 0.8874, "learning_rate": 1.358468321512481e-05, "epoch": 0.44519704433497537, "percentage": 44.52, "elapsed_time": "2:46:12", "remaining_time": "3:27:08"} +{"current_steps": 724, "total_steps": 1624, "loss": 0.9102, "learning_rate": 1.356460096406031e-05, "epoch": 0.4458128078817734, "percentage": 44.58, "elapsed_time": "2:46:24", "remaining_time": "3:26:51"} +{"current_steps": 725, "total_steps": 1624, "loss": 0.9343, "learning_rate": 1.3544502230989868e-05, "epoch": 0.44642857142857145, "percentage": 44.64, "elapsed_time": "2:46:36", "remaining_time": "3:26:35"} +{"current_steps": 726, "total_steps": 1624, "loss": 0.8918, "learning_rate": 1.3524387108846032e-05, "epoch": 0.44704433497536944, "percentage": 44.7, "elapsed_time": "2:46:47", "remaining_time": "3:26:18"} +{"current_steps": 727, "total_steps": 1624, "loss": 0.9304, "learning_rate": 1.3504255690637122e-05, "epoch": 0.4476600985221675, "percentage": 44.77, "elapsed_time": "2:46:59", "remaining_time": "3:26:02"} +{"current_steps": 728, "total_steps": 1624, "loss": 0.9121, "learning_rate": 1.348410806944681e-05, "epoch": 0.4482758620689655, "percentage": 44.83, "elapsed_time": "2:47:11", "remaining_time": "3:25:45"} +{"current_steps": 729, "total_steps": 1624, "loss": 0.8958, "learning_rate": 1.3463944338433692e-05, "epoch": 0.44889162561576357, "percentage": 44.89, "elapsed_time": "2:47:22", "remaining_time": "3:25:29"} +{"current_steps": 730, "total_steps": 1624, "loss": 0.9149, "learning_rate": 1.344376459083085e-05, "epoch": 0.44950738916256155, "percentage": 44.95, "elapsed_time": "2:47:34", "remaining_time": "3:25:13"} +{"current_steps": 731, "total_steps": 1624, "loss": 0.9304, "learning_rate": 1.342356891994542e-05, "epoch": 0.4501231527093596, "percentage": 45.01, "elapsed_time": "2:47:45", "remaining_time": "3:24:56"} +{"current_steps": 732, "total_steps": 1624, "loss": 0.9481, "learning_rate": 1.3403357419158176e-05, "epoch": 0.45073891625615764, "percentage": 45.07, "elapsed_time": "2:47:57", "remaining_time": "3:24:40"} +{"current_steps": 733, "total_steps": 1624, "loss": 0.902, "learning_rate": 1.3383130181923073e-05, "epoch": 0.4513546798029557, "percentage": 45.14, "elapsed_time": "2:48:08", "remaining_time": "3:24:23"} +{"current_steps": 734, "total_steps": 1624, "loss": 0.899, "learning_rate": 1.3362887301766834e-05, "epoch": 0.45197044334975367, "percentage": 45.2, "elapsed_time": "2:48:20", "remaining_time": "3:24:07"} +{"current_steps": 735, "total_steps": 1624, "loss": 0.9375, "learning_rate": 1.3342628872288505e-05, "epoch": 0.4525862068965517, "percentage": 45.26, "elapsed_time": "2:48:32", "remaining_time": "3:23:50"} +{"current_steps": 736, "total_steps": 1624, "loss": 0.914, "learning_rate": 1.3322354987159045e-05, "epoch": 0.45320197044334976, "percentage": 45.32, "elapsed_time": "2:48:43", "remaining_time": "3:23:34"} +{"current_steps": 737, "total_steps": 1624, "loss": 0.8948, "learning_rate": 1.3302065740120864e-05, "epoch": 0.4538177339901478, "percentage": 45.38, "elapsed_time": "2:48:55", "remaining_time": "3:23:18"} +{"current_steps": 738, "total_steps": 1624, "loss": 0.8688, "learning_rate": 1.32817612249874e-05, "epoch": 0.4544334975369458, "percentage": 45.44, "elapsed_time": "2:49:07", "remaining_time": "3:23:01"} +{"current_steps": 739, "total_steps": 1624, "loss": 0.927, "learning_rate": 1.3261441535642696e-05, "epoch": 0.45504926108374383, "percentage": 45.5, "elapsed_time": "2:49:18", "remaining_time": "3:22:45"} +{"current_steps": 740, "total_steps": 1624, "loss": 0.8864, "learning_rate": 1.3241106766040957e-05, "epoch": 0.45566502463054187, "percentage": 45.57, "elapsed_time": "2:49:30", "remaining_time": "3:22:29"} +{"current_steps": 741, "total_steps": 1624, "loss": 0.8997, "learning_rate": 1.3220757010206111e-05, "epoch": 0.4562807881773399, "percentage": 45.63, "elapsed_time": "2:49:41", "remaining_time": "3:22:13"} +{"current_steps": 742, "total_steps": 1624, "loss": 0.9251, "learning_rate": 1.3200392362231385e-05, "epoch": 0.45689655172413796, "percentage": 45.69, "elapsed_time": "2:49:53", "remaining_time": "3:21:56"} +{"current_steps": 743, "total_steps": 1624, "loss": 0.8972, "learning_rate": 1.3180012916278855e-05, "epoch": 0.45751231527093594, "percentage": 45.75, "elapsed_time": "2:50:05", "remaining_time": "3:21:40"} +{"current_steps": 744, "total_steps": 1624, "loss": 0.8955, "learning_rate": 1.3159618766579032e-05, "epoch": 0.458128078817734, "percentage": 45.81, "elapsed_time": "2:50:16", "remaining_time": "3:21:24"} +{"current_steps": 745, "total_steps": 1624, "loss": 0.9292, "learning_rate": 1.3139210007430404e-05, "epoch": 0.45874384236453203, "percentage": 45.87, "elapsed_time": "2:50:28", "remaining_time": "3:21:08"} +{"current_steps": 746, "total_steps": 1624, "loss": 0.8929, "learning_rate": 1.3118786733199014e-05, "epoch": 0.45935960591133007, "percentage": 45.94, "elapsed_time": "2:50:40", "remaining_time": "3:20:52"} +{"current_steps": 747, "total_steps": 1624, "loss": 0.903, "learning_rate": 1.3098349038318026e-05, "epoch": 0.45997536945812806, "percentage": 46.0, "elapsed_time": "2:50:51", "remaining_time": "3:20:35"} +{"current_steps": 748, "total_steps": 1624, "loss": 0.9159, "learning_rate": 1.3077897017287274e-05, "epoch": 0.4605911330049261, "percentage": 46.06, "elapsed_time": "2:51:03", "remaining_time": "3:20:19"} +{"current_steps": 749, "total_steps": 1624, "loss": 0.9741, "learning_rate": 1.3057430764672834e-05, "epoch": 0.46120689655172414, "percentage": 46.12, "elapsed_time": "2:51:14", "remaining_time": "3:20:03"} +{"current_steps": 750, "total_steps": 1624, "loss": 0.8568, "learning_rate": 1.3036950375106588e-05, "epoch": 0.4618226600985222, "percentage": 46.18, "elapsed_time": "2:51:26", "remaining_time": "3:19:47"} +{"current_steps": 751, "total_steps": 1624, "loss": 0.8799, "learning_rate": 1.3016455943285787e-05, "epoch": 0.4624384236453202, "percentage": 46.24, "elapsed_time": "2:51:38", "remaining_time": "3:19:31"} +{"current_steps": 752, "total_steps": 1624, "loss": 0.8193, "learning_rate": 1.2995947563972604e-05, "epoch": 0.4630541871921182, "percentage": 46.31, "elapsed_time": "2:51:49", "remaining_time": "3:19:15"} +{"current_steps": 753, "total_steps": 1624, "loss": 0.8998, "learning_rate": 1.297542533199371e-05, "epoch": 0.46366995073891626, "percentage": 46.37, "elapsed_time": "2:52:01", "remaining_time": "3:18:59"} +{"current_steps": 754, "total_steps": 1624, "loss": 0.8771, "learning_rate": 1.2954889342239825e-05, "epoch": 0.4642857142857143, "percentage": 46.43, "elapsed_time": "2:52:13", "remaining_time": "3:18:42"} +{"current_steps": 755, "total_steps": 1624, "loss": 0.9268, "learning_rate": 1.2934339689665274e-05, "epoch": 0.4649014778325123, "percentage": 46.49, "elapsed_time": "2:52:24", "remaining_time": "3:18:26"} +{"current_steps": 756, "total_steps": 1624, "loss": 0.8925, "learning_rate": 1.2913776469287572e-05, "epoch": 0.46551724137931033, "percentage": 46.55, "elapsed_time": "2:52:36", "remaining_time": "3:18:10"} +{"current_steps": 757, "total_steps": 1624, "loss": 0.9417, "learning_rate": 1.2893199776186957e-05, "epoch": 0.4661330049261084, "percentage": 46.61, "elapsed_time": "2:52:47", "remaining_time": "3:17:54"} +{"current_steps": 758, "total_steps": 1624, "loss": 0.9429, "learning_rate": 1.2872609705505965e-05, "epoch": 0.4667487684729064, "percentage": 46.67, "elapsed_time": "2:52:59", "remaining_time": "3:17:37"} +{"current_steps": 759, "total_steps": 1624, "loss": 0.8945, "learning_rate": 1.2852006352448991e-05, "epoch": 0.46736453201970446, "percentage": 46.74, "elapsed_time": "2:53:10", "remaining_time": "3:17:21"} +{"current_steps": 760, "total_steps": 1624, "loss": 0.9002, "learning_rate": 1.283138981228184e-05, "epoch": 0.46798029556650245, "percentage": 46.8, "elapsed_time": "2:53:21", "remaining_time": "3:17:05"} +{"current_steps": 761, "total_steps": 1624, "loss": 0.892, "learning_rate": 1.281076018033129e-05, "epoch": 0.4685960591133005, "percentage": 46.86, "elapsed_time": "2:53:33", "remaining_time": "3:16:49"} +{"current_steps": 762, "total_steps": 1624, "loss": 0.9479, "learning_rate": 1.2790117551984664e-05, "epoch": 0.46921182266009853, "percentage": 46.92, "elapsed_time": "2:53:45", "remaining_time": "3:16:33"} +{"current_steps": 763, "total_steps": 1624, "loss": 0.9406, "learning_rate": 1.2769462022689365e-05, "epoch": 0.4698275862068966, "percentage": 46.98, "elapsed_time": "2:53:56", "remaining_time": "3:16:17"} +{"current_steps": 764, "total_steps": 1624, "loss": 0.8677, "learning_rate": 1.2748793687952455e-05, "epoch": 0.47044334975369456, "percentage": 47.04, "elapsed_time": "2:54:08", "remaining_time": "3:16:01"} +{"current_steps": 765, "total_steps": 1624, "loss": 0.9085, "learning_rate": 1.2728112643340201e-05, "epoch": 0.4710591133004926, "percentage": 47.11, "elapsed_time": "2:54:20", "remaining_time": "3:15:45"} +{"current_steps": 766, "total_steps": 1624, "loss": 0.9288, "learning_rate": 1.2707418984477637e-05, "epoch": 0.47167487684729065, "percentage": 47.17, "elapsed_time": "2:54:31", "remaining_time": "3:15:29"} +{"current_steps": 767, "total_steps": 1624, "loss": 0.8582, "learning_rate": 1.2686712807048136e-05, "epoch": 0.4722906403940887, "percentage": 47.23, "elapsed_time": "2:54:43", "remaining_time": "3:15:13"} +{"current_steps": 768, "total_steps": 1624, "loss": 0.8825, "learning_rate": 1.2665994206792937e-05, "epoch": 0.4729064039408867, "percentage": 47.29, "elapsed_time": "2:54:54", "remaining_time": "3:14:57"} +{"current_steps": 769, "total_steps": 1624, "loss": 0.9299, "learning_rate": 1.2645263279510731e-05, "epoch": 0.4735221674876847, "percentage": 47.35, "elapsed_time": "2:55:06", "remaining_time": "3:14:41"} +{"current_steps": 770, "total_steps": 1624, "loss": 0.9638, "learning_rate": 1.26245201210572e-05, "epoch": 0.47413793103448276, "percentage": 47.41, "elapsed_time": "2:55:18", "remaining_time": "3:14:25"} +{"current_steps": 771, "total_steps": 1624, "loss": 0.8786, "learning_rate": 1.260376482734458e-05, "epoch": 0.4747536945812808, "percentage": 47.48, "elapsed_time": "2:55:30", "remaining_time": "3:14:10"} +{"current_steps": 772, "total_steps": 1624, "loss": 0.9136, "learning_rate": 1.258299749434123e-05, "epoch": 0.4753694581280788, "percentage": 47.54, "elapsed_time": "2:55:41", "remaining_time": "3:13:54"} +{"current_steps": 773, "total_steps": 1624, "loss": 0.8861, "learning_rate": 1.2562218218071162e-05, "epoch": 0.47598522167487683, "percentage": 47.6, "elapsed_time": "2:55:53", "remaining_time": "3:13:38"} +{"current_steps": 774, "total_steps": 1624, "loss": 0.9332, "learning_rate": 1.2541427094613621e-05, "epoch": 0.4766009852216749, "percentage": 47.66, "elapsed_time": "2:56:05", "remaining_time": "3:13:22"} +{"current_steps": 775, "total_steps": 1624, "loss": 0.9682, "learning_rate": 1.2520624220102623e-05, "epoch": 0.4772167487684729, "percentage": 47.72, "elapsed_time": "2:56:16", "remaining_time": "3:13:06"} +{"current_steps": 776, "total_steps": 1624, "loss": 0.8953, "learning_rate": 1.2499809690726523e-05, "epoch": 0.47783251231527096, "percentage": 47.78, "elapsed_time": "2:56:28", "remaining_time": "3:12:50"} +{"current_steps": 777, "total_steps": 1624, "loss": 0.9217, "learning_rate": 1.2478983602727568e-05, "epoch": 0.47844827586206895, "percentage": 47.84, "elapsed_time": "2:56:39", "remaining_time": "3:12:34"} +{"current_steps": 778, "total_steps": 1624, "loss": 0.9198, "learning_rate": 1.2458146052401444e-05, "epoch": 0.479064039408867, "percentage": 47.91, "elapsed_time": "2:56:51", "remaining_time": "3:12:19"} +{"current_steps": 779, "total_steps": 1624, "loss": 0.8791, "learning_rate": 1.243729713609684e-05, "epoch": 0.47967980295566504, "percentage": 47.97, "elapsed_time": "2:57:03", "remaining_time": "3:12:03"} +{"current_steps": 780, "total_steps": 1624, "loss": 0.8937, "learning_rate": 1.2416436950215001e-05, "epoch": 0.4802955665024631, "percentage": 48.03, "elapsed_time": "2:57:15", "remaining_time": "3:11:47"} +{"current_steps": 781, "total_steps": 1624, "loss": 0.8799, "learning_rate": 1.2395565591209273e-05, "epoch": 0.48091133004926107, "percentage": 48.09, "elapsed_time": "2:57:26", "remaining_time": "3:11:31"} +{"current_steps": 782, "total_steps": 1624, "loss": 0.9509, "learning_rate": 1.2374683155584677e-05, "epoch": 0.4815270935960591, "percentage": 48.15, "elapsed_time": "2:57:38", "remaining_time": "3:11:16"} +{"current_steps": 783, "total_steps": 1624, "loss": 0.8518, "learning_rate": 1.2353789739897437e-05, "epoch": 0.48214285714285715, "percentage": 48.21, "elapsed_time": "2:57:50", "remaining_time": "3:11:00"} +{"current_steps": 784, "total_steps": 1624, "loss": 0.8886, "learning_rate": 1.2332885440754552e-05, "epoch": 0.4827586206896552, "percentage": 48.28, "elapsed_time": "2:58:01", "remaining_time": "3:10:44"} +{"current_steps": 785, "total_steps": 1624, "loss": 0.8859, "learning_rate": 1.2311970354813345e-05, "epoch": 0.4833743842364532, "percentage": 48.34, "elapsed_time": "2:58:13", "remaining_time": "3:10:29"} +{"current_steps": 786, "total_steps": 1624, "loss": 0.9429, "learning_rate": 1.2291044578781015e-05, "epoch": 0.4839901477832512, "percentage": 48.4, "elapsed_time": "2:58:25", "remaining_time": "3:10:13"} +{"current_steps": 787, "total_steps": 1624, "loss": 0.8956, "learning_rate": 1.2270108209414186e-05, "epoch": 0.48460591133004927, "percentage": 48.46, "elapsed_time": "2:58:36", "remaining_time": "3:09:57"} +{"current_steps": 788, "total_steps": 1624, "loss": 0.8517, "learning_rate": 1.2249161343518467e-05, "epoch": 0.4852216748768473, "percentage": 48.52, "elapsed_time": "2:58:48", "remaining_time": "3:09:41"} +{"current_steps": 789, "total_steps": 1624, "loss": 0.8953, "learning_rate": 1.2228204077948002e-05, "epoch": 0.4858374384236453, "percentage": 48.58, "elapsed_time": "2:58:59", "remaining_time": "3:09:26"} +{"current_steps": 790, "total_steps": 1624, "loss": 0.9217, "learning_rate": 1.220723650960502e-05, "epoch": 0.48645320197044334, "percentage": 48.65, "elapsed_time": "2:59:11", "remaining_time": "3:09:09"} +{"current_steps": 791, "total_steps": 1624, "loss": 0.9337, "learning_rate": 1.2186258735439381e-05, "epoch": 0.4870689655172414, "percentage": 48.71, "elapsed_time": "2:59:22", "remaining_time": "3:08:53"} +{"current_steps": 792, "total_steps": 1624, "loss": 0.9751, "learning_rate": 1.2165270852448144e-05, "epoch": 0.4876847290640394, "percentage": 48.77, "elapsed_time": "2:59:33", "remaining_time": "3:08:38"} +{"current_steps": 793, "total_steps": 1624, "loss": 0.8721, "learning_rate": 1.214427295767511e-05, "epoch": 0.4883004926108374, "percentage": 48.83, "elapsed_time": "2:59:45", "remaining_time": "3:08:22"} +{"current_steps": 794, "total_steps": 1624, "loss": 0.8979, "learning_rate": 1.2123265148210363e-05, "epoch": 0.48891625615763545, "percentage": 48.89, "elapsed_time": "2:59:57", "remaining_time": "3:08:06"} +{"current_steps": 795, "total_steps": 1624, "loss": 0.9572, "learning_rate": 1.2102247521189838e-05, "epoch": 0.4895320197044335, "percentage": 48.95, "elapsed_time": "3:00:08", "remaining_time": "3:07:50"} +{"current_steps": 796, "total_steps": 1624, "loss": 0.8931, "learning_rate": 1.2081220173794862e-05, "epoch": 0.49014778325123154, "percentage": 49.01, "elapsed_time": "3:00:19", "remaining_time": "3:07:34"} +{"current_steps": 797, "total_steps": 1624, "loss": 0.8953, "learning_rate": 1.2060183203251709e-05, "epoch": 0.4907635467980296, "percentage": 49.08, "elapsed_time": "3:00:31", "remaining_time": "3:07:19"} +{"current_steps": 798, "total_steps": 1624, "loss": 0.9233, "learning_rate": 1.2039136706831146e-05, "epoch": 0.49137931034482757, "percentage": 49.14, "elapsed_time": "3:00:43", "remaining_time": "3:07:03"} +{"current_steps": 799, "total_steps": 1624, "loss": 0.9318, "learning_rate": 1.2018080781847985e-05, "epoch": 0.4919950738916256, "percentage": 49.2, "elapsed_time": "3:00:54", "remaining_time": "3:06:47"} +{"current_steps": 800, "total_steps": 1624, "loss": 0.9188, "learning_rate": 1.199701552566064e-05, "epoch": 0.49261083743842365, "percentage": 49.26, "elapsed_time": "3:01:06", "remaining_time": "3:06:32"} +{"current_steps": 800, "total_steps": 1624, "eval_loss": 0.9125872254371643, "epoch": 0.49261083743842365, "percentage": 49.26, "elapsed_time": "3:09:50", "remaining_time": "3:15:31"} +{"current_steps": 801, "total_steps": 1624, "loss": 0.954, "learning_rate": 1.1975941035670664e-05, "epoch": 0.4932266009852217, "percentage": 49.32, "elapsed_time": "3:10:01", "remaining_time": "3:15:14"} +{"current_steps": 802, "total_steps": 1624, "loss": 0.9036, "learning_rate": 1.1954857409322302e-05, "epoch": 0.4938423645320197, "percentage": 49.38, "elapsed_time": "3:10:13", "remaining_time": "3:14:58"} +{"current_steps": 803, "total_steps": 1624, "loss": 0.9197, "learning_rate": 1.1933764744102058e-05, "epoch": 0.4944581280788177, "percentage": 49.45, "elapsed_time": "3:10:24", "remaining_time": "3:14:41"} +{"current_steps": 804, "total_steps": 1624, "loss": 0.912, "learning_rate": 1.1912663137538219e-05, "epoch": 0.49507389162561577, "percentage": 49.51, "elapsed_time": "3:10:35", "remaining_time": "3:14:23"} +{"current_steps": 805, "total_steps": 1624, "loss": 0.9578, "learning_rate": 1.1891552687200414e-05, "epoch": 0.4956896551724138, "percentage": 49.57, "elapsed_time": "3:10:47", "remaining_time": "3:14:06"} +{"current_steps": 806, "total_steps": 1624, "loss": 0.9079, "learning_rate": 1.1870433490699167e-05, "epoch": 0.4963054187192118, "percentage": 49.63, "elapsed_time": "3:10:58", "remaining_time": "3:13:49"} +{"current_steps": 807, "total_steps": 1624, "loss": 0.8663, "learning_rate": 1.1849305645685446e-05, "epoch": 0.49692118226600984, "percentage": 49.69, "elapsed_time": "3:11:10", "remaining_time": "3:13:32"} +{"current_steps": 808, "total_steps": 1624, "loss": 0.9071, "learning_rate": 1.1828169249850201e-05, "epoch": 0.4975369458128079, "percentage": 49.75, "elapsed_time": "3:11:21", "remaining_time": "3:13:15"} +{"current_steps": 809, "total_steps": 1624, "loss": 0.917, "learning_rate": 1.1807024400923926e-05, "epoch": 0.4981527093596059, "percentage": 49.82, "elapsed_time": "3:11:33", "remaining_time": "3:12:58"} +{"current_steps": 810, "total_steps": 1624, "loss": 0.9266, "learning_rate": 1.1785871196676196e-05, "epoch": 0.4987684729064039, "percentage": 49.88, "elapsed_time": "3:11:45", "remaining_time": "3:12:41"} +{"current_steps": 811, "total_steps": 1624, "loss": 0.8698, "learning_rate": 1.1764709734915218e-05, "epoch": 0.49938423645320196, "percentage": 49.94, "elapsed_time": "3:11:56", "remaining_time": "3:12:25"} +{"current_steps": 812, "total_steps": 1624, "loss": 0.9179, "learning_rate": 1.1743540113487383e-05, "epoch": 0.5, "percentage": 50.0, "elapsed_time": "3:12:08", "remaining_time": "3:12:08"} +{"current_steps": 813, "total_steps": 1624, "loss": 0.974, "learning_rate": 1.1722362430276817e-05, "epoch": 0.500615763546798, "percentage": 50.06, "elapsed_time": "3:12:20", "remaining_time": "3:11:51"} +{"current_steps": 814, "total_steps": 1624, "loss": 0.9266, "learning_rate": 1.1701176783204908e-05, "epoch": 0.5012315270935961, "percentage": 50.12, "elapsed_time": "3:12:31", "remaining_time": "3:11:34"} +{"current_steps": 815, "total_steps": 1624, "loss": 0.8817, "learning_rate": 1.167998327022988e-05, "epoch": 0.5018472906403941, "percentage": 50.18, "elapsed_time": "3:12:43", "remaining_time": "3:11:18"} +{"current_steps": 816, "total_steps": 1624, "loss": 0.9017, "learning_rate": 1.165878198934632e-05, "epoch": 0.5024630541871922, "percentage": 50.25, "elapsed_time": "3:12:54", "remaining_time": "3:11:01"} +{"current_steps": 817, "total_steps": 1624, "loss": 0.8618, "learning_rate": 1.1637573038584729e-05, "epoch": 0.5030788177339901, "percentage": 50.31, "elapsed_time": "3:13:06", "remaining_time": "3:10:44"} +{"current_steps": 818, "total_steps": 1624, "loss": 0.8943, "learning_rate": 1.1616356516011083e-05, "epoch": 0.5036945812807881, "percentage": 50.37, "elapsed_time": "3:13:18", "remaining_time": "3:10:28"} +{"current_steps": 819, "total_steps": 1624, "loss": 0.897, "learning_rate": 1.1595132519726365e-05, "epoch": 0.5043103448275862, "percentage": 50.43, "elapsed_time": "3:13:29", "remaining_time": "3:10:11"} +{"current_steps": 820, "total_steps": 1624, "loss": 0.9922, "learning_rate": 1.1573901147866108e-05, "epoch": 0.5049261083743842, "percentage": 50.49, "elapsed_time": "3:13:41", "remaining_time": "3:09:54"} +{"current_steps": 821, "total_steps": 1624, "loss": 0.8746, "learning_rate": 1.1552662498599957e-05, "epoch": 0.5055418719211823, "percentage": 50.55, "elapsed_time": "3:13:53", "remaining_time": "3:09:38"} +{"current_steps": 822, "total_steps": 1624, "loss": 0.8604, "learning_rate": 1.1531416670131197e-05, "epoch": 0.5061576354679803, "percentage": 50.62, "elapsed_time": "3:14:04", "remaining_time": "3:09:21"} +{"current_steps": 823, "total_steps": 1624, "loss": 0.9158, "learning_rate": 1.151016376069632e-05, "epoch": 0.5067733990147784, "percentage": 50.68, "elapsed_time": "3:14:16", "remaining_time": "3:09:04"} +{"current_steps": 824, "total_steps": 1624, "loss": 0.9536, "learning_rate": 1.1488903868564548e-05, "epoch": 0.5073891625615764, "percentage": 50.74, "elapsed_time": "3:14:27", "remaining_time": "3:08:47"} +{"current_steps": 825, "total_steps": 1624, "loss": 0.9382, "learning_rate": 1.1467637092037399e-05, "epoch": 0.5080049261083743, "percentage": 50.8, "elapsed_time": "3:14:39", "remaining_time": "3:08:31"} +{"current_steps": 826, "total_steps": 1624, "loss": 0.9298, "learning_rate": 1.144636352944821e-05, "epoch": 0.5086206896551724, "percentage": 50.86, "elapsed_time": "3:14:50", "remaining_time": "3:08:14"} +{"current_steps": 827, "total_steps": 1624, "loss": 0.9076, "learning_rate": 1.142508327916171e-05, "epoch": 0.5092364532019704, "percentage": 50.92, "elapsed_time": "3:15:02", "remaining_time": "3:07:57"} +{"current_steps": 828, "total_steps": 1624, "loss": 0.9096, "learning_rate": 1.1403796439573545e-05, "epoch": 0.5098522167487685, "percentage": 50.99, "elapsed_time": "3:15:13", "remaining_time": "3:07:41"} +{"current_steps": 829, "total_steps": 1624, "loss": 0.8684, "learning_rate": 1.1382503109109822e-05, "epoch": 0.5104679802955665, "percentage": 51.05, "elapsed_time": "3:15:25", "remaining_time": "3:07:24"} +{"current_steps": 830, "total_steps": 1624, "loss": 0.8958, "learning_rate": 1.1361203386226672e-05, "epoch": 0.5110837438423645, "percentage": 51.11, "elapsed_time": "3:15:37", "remaining_time": "3:07:08"} +{"current_steps": 831, "total_steps": 1624, "loss": 0.9132, "learning_rate": 1.1339897369409774e-05, "epoch": 0.5116995073891626, "percentage": 51.17, "elapsed_time": "3:15:48", "remaining_time": "3:06:51"} +{"current_steps": 832, "total_steps": 1624, "loss": 0.8845, "learning_rate": 1.1318585157173913e-05, "epoch": 0.5123152709359606, "percentage": 51.23, "elapsed_time": "3:16:00", "remaining_time": "3:06:35"} +{"current_steps": 833, "total_steps": 1624, "loss": 0.8921, "learning_rate": 1.129726684806252e-05, "epoch": 0.5129310344827587, "percentage": 51.29, "elapsed_time": "3:16:12", "remaining_time": "3:06:18"} +{"current_steps": 834, "total_steps": 1624, "loss": 0.8679, "learning_rate": 1.127594254064722e-05, "epoch": 0.5135467980295566, "percentage": 51.35, "elapsed_time": "3:16:23", "remaining_time": "3:06:02"} +{"current_steps": 835, "total_steps": 1624, "loss": 0.8696, "learning_rate": 1.1254612333527368e-05, "epoch": 0.5141625615763546, "percentage": 51.42, "elapsed_time": "3:16:35", "remaining_time": "3:05:45"} +{"current_steps": 836, "total_steps": 1624, "loss": 0.903, "learning_rate": 1.1233276325329596e-05, "epoch": 0.5147783251231527, "percentage": 51.48, "elapsed_time": "3:16:47", "remaining_time": "3:05:29"} +{"current_steps": 837, "total_steps": 1624, "loss": 0.9134, "learning_rate": 1.1211934614707365e-05, "epoch": 0.5153940886699507, "percentage": 51.54, "elapsed_time": "3:16:58", "remaining_time": "3:05:12"} +{"current_steps": 838, "total_steps": 1624, "loss": 0.9008, "learning_rate": 1.11905873003405e-05, "epoch": 0.5160098522167488, "percentage": 51.6, "elapsed_time": "3:17:10", "remaining_time": "3:04:56"} +{"current_steps": 839, "total_steps": 1624, "loss": 0.9342, "learning_rate": 1.1169234480934741e-05, "epoch": 0.5166256157635468, "percentage": 51.66, "elapsed_time": "3:17:22", "remaining_time": "3:04:40"} +{"current_steps": 840, "total_steps": 1624, "loss": 0.9355, "learning_rate": 1.1147876255221274e-05, "epoch": 0.5172413793103449, "percentage": 51.72, "elapsed_time": "3:17:33", "remaining_time": "3:04:23"} +{"current_steps": 841, "total_steps": 1624, "loss": 0.925, "learning_rate": 1.1126512721956288e-05, "epoch": 0.5178571428571429, "percentage": 51.79, "elapsed_time": "3:17:45", "remaining_time": "3:04:07"} +{"current_steps": 842, "total_steps": 1624, "loss": 0.9426, "learning_rate": 1.1105143979920512e-05, "epoch": 0.5184729064039408, "percentage": 51.85, "elapsed_time": "3:17:57", "remaining_time": "3:03:50"} +{"current_steps": 843, "total_steps": 1624, "loss": 0.935, "learning_rate": 1.1083770127918763e-05, "epoch": 0.5190886699507389, "percentage": 51.91, "elapsed_time": "3:18:08", "remaining_time": "3:03:34"} +{"current_steps": 844, "total_steps": 1624, "loss": 0.8841, "learning_rate": 1.1062391264779473e-05, "epoch": 0.5197044334975369, "percentage": 51.97, "elapsed_time": "3:18:20", "remaining_time": "3:03:18"} +{"current_steps": 845, "total_steps": 1624, "loss": 0.8361, "learning_rate": 1.1041007489354263e-05, "epoch": 0.520320197044335, "percentage": 52.03, "elapsed_time": "3:18:32", "remaining_time": "3:03:01"} +{"current_steps": 846, "total_steps": 1624, "loss": 0.9083, "learning_rate": 1.1019618900517455e-05, "epoch": 0.520935960591133, "percentage": 52.09, "elapsed_time": "3:18:43", "remaining_time": "3:02:45"} +{"current_steps": 847, "total_steps": 1624, "loss": 0.887, "learning_rate": 1.0998225597165628e-05, "epoch": 0.521551724137931, "percentage": 52.16, "elapsed_time": "3:18:55", "remaining_time": "3:02:29"} +{"current_steps": 848, "total_steps": 1624, "loss": 0.8925, "learning_rate": 1.0976827678217162e-05, "epoch": 0.5221674876847291, "percentage": 52.22, "elapsed_time": "3:19:07", "remaining_time": "3:02:13"} +{"current_steps": 849, "total_steps": 1624, "loss": 0.8976, "learning_rate": 1.0955425242611781e-05, "epoch": 0.5227832512315271, "percentage": 52.28, "elapsed_time": "3:19:19", "remaining_time": "3:01:56"} +{"current_steps": 850, "total_steps": 1624, "loss": 0.8627, "learning_rate": 1.093401838931009e-05, "epoch": 0.5233990147783252, "percentage": 52.34, "elapsed_time": "3:19:30", "remaining_time": "3:01:40"} +{"current_steps": 851, "total_steps": 1624, "loss": 0.8765, "learning_rate": 1.0912607217293121e-05, "epoch": 0.5240147783251231, "percentage": 52.4, "elapsed_time": "3:19:42", "remaining_time": "3:01:24"} +{"current_steps": 852, "total_steps": 1624, "loss": 0.9747, "learning_rate": 1.0891191825561874e-05, "epoch": 0.5246305418719212, "percentage": 52.46, "elapsed_time": "3:19:53", "remaining_time": "3:01:07"} +{"current_steps": 853, "total_steps": 1624, "loss": 0.9585, "learning_rate": 1.0869772313136861e-05, "epoch": 0.5252463054187192, "percentage": 52.52, "elapsed_time": "3:20:05", "remaining_time": "3:00:51"} +{"current_steps": 854, "total_steps": 1624, "loss": 0.9302, "learning_rate": 1.0848348779057654e-05, "epoch": 0.5258620689655172, "percentage": 52.59, "elapsed_time": "3:20:17", "remaining_time": "3:00:35"} +{"current_steps": 855, "total_steps": 1624, "loss": 0.9272, "learning_rate": 1.0826921322382407e-05, "epoch": 0.5264778325123153, "percentage": 52.65, "elapsed_time": "3:20:28", "remaining_time": "3:00:18"} +{"current_steps": 856, "total_steps": 1624, "loss": 0.9045, "learning_rate": 1.080549004218742e-05, "epoch": 0.5270935960591133, "percentage": 52.71, "elapsed_time": "3:20:40", "remaining_time": "3:00:02"} +{"current_steps": 857, "total_steps": 1624, "loss": 0.8732, "learning_rate": 1.078405503756667e-05, "epoch": 0.5277093596059114, "percentage": 52.77, "elapsed_time": "3:20:51", "remaining_time": "2:59:46"} +{"current_steps": 858, "total_steps": 1624, "loss": 0.8532, "learning_rate": 1.0762616407631356e-05, "epoch": 0.5283251231527094, "percentage": 52.83, "elapsed_time": "3:21:03", "remaining_time": "2:59:30"} +{"current_steps": 859, "total_steps": 1624, "loss": 0.8621, "learning_rate": 1.0741174251509443e-05, "epoch": 0.5289408866995073, "percentage": 52.89, "elapsed_time": "3:21:15", "remaining_time": "2:59:13"} +{"current_steps": 860, "total_steps": 1624, "loss": 0.9086, "learning_rate": 1.071972866834519e-05, "epoch": 0.5295566502463054, "percentage": 52.96, "elapsed_time": "3:21:26", "remaining_time": "2:58:57"} +{"current_steps": 861, "total_steps": 1624, "loss": 0.9238, "learning_rate": 1.0698279757298715e-05, "epoch": 0.5301724137931034, "percentage": 53.02, "elapsed_time": "3:21:38", "remaining_time": "2:58:41"} +{"current_steps": 862, "total_steps": 1624, "loss": 0.9034, "learning_rate": 1.0676827617545511e-05, "epoch": 0.5307881773399015, "percentage": 53.08, "elapsed_time": "3:21:50", "remaining_time": "2:58:25"} +{"current_steps": 863, "total_steps": 1624, "loss": 0.9059, "learning_rate": 1.0655372348276007e-05, "epoch": 0.5314039408866995, "percentage": 53.14, "elapsed_time": "3:22:02", "remaining_time": "2:58:09"} +{"current_steps": 864, "total_steps": 1624, "loss": 0.8599, "learning_rate": 1.0633914048695104e-05, "epoch": 0.5320197044334976, "percentage": 53.2, "elapsed_time": "3:22:13", "remaining_time": "2:57:53"} +{"current_steps": 865, "total_steps": 1624, "loss": 0.9014, "learning_rate": 1.061245281802171e-05, "epoch": 0.5326354679802956, "percentage": 53.26, "elapsed_time": "3:22:25", "remaining_time": "2:57:37"} +{"current_steps": 866, "total_steps": 1624, "loss": 0.8902, "learning_rate": 1.0590988755488292e-05, "epoch": 0.5332512315270936, "percentage": 53.33, "elapsed_time": "3:22:37", "remaining_time": "2:57:20"} +{"current_steps": 867, "total_steps": 1624, "loss": 0.8817, "learning_rate": 1.0569521960340399e-05, "epoch": 0.5338669950738916, "percentage": 53.39, "elapsed_time": "3:22:48", "remaining_time": "2:57:04"} +{"current_steps": 868, "total_steps": 1624, "loss": 0.9121, "learning_rate": 1.0548052531836225e-05, "epoch": 0.5344827586206896, "percentage": 53.45, "elapsed_time": "3:23:00", "remaining_time": "2:56:48"} +{"current_steps": 869, "total_steps": 1624, "loss": 0.877, "learning_rate": 1.0526580569246138e-05, "epoch": 0.5350985221674877, "percentage": 53.51, "elapsed_time": "3:23:12", "remaining_time": "2:56:32"} +{"current_steps": 870, "total_steps": 1624, "loss": 0.901, "learning_rate": 1.0505106171852226e-05, "epoch": 0.5357142857142857, "percentage": 53.57, "elapsed_time": "3:23:23", "remaining_time": "2:56:16"} +{"current_steps": 871, "total_steps": 1624, "loss": 0.9206, "learning_rate": 1.0483629438947827e-05, "epoch": 0.5363300492610837, "percentage": 53.63, "elapsed_time": "3:23:35", "remaining_time": "2:56:00"} +{"current_steps": 872, "total_steps": 1624, "loss": 0.9399, "learning_rate": 1.0462150469837085e-05, "epoch": 0.5369458128078818, "percentage": 53.69, "elapsed_time": "3:23:46", "remaining_time": "2:55:44"} +{"current_steps": 873, "total_steps": 1624, "loss": 0.9185, "learning_rate": 1.0440669363834483e-05, "epoch": 0.5375615763546798, "percentage": 53.76, "elapsed_time": "3:23:58", "remaining_time": "2:55:28"} +{"current_steps": 874, "total_steps": 1624, "loss": 0.9177, "learning_rate": 1.0419186220264379e-05, "epoch": 0.5381773399014779, "percentage": 53.82, "elapsed_time": "3:24:10", "remaining_time": "2:55:12"} +{"current_steps": 875, "total_steps": 1624, "loss": 0.926, "learning_rate": 1.039770113846056e-05, "epoch": 0.5387931034482759, "percentage": 53.88, "elapsed_time": "3:24:22", "remaining_time": "2:54:56"} +{"current_steps": 876, "total_steps": 1624, "loss": 0.9092, "learning_rate": 1.0376214217765773e-05, "epoch": 0.5394088669950738, "percentage": 53.94, "elapsed_time": "3:24:33", "remaining_time": "2:54:40"} +{"current_steps": 877, "total_steps": 1624, "loss": 0.874, "learning_rate": 1.0354725557531258e-05, "epoch": 0.5400246305418719, "percentage": 54.0, "elapsed_time": "3:24:45", "remaining_time": "2:54:24"} +{"current_steps": 878, "total_steps": 1624, "loss": 0.9355, "learning_rate": 1.0333235257116314e-05, "epoch": 0.5406403940886699, "percentage": 54.06, "elapsed_time": "3:24:57", "remaining_time": "2:54:08"} +{"current_steps": 879, "total_steps": 1624, "loss": 0.9474, "learning_rate": 1.0311743415887811e-05, "epoch": 0.541256157635468, "percentage": 54.13, "elapsed_time": "3:25:08", "remaining_time": "2:53:52"} +{"current_steps": 880, "total_steps": 1624, "loss": 0.9097, "learning_rate": 1.0290250133219755e-05, "epoch": 0.541871921182266, "percentage": 54.19, "elapsed_time": "3:25:20", "remaining_time": "2:53:36"} +{"current_steps": 881, "total_steps": 1624, "loss": 0.9161, "learning_rate": 1.0268755508492805e-05, "epoch": 0.5424876847290641, "percentage": 54.25, "elapsed_time": "3:25:31", "remaining_time": "2:53:20"} +{"current_steps": 882, "total_steps": 1624, "loss": 0.8739, "learning_rate": 1.0247259641093834e-05, "epoch": 0.5431034482758621, "percentage": 54.31, "elapsed_time": "3:25:43", "remaining_time": "2:53:04"} +{"current_steps": 883, "total_steps": 1624, "loss": 0.9201, "learning_rate": 1.0225762630415456e-05, "epoch": 0.5437192118226601, "percentage": 54.37, "elapsed_time": "3:25:55", "remaining_time": "2:52:48"} +{"current_steps": 884, "total_steps": 1624, "loss": 0.8972, "learning_rate": 1.020426457585557e-05, "epoch": 0.5443349753694581, "percentage": 54.43, "elapsed_time": "3:26:06", "remaining_time": "2:52:32"} +{"current_steps": 885, "total_steps": 1624, "loss": 0.9059, "learning_rate": 1.0182765576816916e-05, "epoch": 0.5449507389162561, "percentage": 54.5, "elapsed_time": "3:26:18", "remaining_time": "2:52:16"} +{"current_steps": 886, "total_steps": 1624, "loss": 0.9349, "learning_rate": 1.016126573270658e-05, "epoch": 0.5455665024630542, "percentage": 54.56, "elapsed_time": "3:26:29", "remaining_time": "2:52:00"} +{"current_steps": 887, "total_steps": 1624, "loss": 0.8734, "learning_rate": 1.0139765142935566e-05, "epoch": 0.5461822660098522, "percentage": 54.62, "elapsed_time": "3:26:41", "remaining_time": "2:51:44"} +{"current_steps": 888, "total_steps": 1624, "loss": 0.8777, "learning_rate": 1.011826390691833e-05, "epoch": 0.5467980295566502, "percentage": 54.68, "elapsed_time": "3:26:53", "remaining_time": "2:51:28"} +{"current_steps": 889, "total_steps": 1624, "loss": 0.8724, "learning_rate": 1.0096762124072306e-05, "epoch": 0.5474137931034483, "percentage": 54.74, "elapsed_time": "3:27:04", "remaining_time": "2:51:12"} +{"current_steps": 890, "total_steps": 1624, "loss": 0.8705, "learning_rate": 1.0075259893817465e-05, "epoch": 0.5480295566502463, "percentage": 54.8, "elapsed_time": "3:27:16", "remaining_time": "2:50:56"} +{"current_steps": 891, "total_steps": 1624, "loss": 0.8936, "learning_rate": 1.005375731557584e-05, "epoch": 0.5486453201970444, "percentage": 54.86, "elapsed_time": "3:27:28", "remaining_time": "2:50:40"} +{"current_steps": 892, "total_steps": 1624, "loss": 0.9227, "learning_rate": 1.003225448877108e-05, "epoch": 0.5492610837438424, "percentage": 54.93, "elapsed_time": "3:27:39", "remaining_time": "2:50:24"} +{"current_steps": 893, "total_steps": 1624, "loss": 0.9164, "learning_rate": 1.001075151282798e-05, "epoch": 0.5498768472906403, "percentage": 54.99, "elapsed_time": "3:27:51", "remaining_time": "2:50:09"} +{"current_steps": 894, "total_steps": 1624, "loss": 0.9308, "learning_rate": 9.989248487172022e-06, "epoch": 0.5504926108374384, "percentage": 55.05, "elapsed_time": "3:28:03", "remaining_time": "2:49:53"} +{"current_steps": 895, "total_steps": 1624, "loss": 0.8929, "learning_rate": 9.967745511228922e-06, "epoch": 0.5511083743842364, "percentage": 55.11, "elapsed_time": "3:28:14", "remaining_time": "2:49:37"} +{"current_steps": 896, "total_steps": 1624, "loss": 0.8865, "learning_rate": 9.946242684424163e-06, "epoch": 0.5517241379310345, "percentage": 55.17, "elapsed_time": "3:28:26", "remaining_time": "2:49:21"} +{"current_steps": 897, "total_steps": 1624, "loss": 0.9217, "learning_rate": 9.92474010618254e-06, "epoch": 0.5523399014778325, "percentage": 55.23, "elapsed_time": "3:28:38", "remaining_time": "2:49:05"} +{"current_steps": 898, "total_steps": 1624, "loss": 0.893, "learning_rate": 9.903237875927697e-06, "epoch": 0.5529556650246306, "percentage": 55.3, "elapsed_time": "3:28:49", "remaining_time": "2:48:49"} +{"current_steps": 899, "total_steps": 1624, "loss": 0.9409, "learning_rate": 9.881736093081674e-06, "epoch": 0.5535714285714286, "percentage": 55.36, "elapsed_time": "3:29:01", "remaining_time": "2:48:33"} +{"current_steps": 900, "total_steps": 1624, "loss": 0.8967, "learning_rate": 9.860234857064439e-06, "epoch": 0.5541871921182266, "percentage": 55.42, "elapsed_time": "3:29:12", "remaining_time": "2:48:18"} +{"current_steps": 901, "total_steps": 1624, "loss": 0.896, "learning_rate": 9.838734267293421e-06, "epoch": 0.5548029556650246, "percentage": 55.48, "elapsed_time": "3:29:24", "remaining_time": "2:48:02"} +{"current_steps": 902, "total_steps": 1624, "loss": 0.8754, "learning_rate": 9.817234423183086e-06, "epoch": 0.5554187192118226, "percentage": 55.54, "elapsed_time": "3:29:36", "remaining_time": "2:47:46"} +{"current_steps": 903, "total_steps": 1624, "loss": 0.9242, "learning_rate": 9.795735424144427e-06, "epoch": 0.5560344827586207, "percentage": 55.6, "elapsed_time": "3:29:47", "remaining_time": "2:47:30"} +{"current_steps": 904, "total_steps": 1624, "loss": 0.8513, "learning_rate": 9.774237369584547e-06, "epoch": 0.5566502463054187, "percentage": 55.67, "elapsed_time": "3:29:59", "remaining_time": "2:47:14"} +{"current_steps": 905, "total_steps": 1624, "loss": 0.9036, "learning_rate": 9.752740358906168e-06, "epoch": 0.5572660098522167, "percentage": 55.73, "elapsed_time": "3:30:10", "remaining_time": "2:46:58"} +{"current_steps": 906, "total_steps": 1624, "loss": 0.94, "learning_rate": 9.731244491507196e-06, "epoch": 0.5578817733990148, "percentage": 55.79, "elapsed_time": "3:30:22", "remaining_time": "2:46:43"} +{"current_steps": 907, "total_steps": 1624, "loss": 0.8537, "learning_rate": 9.709749866780248e-06, "epoch": 0.5584975369458128, "percentage": 55.85, "elapsed_time": "3:30:34", "remaining_time": "2:46:27"} +{"current_steps": 908, "total_steps": 1624, "loss": 0.8963, "learning_rate": 9.688256584112192e-06, "epoch": 0.5591133004926109, "percentage": 55.91, "elapsed_time": "3:30:45", "remaining_time": "2:46:11"} +{"current_steps": 909, "total_steps": 1624, "loss": 0.8666, "learning_rate": 9.66676474288369e-06, "epoch": 0.5597290640394089, "percentage": 55.97, "elapsed_time": "3:30:57", "remaining_time": "2:45:56"} +{"current_steps": 910, "total_steps": 1624, "loss": 0.905, "learning_rate": 9.645274442468746e-06, "epoch": 0.5603448275862069, "percentage": 56.03, "elapsed_time": "3:31:09", "remaining_time": "2:45:40"} +{"current_steps": 911, "total_steps": 1624, "loss": 0.908, "learning_rate": 9.623785782234234e-06, "epoch": 0.5609605911330049, "percentage": 56.1, "elapsed_time": "3:31:20", "remaining_time": "2:45:24"} +{"current_steps": 912, "total_steps": 1624, "loss": 0.8692, "learning_rate": 9.602298861539446e-06, "epoch": 0.5615763546798029, "percentage": 56.16, "elapsed_time": "3:31:32", "remaining_time": "2:45:09"} +{"current_steps": 913, "total_steps": 1624, "loss": 0.9139, "learning_rate": 9.580813779735624e-06, "epoch": 0.562192118226601, "percentage": 56.22, "elapsed_time": "3:31:44", "remaining_time": "2:44:53"} +{"current_steps": 914, "total_steps": 1624, "loss": 0.943, "learning_rate": 9.55933063616552e-06, "epoch": 0.562807881773399, "percentage": 56.28, "elapsed_time": "3:31:55", "remaining_time": "2:44:37"} +{"current_steps": 915, "total_steps": 1624, "loss": 0.8275, "learning_rate": 9.537849530162915e-06, "epoch": 0.5634236453201971, "percentage": 56.34, "elapsed_time": "3:32:07", "remaining_time": "2:44:22"} +{"current_steps": 916, "total_steps": 1624, "loss": 0.8949, "learning_rate": 9.516370561052173e-06, "epoch": 0.5640394088669951, "percentage": 56.4, "elapsed_time": "3:32:19", "remaining_time": "2:44:06"} +{"current_steps": 917, "total_steps": 1624, "loss": 0.866, "learning_rate": 9.494893828147777e-06, "epoch": 0.5646551724137931, "percentage": 56.47, "elapsed_time": "3:32:30", "remaining_time": "2:43:50"} +{"current_steps": 918, "total_steps": 1624, "loss": 0.9096, "learning_rate": 9.473419430753864e-06, "epoch": 0.5652709359605911, "percentage": 56.53, "elapsed_time": "3:32:42", "remaining_time": "2:43:35"} +{"current_steps": 919, "total_steps": 1624, "loss": 0.8957, "learning_rate": 9.451947468163779e-06, "epoch": 0.5658866995073891, "percentage": 56.59, "elapsed_time": "3:32:53", "remaining_time": "2:43:19"} +{"current_steps": 920, "total_steps": 1624, "loss": 0.8718, "learning_rate": 9.430478039659604e-06, "epoch": 0.5665024630541872, "percentage": 56.65, "elapsed_time": "3:33:05", "remaining_time": "2:43:03"} +{"current_steps": 921, "total_steps": 1624, "loss": 0.8692, "learning_rate": 9.409011244511713e-06, "epoch": 0.5671182266009852, "percentage": 56.71, "elapsed_time": "3:33:17", "remaining_time": "2:42:48"} +{"current_steps": 922, "total_steps": 1624, "loss": 0.8801, "learning_rate": 9.387547181978291e-06, "epoch": 0.5677339901477833, "percentage": 56.77, "elapsed_time": "3:33:28", "remaining_time": "2:42:32"} +{"current_steps": 923, "total_steps": 1624, "loss": 0.8552, "learning_rate": 9.3660859513049e-06, "epoch": 0.5683497536945813, "percentage": 56.83, "elapsed_time": "3:33:40", "remaining_time": "2:42:16"} +{"current_steps": 924, "total_steps": 1624, "loss": 0.9596, "learning_rate": 9.344627651723995e-06, "epoch": 0.5689655172413793, "percentage": 56.9, "elapsed_time": "3:33:52", "remaining_time": "2:42:01"} +{"current_steps": 925, "total_steps": 1624, "loss": 0.926, "learning_rate": 9.323172382454494e-06, "epoch": 0.5695812807881774, "percentage": 56.96, "elapsed_time": "3:34:03", "remaining_time": "2:41:45"} +{"current_steps": 926, "total_steps": 1624, "loss": 0.8669, "learning_rate": 9.301720242701291e-06, "epoch": 0.5701970443349754, "percentage": 57.02, "elapsed_time": "3:34:15", "remaining_time": "2:41:29"} +{"current_steps": 927, "total_steps": 1624, "loss": 0.8932, "learning_rate": 9.28027133165481e-06, "epoch": 0.5708128078817734, "percentage": 57.08, "elapsed_time": "3:34:26", "remaining_time": "2:41:14"} +{"current_steps": 928, "total_steps": 1624, "loss": 0.9258, "learning_rate": 9.258825748490559e-06, "epoch": 0.5714285714285714, "percentage": 57.14, "elapsed_time": "3:34:38", "remaining_time": "2:40:58"} +{"current_steps": 929, "total_steps": 1624, "loss": 0.8906, "learning_rate": 9.237383592368644e-06, "epoch": 0.5720443349753694, "percentage": 57.2, "elapsed_time": "3:34:49", "remaining_time": "2:40:42"} +{"current_steps": 930, "total_steps": 1624, "loss": 0.8784, "learning_rate": 9.215944962433329e-06, "epoch": 0.5726600985221675, "percentage": 57.27, "elapsed_time": "3:35:01", "remaining_time": "2:40:27"} +{"current_steps": 931, "total_steps": 1624, "loss": 0.8955, "learning_rate": 9.194509957812583e-06, "epoch": 0.5732758620689655, "percentage": 57.33, "elapsed_time": "3:35:12", "remaining_time": "2:40:11"} +{"current_steps": 932, "total_steps": 1624, "loss": 0.8903, "learning_rate": 9.173078677617596e-06, "epoch": 0.5738916256157636, "percentage": 57.39, "elapsed_time": "3:35:24", "remaining_time": "2:39:56"} +{"current_steps": 933, "total_steps": 1624, "loss": 0.9049, "learning_rate": 9.15165122094235e-06, "epoch": 0.5745073891625616, "percentage": 57.45, "elapsed_time": "3:35:35", "remaining_time": "2:39:40"} +{"current_steps": 934, "total_steps": 1624, "loss": 0.9461, "learning_rate": 9.130227686863142e-06, "epoch": 0.5751231527093597, "percentage": 57.51, "elapsed_time": "3:35:47", "remaining_time": "2:39:25"} +{"current_steps": 935, "total_steps": 1624, "loss": 0.9027, "learning_rate": 9.108808174438128e-06, "epoch": 0.5757389162561576, "percentage": 57.57, "elapsed_time": "3:35:58", "remaining_time": "2:39:09"} +{"current_steps": 936, "total_steps": 1624, "loss": 0.9202, "learning_rate": 9.087392782706884e-06, "epoch": 0.5763546798029556, "percentage": 57.64, "elapsed_time": "3:36:10", "remaining_time": "2:38:53"} +{"current_steps": 937, "total_steps": 1624, "loss": 0.865, "learning_rate": 9.065981610689915e-06, "epoch": 0.5769704433497537, "percentage": 57.7, "elapsed_time": "3:36:21", "remaining_time": "2:38:38"} +{"current_steps": 938, "total_steps": 1624, "loss": 0.9062, "learning_rate": 9.044574757388224e-06, "epoch": 0.5775862068965517, "percentage": 57.76, "elapsed_time": "3:36:33", "remaining_time": "2:38:22"} +{"current_steps": 939, "total_steps": 1624, "loss": 0.9052, "learning_rate": 9.02317232178284e-06, "epoch": 0.5782019704433498, "percentage": 57.82, "elapsed_time": "3:36:45", "remaining_time": "2:38:07"} +{"current_steps": 940, "total_steps": 1624, "loss": 0.9421, "learning_rate": 9.001774402834375e-06, "epoch": 0.5788177339901478, "percentage": 57.88, "elapsed_time": "3:36:57", "remaining_time": "2:37:51"} +{"current_steps": 941, "total_steps": 1624, "loss": 0.9077, "learning_rate": 8.980381099482545e-06, "epoch": 0.5794334975369458, "percentage": 57.94, "elapsed_time": "3:37:08", "remaining_time": "2:37:36"} +{"current_steps": 942, "total_steps": 1624, "loss": 0.8848, "learning_rate": 8.958992510645737e-06, "epoch": 0.5800492610837439, "percentage": 58.0, "elapsed_time": "3:37:20", "remaining_time": "2:37:21"} +{"current_steps": 943, "total_steps": 1624, "loss": 0.9379, "learning_rate": 8.937608735220527e-06, "epoch": 0.5806650246305419, "percentage": 58.07, "elapsed_time": "3:37:32", "remaining_time": "2:37:05"} +{"current_steps": 944, "total_steps": 1624, "loss": 0.8797, "learning_rate": 8.916229872081242e-06, "epoch": 0.5812807881773399, "percentage": 58.13, "elapsed_time": "3:37:43", "remaining_time": "2:36:50"} +{"current_steps": 945, "total_steps": 1624, "loss": 0.8745, "learning_rate": 8.89485602007949e-06, "epoch": 0.5818965517241379, "percentage": 58.19, "elapsed_time": "3:37:54", "remaining_time": "2:36:34"} +{"current_steps": 946, "total_steps": 1624, "loss": 0.8856, "learning_rate": 8.873487278043713e-06, "epoch": 0.5825123152709359, "percentage": 58.25, "elapsed_time": "3:38:06", "remaining_time": "2:36:19"} +{"current_steps": 947, "total_steps": 1624, "loss": 0.8895, "learning_rate": 8.852123744778729e-06, "epoch": 0.583128078817734, "percentage": 58.31, "elapsed_time": "3:38:18", "remaining_time": "2:36:03"} +{"current_steps": 948, "total_steps": 1624, "loss": 0.8968, "learning_rate": 8.830765519065262e-06, "epoch": 0.583743842364532, "percentage": 58.37, "elapsed_time": "3:38:29", "remaining_time": "2:35:48"} +{"current_steps": 949, "total_steps": 1624, "loss": 0.8888, "learning_rate": 8.809412699659503e-06, "epoch": 0.5843596059113301, "percentage": 58.44, "elapsed_time": "3:38:41", "remaining_time": "2:35:32"} +{"current_steps": 950, "total_steps": 1624, "loss": 0.9018, "learning_rate": 8.788065385292637e-06, "epoch": 0.5849753694581281, "percentage": 58.5, "elapsed_time": "3:38:52", "remaining_time": "2:35:17"} +{"current_steps": 951, "total_steps": 1624, "loss": 0.8833, "learning_rate": 8.766723674670407e-06, "epoch": 0.5855911330049262, "percentage": 58.56, "elapsed_time": "3:39:04", "remaining_time": "2:35:02"} +{"current_steps": 952, "total_steps": 1624, "loss": 0.9045, "learning_rate": 8.745387666472639e-06, "epoch": 0.5862068965517241, "percentage": 58.62, "elapsed_time": "3:39:16", "remaining_time": "2:34:46"} +{"current_steps": 953, "total_steps": 1624, "loss": 0.8744, "learning_rate": 8.724057459352783e-06, "epoch": 0.5868226600985221, "percentage": 58.68, "elapsed_time": "3:39:27", "remaining_time": "2:34:31"} +{"current_steps": 954, "total_steps": 1624, "loss": 0.9119, "learning_rate": 8.70273315193748e-06, "epoch": 0.5874384236453202, "percentage": 58.74, "elapsed_time": "3:39:39", "remaining_time": "2:34:15"} +{"current_steps": 955, "total_steps": 1624, "loss": 0.8648, "learning_rate": 8.68141484282609e-06, "epoch": 0.5880541871921182, "percentage": 58.81, "elapsed_time": "3:39:50", "remaining_time": "2:34:00"} +{"current_steps": 956, "total_steps": 1624, "loss": 0.934, "learning_rate": 8.660102630590228e-06, "epoch": 0.5886699507389163, "percentage": 58.87, "elapsed_time": "3:40:02", "remaining_time": "2:33:45"} +{"current_steps": 957, "total_steps": 1624, "loss": 0.8382, "learning_rate": 8.63879661377333e-06, "epoch": 0.5892857142857143, "percentage": 58.93, "elapsed_time": "3:40:14", "remaining_time": "2:33:29"} +{"current_steps": 958, "total_steps": 1624, "loss": 0.8843, "learning_rate": 8.61749689089018e-06, "epoch": 0.5899014778325123, "percentage": 58.99, "elapsed_time": "3:40:25", "remaining_time": "2:33:14"} +{"current_steps": 959, "total_steps": 1624, "loss": 0.8991, "learning_rate": 8.59620356042646e-06, "epoch": 0.5905172413793104, "percentage": 59.05, "elapsed_time": "3:40:37", "remaining_time": "2:32:59"} +{"current_steps": 960, "total_steps": 1624, "loss": 0.8687, "learning_rate": 8.574916720838293e-06, "epoch": 0.5911330049261084, "percentage": 59.11, "elapsed_time": "3:40:48", "remaining_time": "2:32:43"} +{"current_steps": 961, "total_steps": 1624, "loss": 0.9192, "learning_rate": 8.553636470551792e-06, "epoch": 0.5917487684729064, "percentage": 59.17, "elapsed_time": "3:41:00", "remaining_time": "2:32:28"} +{"current_steps": 962, "total_steps": 1624, "loss": 0.901, "learning_rate": 8.532362907962606e-06, "epoch": 0.5923645320197044, "percentage": 59.24, "elapsed_time": "3:41:12", "remaining_time": "2:32:13"} +{"current_steps": 963, "total_steps": 1624, "loss": 0.8985, "learning_rate": 8.511096131435454e-06, "epoch": 0.5929802955665024, "percentage": 59.3, "elapsed_time": "3:41:23", "remaining_time": "2:31:57"} +{"current_steps": 964, "total_steps": 1624, "loss": 0.8474, "learning_rate": 8.489836239303684e-06, "epoch": 0.5935960591133005, "percentage": 59.36, "elapsed_time": "3:41:35", "remaining_time": "2:31:42"} +{"current_steps": 965, "total_steps": 1624, "loss": 0.9182, "learning_rate": 8.468583329868805e-06, "epoch": 0.5942118226600985, "percentage": 59.42, "elapsed_time": "3:41:47", "remaining_time": "2:31:27"} +{"current_steps": 966, "total_steps": 1624, "loss": 0.9054, "learning_rate": 8.447337501400048e-06, "epoch": 0.5948275862068966, "percentage": 59.48, "elapsed_time": "3:41:58", "remaining_time": "2:31:12"} +{"current_steps": 967, "total_steps": 1624, "loss": 0.859, "learning_rate": 8.426098852133892e-06, "epoch": 0.5954433497536946, "percentage": 59.54, "elapsed_time": "3:42:10", "remaining_time": "2:30:57"} +{"current_steps": 968, "total_steps": 1624, "loss": 0.8574, "learning_rate": 8.404867480273637e-06, "epoch": 0.5960591133004927, "percentage": 59.61, "elapsed_time": "3:42:22", "remaining_time": "2:30:41"} +{"current_steps": 969, "total_steps": 1624, "loss": 0.9057, "learning_rate": 8.383643483988919e-06, "epoch": 0.5966748768472906, "percentage": 59.67, "elapsed_time": "3:42:33", "remaining_time": "2:30:26"} +{"current_steps": 970, "total_steps": 1624, "loss": 0.8879, "learning_rate": 8.362426961415274e-06, "epoch": 0.5972906403940886, "percentage": 59.73, "elapsed_time": "3:42:45", "remaining_time": "2:30:11"} +{"current_steps": 971, "total_steps": 1624, "loss": 0.9156, "learning_rate": 8.341218010653684e-06, "epoch": 0.5979064039408867, "percentage": 59.79, "elapsed_time": "3:42:57", "remaining_time": "2:29:56"} +{"current_steps": 972, "total_steps": 1624, "loss": 0.9211, "learning_rate": 8.320016729770123e-06, "epoch": 0.5985221674876847, "percentage": 59.85, "elapsed_time": "3:43:08", "remaining_time": "2:29:41"} +{"current_steps": 973, "total_steps": 1624, "loss": 0.8492, "learning_rate": 8.298823216795093e-06, "epoch": 0.5991379310344828, "percentage": 59.91, "elapsed_time": "3:43:20", "remaining_time": "2:29:25"} +{"current_steps": 974, "total_steps": 1624, "loss": 0.9035, "learning_rate": 8.277637569723186e-06, "epoch": 0.5997536945812808, "percentage": 59.98, "elapsed_time": "3:43:32", "remaining_time": "2:29:10"} +{"current_steps": 975, "total_steps": 1624, "loss": 0.8575, "learning_rate": 8.256459886512618e-06, "epoch": 0.6003694581280788, "percentage": 60.04, "elapsed_time": "3:43:43", "remaining_time": "2:28:55"} +{"current_steps": 976, "total_steps": 1624, "loss": 0.926, "learning_rate": 8.235290265084785e-06, "epoch": 0.6009852216748769, "percentage": 60.1, "elapsed_time": "3:43:55", "remaining_time": "2:28:40"} +{"current_steps": 977, "total_steps": 1624, "loss": 0.8487, "learning_rate": 8.214128803323809e-06, "epoch": 0.6016009852216748, "percentage": 60.16, "elapsed_time": "3:44:06", "remaining_time": "2:28:25"} +{"current_steps": 978, "total_steps": 1624, "loss": 0.8629, "learning_rate": 8.192975599076079e-06, "epoch": 0.6022167487684729, "percentage": 60.22, "elapsed_time": "3:44:18", "remaining_time": "2:28:09"} +{"current_steps": 979, "total_steps": 1624, "loss": 0.9034, "learning_rate": 8.171830750149804e-06, "epoch": 0.6028325123152709, "percentage": 60.28, "elapsed_time": "3:44:30", "remaining_time": "2:27:54"} +{"current_steps": 980, "total_steps": 1624, "loss": 0.9028, "learning_rate": 8.150694354314556e-06, "epoch": 0.603448275862069, "percentage": 60.34, "elapsed_time": "3:44:41", "remaining_time": "2:27:39"} +{"current_steps": 981, "total_steps": 1624, "loss": 0.8988, "learning_rate": 8.129566509300834e-06, "epoch": 0.604064039408867, "percentage": 60.41, "elapsed_time": "3:44:53", "remaining_time": "2:27:24"} +{"current_steps": 982, "total_steps": 1624, "loss": 0.9228, "learning_rate": 8.108447312799588e-06, "epoch": 0.604679802955665, "percentage": 60.47, "elapsed_time": "3:45:04", "remaining_time": "2:27:09"} +{"current_steps": 983, "total_steps": 1624, "loss": 0.8431, "learning_rate": 8.087336862461783e-06, "epoch": 0.6052955665024631, "percentage": 60.53, "elapsed_time": "3:45:16", "remaining_time": "2:26:53"} +{"current_steps": 984, "total_steps": 1624, "loss": 0.9151, "learning_rate": 8.066235255897943e-06, "epoch": 0.6059113300492611, "percentage": 60.59, "elapsed_time": "3:45:28", "remaining_time": "2:26:38"} +{"current_steps": 985, "total_steps": 1624, "loss": 0.8545, "learning_rate": 8.0451425906777e-06, "epoch": 0.6065270935960592, "percentage": 60.65, "elapsed_time": "3:45:40", "remaining_time": "2:26:23"} +{"current_steps": 986, "total_steps": 1624, "loss": 0.8906, "learning_rate": 8.02405896432934e-06, "epoch": 0.6071428571428571, "percentage": 60.71, "elapsed_time": "3:45:51", "remaining_time": "2:26:08"} +{"current_steps": 987, "total_steps": 1624, "loss": 0.8925, "learning_rate": 8.002984474339363e-06, "epoch": 0.6077586206896551, "percentage": 60.78, "elapsed_time": "3:46:03", "remaining_time": "2:25:53"} +{"current_steps": 988, "total_steps": 1624, "loss": 0.8851, "learning_rate": 7.981919218152017e-06, "epoch": 0.6083743842364532, "percentage": 60.84, "elapsed_time": "3:46:15", "remaining_time": "2:25:38"} +{"current_steps": 989, "total_steps": 1624, "loss": 0.8966, "learning_rate": 7.960863293168858e-06, "epoch": 0.6089901477832512, "percentage": 60.9, "elapsed_time": "3:46:26", "remaining_time": "2:25:23"} +{"current_steps": 990, "total_steps": 1624, "loss": 0.9118, "learning_rate": 7.939816796748296e-06, "epoch": 0.6096059113300493, "percentage": 60.96, "elapsed_time": "3:46:37", "remaining_time": "2:25:07"} +{"current_steps": 991, "total_steps": 1624, "loss": 0.9215, "learning_rate": 7.918779826205141e-06, "epoch": 0.6102216748768473, "percentage": 61.02, "elapsed_time": "3:46:48", "remaining_time": "2:24:52"} +{"current_steps": 992, "total_steps": 1624, "loss": 0.9002, "learning_rate": 7.897752478810166e-06, "epoch": 0.6108374384236454, "percentage": 61.08, "elapsed_time": "3:47:00", "remaining_time": "2:24:37"} +{"current_steps": 993, "total_steps": 1624, "loss": 0.9241, "learning_rate": 7.876734851789642e-06, "epoch": 0.6114532019704434, "percentage": 61.15, "elapsed_time": "3:47:12", "remaining_time": "2:24:22"} +{"current_steps": 994, "total_steps": 1624, "loss": 0.9137, "learning_rate": 7.855727042324892e-06, "epoch": 0.6120689655172413, "percentage": 61.21, "elapsed_time": "3:47:23", "remaining_time": "2:24:07"} +{"current_steps": 995, "total_steps": 1624, "loss": 0.8669, "learning_rate": 7.834729147551858e-06, "epoch": 0.6126847290640394, "percentage": 61.27, "elapsed_time": "3:47:35", "remaining_time": "2:23:52"} +{"current_steps": 996, "total_steps": 1624, "loss": 0.9066, "learning_rate": 7.813741264560622e-06, "epoch": 0.6133004926108374, "percentage": 61.33, "elapsed_time": "3:47:46", "remaining_time": "2:23:37"} +{"current_steps": 997, "total_steps": 1624, "loss": 0.9222, "learning_rate": 7.792763490394983e-06, "epoch": 0.6139162561576355, "percentage": 61.39, "elapsed_time": "3:47:58", "remaining_time": "2:23:22"} +{"current_steps": 998, "total_steps": 1624, "loss": 0.8988, "learning_rate": 7.771795922052e-06, "epoch": 0.6145320197044335, "percentage": 61.45, "elapsed_time": "3:48:10", "remaining_time": "2:23:07"} +{"current_steps": 999, "total_steps": 1624, "loss": 0.9504, "learning_rate": 7.750838656481535e-06, "epoch": 0.6151477832512315, "percentage": 61.51, "elapsed_time": "3:48:21", "remaining_time": "2:22:52"} +{"current_steps": 1000, "total_steps": 1624, "loss": 0.967, "learning_rate": 7.729891790585817e-06, "epoch": 0.6157635467980296, "percentage": 61.58, "elapsed_time": "3:48:33", "remaining_time": "2:22:37"} +{"current_steps": 1000, "total_steps": 1624, "eval_loss": 0.9036802053451538, "epoch": 0.6157635467980296, "percentage": 61.58, "elapsed_time": "3:57:16", "remaining_time": "2:28:03"} +{"current_steps": 1001, "total_steps": 1624, "loss": 0.8843, "learning_rate": 7.708955421218987e-06, "epoch": 0.6163793103448276, "percentage": 61.64, "elapsed_time": "3:57:28", "remaining_time": "2:27:47"} +{"current_steps": 1002, "total_steps": 1624, "loss": 0.884, "learning_rate": 7.688029645186657e-06, "epoch": 0.6169950738916257, "percentage": 61.7, "elapsed_time": "3:57:39", "remaining_time": "2:27:31"} +{"current_steps": 1003, "total_steps": 1624, "loss": 0.8698, "learning_rate": 7.667114559245451e-06, "epoch": 0.6176108374384236, "percentage": 61.76, "elapsed_time": "3:57:51", "remaining_time": "2:27:15"} +{"current_steps": 1004, "total_steps": 1624, "loss": 0.8857, "learning_rate": 7.646210260102566e-06, "epoch": 0.6182266009852216, "percentage": 61.82, "elapsed_time": "3:58:02", "remaining_time": "2:27:00"} +{"current_steps": 1005, "total_steps": 1624, "loss": 0.951, "learning_rate": 7.625316844415327e-06, "epoch": 0.6188423645320197, "percentage": 61.88, "elapsed_time": "3:58:14", "remaining_time": "2:26:44"} +{"current_steps": 1006, "total_steps": 1624, "loss": 0.8663, "learning_rate": 7.604434408790729e-06, "epoch": 0.6194581280788177, "percentage": 61.95, "elapsed_time": "3:58:26", "remaining_time": "2:26:28"} +{"current_steps": 1007, "total_steps": 1624, "loss": 0.8841, "learning_rate": 7.583563049785002e-06, "epoch": 0.6200738916256158, "percentage": 62.01, "elapsed_time": "3:58:37", "remaining_time": "2:26:12"} +{"current_steps": 1008, "total_steps": 1624, "loss": 0.9952, "learning_rate": 7.562702863903161e-06, "epoch": 0.6206896551724138, "percentage": 62.07, "elapsed_time": "3:58:49", "remaining_time": "2:25:56"} +{"current_steps": 1009, "total_steps": 1624, "loss": 0.9028, "learning_rate": 7.541853947598559e-06, "epoch": 0.6213054187192119, "percentage": 62.13, "elapsed_time": "3:59:00", "remaining_time": "2:25:40"} +{"current_steps": 1010, "total_steps": 1624, "loss": 0.891, "learning_rate": 7.521016397272436e-06, "epoch": 0.6219211822660099, "percentage": 62.19, "elapsed_time": "3:59:12", "remaining_time": "2:25:25"} +{"current_steps": 1011, "total_steps": 1624, "loss": 0.8701, "learning_rate": 7.50019030927348e-06, "epoch": 0.6225369458128078, "percentage": 62.25, "elapsed_time": "3:59:23", "remaining_time": "2:25:09"} +{"current_steps": 1012, "total_steps": 1624, "loss": 0.8708, "learning_rate": 7.479375779897379e-06, "epoch": 0.6231527093596059, "percentage": 62.32, "elapsed_time": "3:59:35", "remaining_time": "2:24:53"} +{"current_steps": 1013, "total_steps": 1624, "loss": 0.901, "learning_rate": 7.458572905386381e-06, "epoch": 0.6237684729064039, "percentage": 62.38, "elapsed_time": "3:59:46", "remaining_time": "2:24:37"} +{"current_steps": 1014, "total_steps": 1624, "loss": 0.8654, "learning_rate": 7.437781781928839e-06, "epoch": 0.624384236453202, "percentage": 62.44, "elapsed_time": "3:59:58", "remaining_time": "2:24:21"} +{"current_steps": 1015, "total_steps": 1624, "loss": 0.8687, "learning_rate": 7.417002505658773e-06, "epoch": 0.625, "percentage": 62.5, "elapsed_time": "4:00:10", "remaining_time": "2:24:06"} +{"current_steps": 1016, "total_steps": 1624, "loss": 0.9214, "learning_rate": 7.396235172655423e-06, "epoch": 0.625615763546798, "percentage": 62.56, "elapsed_time": "4:00:21", "remaining_time": "2:23:50"} +{"current_steps": 1017, "total_steps": 1624, "loss": 0.8807, "learning_rate": 7.375479878942805e-06, "epoch": 0.6262315270935961, "percentage": 62.62, "elapsed_time": "4:00:33", "remaining_time": "2:23:34"} +{"current_steps": 1018, "total_steps": 1624, "loss": 0.9008, "learning_rate": 7.354736720489274e-06, "epoch": 0.6268472906403941, "percentage": 62.68, "elapsed_time": "4:00:45", "remaining_time": "2:23:18"} +{"current_steps": 1019, "total_steps": 1624, "loss": 0.9063, "learning_rate": 7.334005793207067e-06, "epoch": 0.6274630541871922, "percentage": 62.75, "elapsed_time": "4:00:56", "remaining_time": "2:23:03"} +{"current_steps": 1020, "total_steps": 1624, "loss": 0.9398, "learning_rate": 7.313287192951866e-06, "epoch": 0.6280788177339901, "percentage": 62.81, "elapsed_time": "4:01:08", "remaining_time": "2:22:47"} +{"current_steps": 1021, "total_steps": 1624, "loss": 0.8933, "learning_rate": 7.292581015522363e-06, "epoch": 0.6286945812807881, "percentage": 62.87, "elapsed_time": "4:01:19", "remaining_time": "2:22:31"} +{"current_steps": 1022, "total_steps": 1624, "loss": 0.9233, "learning_rate": 7.271887356659804e-06, "epoch": 0.6293103448275862, "percentage": 62.93, "elapsed_time": "4:01:31", "remaining_time": "2:22:16"} +{"current_steps": 1023, "total_steps": 1624, "loss": 0.8324, "learning_rate": 7.2512063120475475e-06, "epoch": 0.6299261083743842, "percentage": 62.99, "elapsed_time": "4:01:43", "remaining_time": "2:22:00"} +{"current_steps": 1024, "total_steps": 1624, "loss": 0.8657, "learning_rate": 7.230537977310636e-06, "epoch": 0.6305418719211823, "percentage": 63.05, "elapsed_time": "4:01:54", "remaining_time": "2:21:44"} +{"current_steps": 1025, "total_steps": 1624, "loss": 0.9265, "learning_rate": 7.209882448015338e-06, "epoch": 0.6311576354679803, "percentage": 63.12, "elapsed_time": "4:02:06", "remaining_time": "2:21:29"} +{"current_steps": 1026, "total_steps": 1624, "loss": 0.9092, "learning_rate": 7.189239819668712e-06, "epoch": 0.6317733990147784, "percentage": 63.18, "elapsed_time": "4:02:18", "remaining_time": "2:21:13"} +{"current_steps": 1027, "total_steps": 1624, "loss": 0.9547, "learning_rate": 7.168610187718164e-06, "epoch": 0.6323891625615764, "percentage": 63.24, "elapsed_time": "4:02:29", "remaining_time": "2:20:57"} +{"current_steps": 1028, "total_steps": 1624, "loss": 0.8929, "learning_rate": 7.147993647551011e-06, "epoch": 0.6330049261083743, "percentage": 63.3, "elapsed_time": "4:02:41", "remaining_time": "2:20:42"} +{"current_steps": 1029, "total_steps": 1624, "loss": 0.8487, "learning_rate": 7.1273902944940365e-06, "epoch": 0.6336206896551724, "percentage": 63.36, "elapsed_time": "4:02:52", "remaining_time": "2:20:26"} +{"current_steps": 1030, "total_steps": 1624, "loss": 0.8592, "learning_rate": 7.1068002238130465e-06, "epoch": 0.6342364532019704, "percentage": 63.42, "elapsed_time": "4:03:04", "remaining_time": "2:20:10"} +{"current_steps": 1031, "total_steps": 1624, "loss": 0.9101, "learning_rate": 7.086223530712433e-06, "epoch": 0.6348522167487685, "percentage": 63.49, "elapsed_time": "4:03:15", "remaining_time": "2:19:54"} +{"current_steps": 1032, "total_steps": 1624, "loss": 0.9059, "learning_rate": 7.065660310334729e-06, "epoch": 0.6354679802955665, "percentage": 63.55, "elapsed_time": "4:03:27", "remaining_time": "2:19:39"} +{"current_steps": 1033, "total_steps": 1624, "loss": 0.9221, "learning_rate": 7.045110657760179e-06, "epoch": 0.6360837438423645, "percentage": 63.61, "elapsed_time": "4:03:38", "remaining_time": "2:19:23"} +{"current_steps": 1034, "total_steps": 1624, "loss": 0.9059, "learning_rate": 7.02457466800629e-06, "epoch": 0.6366995073891626, "percentage": 63.67, "elapsed_time": "4:03:49", "remaining_time": "2:19:07"} +{"current_steps": 1035, "total_steps": 1624, "loss": 0.8936, "learning_rate": 7.004052436027397e-06, "epoch": 0.6373152709359606, "percentage": 63.73, "elapsed_time": "4:04:01", "remaining_time": "2:18:52"} +{"current_steps": 1036, "total_steps": 1624, "loss": 0.8921, "learning_rate": 6.9835440567142155e-06, "epoch": 0.6379310344827587, "percentage": 63.79, "elapsed_time": "4:04:12", "remaining_time": "2:18:36"} +{"current_steps": 1037, "total_steps": 1624, "loss": 0.9041, "learning_rate": 6.9630496248934144e-06, "epoch": 0.6385467980295566, "percentage": 63.85, "elapsed_time": "4:04:24", "remaining_time": "2:18:20"} +{"current_steps": 1038, "total_steps": 1624, "loss": 0.9981, "learning_rate": 6.942569235327168e-06, "epoch": 0.6391625615763546, "percentage": 63.92, "elapsed_time": "4:04:36", "remaining_time": "2:18:05"} +{"current_steps": 1039, "total_steps": 1624, "loss": 0.9755, "learning_rate": 6.9221029827127285e-06, "epoch": 0.6397783251231527, "percentage": 63.98, "elapsed_time": "4:04:47", "remaining_time": "2:17:49"} +{"current_steps": 1040, "total_steps": 1624, "loss": 0.8711, "learning_rate": 6.901650961681976e-06, "epoch": 0.6403940886699507, "percentage": 64.04, "elapsed_time": "4:04:59", "remaining_time": "2:17:34"} +{"current_steps": 1041, "total_steps": 1624, "loss": 0.8693, "learning_rate": 6.881213266800989e-06, "epoch": 0.6410098522167488, "percentage": 64.1, "elapsed_time": "4:05:11", "remaining_time": "2:17:18"} +{"current_steps": 1042, "total_steps": 1624, "loss": 0.9175, "learning_rate": 6.860789992569601e-06, "epoch": 0.6416256157635468, "percentage": 64.16, "elapsed_time": "4:05:22", "remaining_time": "2:17:03"} +{"current_steps": 1043, "total_steps": 1624, "loss": 0.9022, "learning_rate": 6.840381233420974e-06, "epoch": 0.6422413793103449, "percentage": 64.22, "elapsed_time": "4:05:34", "remaining_time": "2:16:47"} +{"current_steps": 1044, "total_steps": 1624, "loss": 0.8647, "learning_rate": 6.819987083721149e-06, "epoch": 0.6428571428571429, "percentage": 64.29, "elapsed_time": "4:05:46", "remaining_time": "2:16:32"} +{"current_steps": 1045, "total_steps": 1624, "loss": 0.9028, "learning_rate": 6.799607637768621e-06, "epoch": 0.6434729064039408, "percentage": 64.35, "elapsed_time": "4:05:57", "remaining_time": "2:16:16"} +{"current_steps": 1046, "total_steps": 1624, "loss": 0.9151, "learning_rate": 6.779242989793893e-06, "epoch": 0.6440886699507389, "percentage": 64.41, "elapsed_time": "4:06:09", "remaining_time": "2:16:01"} +{"current_steps": 1047, "total_steps": 1624, "loss": 0.9625, "learning_rate": 6.758893233959044e-06, "epoch": 0.6447044334975369, "percentage": 64.47, "elapsed_time": "4:06:20", "remaining_time": "2:15:45"} +{"current_steps": 1048, "total_steps": 1624, "loss": 0.9269, "learning_rate": 6.738558464357305e-06, "epoch": 0.645320197044335, "percentage": 64.53, "elapsed_time": "4:06:32", "remaining_time": "2:15:30"} +{"current_steps": 1049, "total_steps": 1624, "loss": 0.8511, "learning_rate": 6.718238775012602e-06, "epoch": 0.645935960591133, "percentage": 64.59, "elapsed_time": "4:06:44", "remaining_time": "2:15:14"} +{"current_steps": 1050, "total_steps": 1624, "loss": 0.8983, "learning_rate": 6.6979342598791395e-06, "epoch": 0.646551724137931, "percentage": 64.66, "elapsed_time": "4:06:55", "remaining_time": "2:14:59"} +{"current_steps": 1051, "total_steps": 1624, "loss": 0.92, "learning_rate": 6.677645012840957e-06, "epoch": 0.6471674876847291, "percentage": 64.72, "elapsed_time": "4:07:07", "remaining_time": "2:14:43"} +{"current_steps": 1052, "total_steps": 1624, "loss": 0.8985, "learning_rate": 6.657371127711496e-06, "epoch": 0.6477832512315271, "percentage": 64.78, "elapsed_time": "4:07:19", "remaining_time": "2:14:28"} +{"current_steps": 1053, "total_steps": 1624, "loss": 0.8568, "learning_rate": 6.63711269823317e-06, "epoch": 0.6483990147783252, "percentage": 64.84, "elapsed_time": "4:07:30", "remaining_time": "2:14:12"} +{"current_steps": 1054, "total_steps": 1624, "loss": 0.9394, "learning_rate": 6.61686981807693e-06, "epoch": 0.6490147783251231, "percentage": 64.9, "elapsed_time": "4:07:42", "remaining_time": "2:13:57"} +{"current_steps": 1055, "total_steps": 1624, "loss": 0.8886, "learning_rate": 6.596642580841827e-06, "epoch": 0.6496305418719212, "percentage": 64.96, "elapsed_time": "4:07:54", "remaining_time": "2:13:42"} +{"current_steps": 1056, "total_steps": 1624, "loss": 0.9128, "learning_rate": 6.5764310800545815e-06, "epoch": 0.6502463054187192, "percentage": 65.02, "elapsed_time": "4:08:05", "remaining_time": "2:13:26"} +{"current_steps": 1057, "total_steps": 1624, "loss": 0.9341, "learning_rate": 6.556235409169154e-06, "epoch": 0.6508620689655172, "percentage": 65.09, "elapsed_time": "4:08:17", "remaining_time": "2:13:11"} +{"current_steps": 1058, "total_steps": 1624, "loss": 0.9216, "learning_rate": 6.536055661566312e-06, "epoch": 0.6514778325123153, "percentage": 65.15, "elapsed_time": "4:08:28", "remaining_time": "2:12:55"} +{"current_steps": 1059, "total_steps": 1624, "loss": 0.8986, "learning_rate": 6.515891930553195e-06, "epoch": 0.6520935960591133, "percentage": 65.21, "elapsed_time": "4:08:40", "remaining_time": "2:12:40"} +{"current_steps": 1060, "total_steps": 1624, "loss": 0.8877, "learning_rate": 6.495744309362879e-06, "epoch": 0.6527093596059114, "percentage": 65.27, "elapsed_time": "4:08:52", "remaining_time": "2:12:25"} +{"current_steps": 1061, "total_steps": 1624, "loss": 0.8984, "learning_rate": 6.475612891153968e-06, "epoch": 0.6533251231527094, "percentage": 65.33, "elapsed_time": "4:09:03", "remaining_time": "2:12:09"} +{"current_steps": 1062, "total_steps": 1624, "loss": 0.9107, "learning_rate": 6.455497769010131e-06, "epoch": 0.6539408866995073, "percentage": 65.39, "elapsed_time": "4:09:15", "remaining_time": "2:11:54"} +{"current_steps": 1063, "total_steps": 1624, "loss": 0.897, "learning_rate": 6.435399035939691e-06, "epoch": 0.6545566502463054, "percentage": 65.46, "elapsed_time": "4:09:27", "remaining_time": "2:11:38"} +{"current_steps": 1064, "total_steps": 1624, "loss": 0.955, "learning_rate": 6.415316784875193e-06, "epoch": 0.6551724137931034, "percentage": 65.52, "elapsed_time": "4:09:38", "remaining_time": "2:11:23"} +{"current_steps": 1065, "total_steps": 1624, "loss": 0.9026, "learning_rate": 6.395251108672975e-06, "epoch": 0.6557881773399015, "percentage": 65.58, "elapsed_time": "4:09:50", "remaining_time": "2:11:07"} +{"current_steps": 1066, "total_steps": 1624, "loss": 0.9357, "learning_rate": 6.37520210011273e-06, "epoch": 0.6564039408866995, "percentage": 65.64, "elapsed_time": "4:10:01", "remaining_time": "2:10:52"} +{"current_steps": 1067, "total_steps": 1624, "loss": 0.8781, "learning_rate": 6.355169851897088e-06, "epoch": 0.6570197044334976, "percentage": 65.7, "elapsed_time": "4:10:13", "remaining_time": "2:10:37"} +{"current_steps": 1068, "total_steps": 1624, "loss": 0.8841, "learning_rate": 6.335154456651178e-06, "epoch": 0.6576354679802956, "percentage": 65.76, "elapsed_time": "4:10:24", "remaining_time": "2:10:21"} +{"current_steps": 1069, "total_steps": 1624, "loss": 0.8882, "learning_rate": 6.315156006922211e-06, "epoch": 0.6582512315270936, "percentage": 65.83, "elapsed_time": "4:10:35", "remaining_time": "2:10:06"} +{"current_steps": 1070, "total_steps": 1624, "loss": 0.9645, "learning_rate": 6.295174595179041e-06, "epoch": 0.6588669950738916, "percentage": 65.89, "elapsed_time": "4:10:47", "remaining_time": "2:09:50"} +{"current_steps": 1071, "total_steps": 1624, "loss": 0.9117, "learning_rate": 6.275210313811739e-06, "epoch": 0.6594827586206896, "percentage": 65.95, "elapsed_time": "4:10:59", "remaining_time": "2:09:35"} +{"current_steps": 1072, "total_steps": 1624, "loss": 0.8788, "learning_rate": 6.255263255131172e-06, "epoch": 0.6600985221674877, "percentage": 66.01, "elapsed_time": "4:11:10", "remaining_time": "2:09:20"} +{"current_steps": 1073, "total_steps": 1624, "loss": 0.9123, "learning_rate": 6.235333511368573e-06, "epoch": 0.6607142857142857, "percentage": 66.07, "elapsed_time": "4:11:22", "remaining_time": "2:09:04"} +{"current_steps": 1074, "total_steps": 1624, "loss": 0.933, "learning_rate": 6.215421174675114e-06, "epoch": 0.6613300492610837, "percentage": 66.13, "elapsed_time": "4:11:34", "remaining_time": "2:08:49"} +{"current_steps": 1075, "total_steps": 1624, "loss": 0.9128, "learning_rate": 6.195526337121483e-06, "epoch": 0.6619458128078818, "percentage": 66.19, "elapsed_time": "4:11:45", "remaining_time": "2:08:34"} +{"current_steps": 1076, "total_steps": 1624, "loss": 0.8871, "learning_rate": 6.1756490906974476e-06, "epoch": 0.6625615763546798, "percentage": 66.26, "elapsed_time": "4:11:57", "remaining_time": "2:08:19"} +{"current_steps": 1077, "total_steps": 1624, "loss": 0.9453, "learning_rate": 6.155789527311444e-06, "epoch": 0.6631773399014779, "percentage": 66.32, "elapsed_time": "4:12:08", "remaining_time": "2:08:03"} +{"current_steps": 1078, "total_steps": 1624, "loss": 0.9031, "learning_rate": 6.135947738790145e-06, "epoch": 0.6637931034482759, "percentage": 66.38, "elapsed_time": "4:12:20", "remaining_time": "2:07:48"} +{"current_steps": 1079, "total_steps": 1624, "loss": 0.86, "learning_rate": 6.116123816878029e-06, "epoch": 0.6644088669950738, "percentage": 66.44, "elapsed_time": "4:12:32", "remaining_time": "2:07:33"} +{"current_steps": 1080, "total_steps": 1624, "loss": 0.9359, "learning_rate": 6.096317853236975e-06, "epoch": 0.6650246305418719, "percentage": 66.5, "elapsed_time": "4:12:43", "remaining_time": "2:07:18"} +{"current_steps": 1081, "total_steps": 1624, "loss": 0.9009, "learning_rate": 6.0765299394458185e-06, "epoch": 0.6656403940886699, "percentage": 66.56, "elapsed_time": "4:12:55", "remaining_time": "2:07:02"} +{"current_steps": 1082, "total_steps": 1624, "loss": 0.8696, "learning_rate": 6.056760166999935e-06, "epoch": 0.666256157635468, "percentage": 66.63, "elapsed_time": "4:13:07", "remaining_time": "2:06:47"} +{"current_steps": 1083, "total_steps": 1624, "loss": 0.8881, "learning_rate": 6.0370086273108205e-06, "epoch": 0.666871921182266, "percentage": 66.69, "elapsed_time": "4:13:19", "remaining_time": "2:06:32"} +{"current_steps": 1084, "total_steps": 1624, "loss": 0.8943, "learning_rate": 6.017275411705671e-06, "epoch": 0.6674876847290641, "percentage": 66.75, "elapsed_time": "4:13:30", "remaining_time": "2:06:17"} +{"current_steps": 1085, "total_steps": 1624, "loss": 0.8933, "learning_rate": 5.997560611426947e-06, "epoch": 0.6681034482758621, "percentage": 66.81, "elapsed_time": "4:13:42", "remaining_time": "2:06:02"} +{"current_steps": 1086, "total_steps": 1624, "loss": 0.8934, "learning_rate": 5.977864317631965e-06, "epoch": 0.6687192118226601, "percentage": 66.87, "elapsed_time": "4:13:54", "remaining_time": "2:05:46"} +{"current_steps": 1087, "total_steps": 1624, "loss": 0.8989, "learning_rate": 5.9581866213924656e-06, "epoch": 0.6693349753694581, "percentage": 66.93, "elapsed_time": "4:14:05", "remaining_time": "2:05:31"} +{"current_steps": 1088, "total_steps": 1624, "loss": 0.9193, "learning_rate": 5.938527613694214e-06, "epoch": 0.6699507389162561, "percentage": 67.0, "elapsed_time": "4:14:17", "remaining_time": "2:05:16"} +{"current_steps": 1089, "total_steps": 1624, "loss": 0.914, "learning_rate": 5.918887385436542e-06, "epoch": 0.6705665024630542, "percentage": 67.06, "elapsed_time": "4:14:28", "remaining_time": "2:05:01"} +{"current_steps": 1090, "total_steps": 1624, "loss": 0.8969, "learning_rate": 5.899266027431965e-06, "epoch": 0.6711822660098522, "percentage": 67.12, "elapsed_time": "4:14:40", "remaining_time": "2:04:46"} +{"current_steps": 1091, "total_steps": 1624, "loss": 0.8341, "learning_rate": 5.879663630405737e-06, "epoch": 0.6717980295566502, "percentage": 67.18, "elapsed_time": "4:14:52", "remaining_time": "2:04:30"} +{"current_steps": 1092, "total_steps": 1624, "loss": 0.8895, "learning_rate": 5.860080284995445e-06, "epoch": 0.6724137931034483, "percentage": 67.24, "elapsed_time": "4:15:03", "remaining_time": "2:04:15"} +{"current_steps": 1093, "total_steps": 1624, "loss": 0.9422, "learning_rate": 5.8405160817505834e-06, "epoch": 0.6730295566502463, "percentage": 67.3, "elapsed_time": "4:15:15", "remaining_time": "2:04:00"} +{"current_steps": 1094, "total_steps": 1624, "loss": 0.8709, "learning_rate": 5.820971111132137e-06, "epoch": 0.6736453201970444, "percentage": 67.36, "elapsed_time": "4:15:26", "remaining_time": "2:03:45"} +{"current_steps": 1095, "total_steps": 1624, "loss": 0.861, "learning_rate": 5.80144546351216e-06, "epoch": 0.6742610837438424, "percentage": 67.43, "elapsed_time": "4:15:38", "remaining_time": "2:03:30"} +{"current_steps": 1096, "total_steps": 1624, "loss": 0.9215, "learning_rate": 5.781939229173365e-06, "epoch": 0.6748768472906403, "percentage": 67.49, "elapsed_time": "4:15:50", "remaining_time": "2:03:14"} +{"current_steps": 1097, "total_steps": 1624, "loss": 0.8861, "learning_rate": 5.7624524983087085e-06, "epoch": 0.6754926108374384, "percentage": 67.55, "elapsed_time": "4:16:01", "remaining_time": "2:02:59"} +{"current_steps": 1098, "total_steps": 1624, "loss": 0.8752, "learning_rate": 5.742985361020945e-06, "epoch": 0.6761083743842364, "percentage": 67.61, "elapsed_time": "4:16:13", "remaining_time": "2:02:44"} +{"current_steps": 1099, "total_steps": 1624, "loss": 0.8757, "learning_rate": 5.723537907322259e-06, "epoch": 0.6767241379310345, "percentage": 67.67, "elapsed_time": "4:16:24", "remaining_time": "2:02:29"} +{"current_steps": 1100, "total_steps": 1624, "loss": 0.9082, "learning_rate": 5.704110227133792e-06, "epoch": 0.6773399014778325, "percentage": 67.73, "elapsed_time": "4:16:36", "remaining_time": "2:02:14"} +{"current_steps": 1101, "total_steps": 1624, "loss": 0.8867, "learning_rate": 5.684702410285292e-06, "epoch": 0.6779556650246306, "percentage": 67.8, "elapsed_time": "4:16:48", "remaining_time": "2:01:59"} +{"current_steps": 1102, "total_steps": 1624, "loss": 0.8823, "learning_rate": 5.665314546514633e-06, "epoch": 0.6785714285714286, "percentage": 67.86, "elapsed_time": "4:16:59", "remaining_time": "2:01:44"} +{"current_steps": 1103, "total_steps": 1624, "loss": 0.9583, "learning_rate": 5.645946725467444e-06, "epoch": 0.6791871921182266, "percentage": 67.92, "elapsed_time": "4:17:11", "remaining_time": "2:01:28"} +{"current_steps": 1104, "total_steps": 1624, "loss": 0.9079, "learning_rate": 5.62659903669668e-06, "epoch": 0.6798029556650246, "percentage": 67.98, "elapsed_time": "4:17:22", "remaining_time": "2:01:13"} +{"current_steps": 1105, "total_steps": 1624, "loss": 0.9397, "learning_rate": 5.607271569662203e-06, "epoch": 0.6804187192118226, "percentage": 68.04, "elapsed_time": "4:17:34", "remaining_time": "2:00:58"} +{"current_steps": 1106, "total_steps": 1624, "loss": 0.8905, "learning_rate": 5.5879644137303805e-06, "epoch": 0.6810344827586207, "percentage": 68.1, "elapsed_time": "4:17:45", "remaining_time": "2:00:43"} +{"current_steps": 1107, "total_steps": 1624, "loss": 0.9265, "learning_rate": 5.568677658173656e-06, "epoch": 0.6816502463054187, "percentage": 68.17, "elapsed_time": "4:17:57", "remaining_time": "2:00:28"} +{"current_steps": 1108, "total_steps": 1624, "loss": 0.8555, "learning_rate": 5.549411392170154e-06, "epoch": 0.6822660098522167, "percentage": 68.23, "elapsed_time": "4:18:08", "remaining_time": "2:00:13"} +{"current_steps": 1109, "total_steps": 1624, "loss": 0.9128, "learning_rate": 5.530165704803261e-06, "epoch": 0.6828817733990148, "percentage": 68.29, "elapsed_time": "4:18:19", "remaining_time": "1:59:57"} +{"current_steps": 1110, "total_steps": 1624, "loss": 0.8585, "learning_rate": 5.510940685061202e-06, "epoch": 0.6834975369458128, "percentage": 68.35, "elapsed_time": "4:18:31", "remaining_time": "1:59:42"} +{"current_steps": 1111, "total_steps": 1624, "loss": 0.879, "learning_rate": 5.491736421836647e-06, "epoch": 0.6841133004926109, "percentage": 68.41, "elapsed_time": "4:18:43", "remaining_time": "1:59:27"} +{"current_steps": 1112, "total_steps": 1624, "loss": 0.8838, "learning_rate": 5.472553003926293e-06, "epoch": 0.6847290640394089, "percentage": 68.47, "elapsed_time": "4:18:54", "remaining_time": "1:59:12"} +{"current_steps": 1113, "total_steps": 1624, "loss": 0.887, "learning_rate": 5.4533905200304395e-06, "epoch": 0.6853448275862069, "percentage": 68.53, "elapsed_time": "4:19:06", "remaining_time": "1:58:57"} +{"current_steps": 1114, "total_steps": 1624, "loss": 0.9026, "learning_rate": 5.434249058752615e-06, "epoch": 0.6859605911330049, "percentage": 68.6, "elapsed_time": "4:19:18", "remaining_time": "1:58:42"} +{"current_steps": 1115, "total_steps": 1624, "loss": 0.8607, "learning_rate": 5.41512870859912e-06, "epoch": 0.6865763546798029, "percentage": 68.66, "elapsed_time": "4:19:29", "remaining_time": "1:58:27"} +{"current_steps": 1116, "total_steps": 1624, "loss": 0.8928, "learning_rate": 5.396029557978657e-06, "epoch": 0.687192118226601, "percentage": 68.72, "elapsed_time": "4:19:41", "remaining_time": "1:58:12"} +{"current_steps": 1117, "total_steps": 1624, "loss": 0.9009, "learning_rate": 5.376951695201894e-06, "epoch": 0.687807881773399, "percentage": 68.78, "elapsed_time": "4:19:52", "remaining_time": "1:57:57"} +{"current_steps": 1118, "total_steps": 1624, "loss": 0.8518, "learning_rate": 5.357895208481076e-06, "epoch": 0.6884236453201971, "percentage": 68.84, "elapsed_time": "4:20:04", "remaining_time": "1:57:42"} +{"current_steps": 1119, "total_steps": 1624, "loss": 0.8601, "learning_rate": 5.338860185929614e-06, "epoch": 0.6890394088669951, "percentage": 68.9, "elapsed_time": "4:20:15", "remaining_time": "1:57:27"} +{"current_steps": 1120, "total_steps": 1624, "loss": 0.9249, "learning_rate": 5.319846715561656e-06, "epoch": 0.6896551724137931, "percentage": 68.97, "elapsed_time": "4:20:27", "remaining_time": "1:57:12"} +{"current_steps": 1121, "total_steps": 1624, "loss": 0.9224, "learning_rate": 5.30085488529172e-06, "epoch": 0.6902709359605911, "percentage": 69.03, "elapsed_time": "4:20:38", "remaining_time": "1:56:57"} +{"current_steps": 1122, "total_steps": 1624, "loss": 0.8289, "learning_rate": 5.281884782934239e-06, "epoch": 0.6908866995073891, "percentage": 69.09, "elapsed_time": "4:20:50", "remaining_time": "1:56:42"} +{"current_steps": 1123, "total_steps": 1624, "loss": 0.8806, "learning_rate": 5.2629364962032e-06, "epoch": 0.6915024630541872, "percentage": 69.15, "elapsed_time": "4:21:01", "remaining_time": "1:56:27"} +{"current_steps": 1124, "total_steps": 1624, "loss": 0.9256, "learning_rate": 5.244010112711717e-06, "epoch": 0.6921182266009852, "percentage": 69.21, "elapsed_time": "4:21:13", "remaining_time": "1:56:12"} +{"current_steps": 1125, "total_steps": 1624, "loss": 0.8937, "learning_rate": 5.225105719971615e-06, "epoch": 0.6927339901477833, "percentage": 69.27, "elapsed_time": "4:21:25", "remaining_time": "1:55:57"} +{"current_steps": 1126, "total_steps": 1624, "loss": 0.9191, "learning_rate": 5.206223405393051e-06, "epoch": 0.6933497536945813, "percentage": 69.33, "elapsed_time": "4:21:36", "remaining_time": "1:55:42"} +{"current_steps": 1127, "total_steps": 1624, "loss": 0.8805, "learning_rate": 5.18736325628409e-06, "epoch": 0.6939655172413793, "percentage": 69.4, "elapsed_time": "4:21:48", "remaining_time": "1:55:27"} +{"current_steps": 1128, "total_steps": 1624, "loss": 0.9361, "learning_rate": 5.168525359850312e-06, "epoch": 0.6945812807881774, "percentage": 69.46, "elapsed_time": "4:21:59", "remaining_time": "1:55:12"} +{"current_steps": 1129, "total_steps": 1624, "loss": 0.9046, "learning_rate": 5.149709803194409e-06, "epoch": 0.6951970443349754, "percentage": 69.52, "elapsed_time": "4:22:11", "remaining_time": "1:54:57"} +{"current_steps": 1130, "total_steps": 1624, "loss": 0.8893, "learning_rate": 5.130916673315762e-06, "epoch": 0.6958128078817734, "percentage": 69.58, "elapsed_time": "4:22:22", "remaining_time": "1:54:42"} +{"current_steps": 1131, "total_steps": 1624, "loss": 0.9544, "learning_rate": 5.112146057110078e-06, "epoch": 0.6964285714285714, "percentage": 69.64, "elapsed_time": "4:22:34", "remaining_time": "1:54:27"} +{"current_steps": 1132, "total_steps": 1624, "loss": 0.8957, "learning_rate": 5.093398041368942e-06, "epoch": 0.6970443349753694, "percentage": 69.7, "elapsed_time": "4:22:45", "remaining_time": "1:54:12"} +{"current_steps": 1133, "total_steps": 1624, "loss": 0.8864, "learning_rate": 5.074672712779456e-06, "epoch": 0.6976600985221675, "percentage": 69.77, "elapsed_time": "4:22:57", "remaining_time": "1:53:57"} +{"current_steps": 1134, "total_steps": 1624, "loss": 0.8898, "learning_rate": 5.055970157923818e-06, "epoch": 0.6982758620689655, "percentage": 69.83, "elapsed_time": "4:23:08", "remaining_time": "1:53:42"} +{"current_steps": 1135, "total_steps": 1624, "loss": 0.9028, "learning_rate": 5.037290463278914e-06, "epoch": 0.6988916256157636, "percentage": 69.89, "elapsed_time": "4:23:20", "remaining_time": "1:53:27"} +{"current_steps": 1136, "total_steps": 1624, "loss": 0.9135, "learning_rate": 5.018633715215948e-06, "epoch": 0.6995073891625616, "percentage": 69.95, "elapsed_time": "4:23:32", "remaining_time": "1:53:12"} +{"current_steps": 1137, "total_steps": 1624, "loss": 0.8876, "learning_rate": 5.000000000000003e-06, "epoch": 0.7001231527093597, "percentage": 70.01, "elapsed_time": "4:23:43", "remaining_time": "1:52:57"} +{"current_steps": 1138, "total_steps": 1624, "loss": 0.9073, "learning_rate": 4.9813894037896745e-06, "epoch": 0.7007389162561576, "percentage": 70.07, "elapsed_time": "4:23:55", "remaining_time": "1:52:42"} +{"current_steps": 1139, "total_steps": 1624, "loss": 0.9301, "learning_rate": 4.962802012636664e-06, "epoch": 0.7013546798029556, "percentage": 70.14, "elapsed_time": "4:24:07", "remaining_time": "1:52:27"} +{"current_steps": 1140, "total_steps": 1624, "loss": 0.9147, "learning_rate": 4.94423791248536e-06, "epoch": 0.7019704433497537, "percentage": 70.2, "elapsed_time": "4:24:18", "remaining_time": "1:52:13"} +{"current_steps": 1141, "total_steps": 1624, "loss": 0.8854, "learning_rate": 4.925697189172485e-06, "epoch": 0.7025862068965517, "percentage": 70.26, "elapsed_time": "4:24:30", "remaining_time": "1:51:58"} +{"current_steps": 1142, "total_steps": 1624, "loss": 0.8813, "learning_rate": 4.907179928426643e-06, "epoch": 0.7032019704433498, "percentage": 70.32, "elapsed_time": "4:24:42", "remaining_time": "1:51:43"} +{"current_steps": 1143, "total_steps": 1624, "loss": 0.8827, "learning_rate": 4.8886862158679716e-06, "epoch": 0.7038177339901478, "percentage": 70.38, "elapsed_time": "4:24:53", "remaining_time": "1:51:28"} +{"current_steps": 1144, "total_steps": 1624, "loss": 0.9385, "learning_rate": 4.8702161370077215e-06, "epoch": 0.7044334975369458, "percentage": 70.44, "elapsed_time": "4:25:05", "remaining_time": "1:51:13"} +{"current_steps": 1145, "total_steps": 1624, "loss": 0.9061, "learning_rate": 4.851769777247857e-06, "epoch": 0.7050492610837439, "percentage": 70.5, "elapsed_time": "4:25:17", "remaining_time": "1:50:58"} +{"current_steps": 1146, "total_steps": 1624, "loss": 0.8515, "learning_rate": 4.833347221880686e-06, "epoch": 0.7056650246305419, "percentage": 70.57, "elapsed_time": "4:25:28", "remaining_time": "1:50:44"} +{"current_steps": 1147, "total_steps": 1624, "loss": 0.8839, "learning_rate": 4.81494855608843e-06, "epoch": 0.7062807881773399, "percentage": 70.63, "elapsed_time": "4:25:40", "remaining_time": "1:50:29"} +{"current_steps": 1148, "total_steps": 1624, "loss": 0.9278, "learning_rate": 4.796573864942868e-06, "epoch": 0.7068965517241379, "percentage": 70.69, "elapsed_time": "4:25:52", "remaining_time": "1:50:14"} +{"current_steps": 1149, "total_steps": 1624, "loss": 0.8995, "learning_rate": 4.778223233404919e-06, "epoch": 0.7075123152709359, "percentage": 70.75, "elapsed_time": "4:26:03", "remaining_time": "1:49:59"} +{"current_steps": 1150, "total_steps": 1624, "loss": 0.9132, "learning_rate": 4.759896746324247e-06, "epoch": 0.708128078817734, "percentage": 70.81, "elapsed_time": "4:26:15", "remaining_time": "1:49:44"} +{"current_steps": 1151, "total_steps": 1624, "loss": 0.8811, "learning_rate": 4.741594488438891e-06, "epoch": 0.708743842364532, "percentage": 70.87, "elapsed_time": "4:26:26", "remaining_time": "1:49:29"} +{"current_steps": 1152, "total_steps": 1624, "loss": 0.9297, "learning_rate": 4.723316544374844e-06, "epoch": 0.7093596059113301, "percentage": 70.94, "elapsed_time": "4:26:38", "remaining_time": "1:49:15"} +{"current_steps": 1153, "total_steps": 1624, "loss": 0.8732, "learning_rate": 4.705062998645687e-06, "epoch": 0.7099753694581281, "percentage": 71.0, "elapsed_time": "4:26:50", "remaining_time": "1:49:00"} +{"current_steps": 1154, "total_steps": 1624, "loss": 0.9042, "learning_rate": 4.686833935652187e-06, "epoch": 0.7105911330049262, "percentage": 71.06, "elapsed_time": "4:27:01", "remaining_time": "1:48:45"} +{"current_steps": 1155, "total_steps": 1624, "loss": 0.9472, "learning_rate": 4.668629439681907e-06, "epoch": 0.7112068965517241, "percentage": 71.12, "elapsed_time": "4:27:13", "remaining_time": "1:48:30"} +{"current_steps": 1156, "total_steps": 1624, "loss": 0.8993, "learning_rate": 4.650449594908816e-06, "epoch": 0.7118226600985221, "percentage": 71.18, "elapsed_time": "4:27:25", "remaining_time": "1:48:15"} +{"current_steps": 1157, "total_steps": 1624, "loss": 0.8808, "learning_rate": 4.632294485392895e-06, "epoch": 0.7124384236453202, "percentage": 71.24, "elapsed_time": "4:27:36", "remaining_time": "1:48:00"} +{"current_steps": 1158, "total_steps": 1624, "loss": 0.8962, "learning_rate": 4.614164195079765e-06, "epoch": 0.7130541871921182, "percentage": 71.31, "elapsed_time": "4:27:48", "remaining_time": "1:47:46"} +{"current_steps": 1159, "total_steps": 1624, "loss": 0.8952, "learning_rate": 4.596058807800284e-06, "epoch": 0.7136699507389163, "percentage": 71.37, "elapsed_time": "4:28:00", "remaining_time": "1:47:31"} +{"current_steps": 1160, "total_steps": 1624, "loss": 0.9164, "learning_rate": 4.577978407270156e-06, "epoch": 0.7142857142857143, "percentage": 71.43, "elapsed_time": "4:28:11", "remaining_time": "1:47:16"} +{"current_steps": 1161, "total_steps": 1624, "loss": 0.956, "learning_rate": 4.559923077089564e-06, "epoch": 0.7149014778325123, "percentage": 71.49, "elapsed_time": "4:28:23", "remaining_time": "1:47:01"} +{"current_steps": 1162, "total_steps": 1624, "loss": 0.8481, "learning_rate": 4.541892900742757e-06, "epoch": 0.7155172413793104, "percentage": 71.55, "elapsed_time": "4:28:35", "remaining_time": "1:46:47"} +{"current_steps": 1163, "total_steps": 1624, "loss": 0.8778, "learning_rate": 4.523887961597688e-06, "epoch": 0.7161330049261084, "percentage": 71.61, "elapsed_time": "4:28:46", "remaining_time": "1:46:32"} +{"current_steps": 1164, "total_steps": 1624, "loss": 0.8888, "learning_rate": 4.505908342905621e-06, "epoch": 0.7167487684729064, "percentage": 71.67, "elapsed_time": "4:28:58", "remaining_time": "1:46:17"} +{"current_steps": 1165, "total_steps": 1624, "loss": 0.9153, "learning_rate": 4.487954127800726e-06, "epoch": 0.7173645320197044, "percentage": 71.74, "elapsed_time": "4:29:10", "remaining_time": "1:46:03"} +{"current_steps": 1166, "total_steps": 1624, "loss": 0.9206, "learning_rate": 4.470025399299728e-06, "epoch": 0.7179802955665024, "percentage": 71.8, "elapsed_time": "4:29:21", "remaining_time": "1:45:48"} +{"current_steps": 1167, "total_steps": 1624, "loss": 0.8775, "learning_rate": 4.452122240301502e-06, "epoch": 0.7185960591133005, "percentage": 71.86, "elapsed_time": "4:29:33", "remaining_time": "1:45:33"} +{"current_steps": 1168, "total_steps": 1624, "loss": 0.9435, "learning_rate": 4.434244733586699e-06, "epoch": 0.7192118226600985, "percentage": 71.92, "elapsed_time": "4:29:45", "remaining_time": "1:45:18"} +{"current_steps": 1169, "total_steps": 1624, "loss": 0.9337, "learning_rate": 4.416392961817347e-06, "epoch": 0.7198275862068966, "percentage": 71.98, "elapsed_time": "4:29:56", "remaining_time": "1:45:04"} +{"current_steps": 1170, "total_steps": 1624, "loss": 0.8469, "learning_rate": 4.398567007536493e-06, "epoch": 0.7204433497536946, "percentage": 72.04, "elapsed_time": "4:30:08", "remaining_time": "1:44:49"} +{"current_steps": 1171, "total_steps": 1624, "loss": 0.8621, "learning_rate": 4.380766953167805e-06, "epoch": 0.7210591133004927, "percentage": 72.11, "elapsed_time": "4:30:20", "remaining_time": "1:44:34"} +{"current_steps": 1172, "total_steps": 1624, "loss": 0.9158, "learning_rate": 4.36299288101519e-06, "epoch": 0.7216748768472906, "percentage": 72.17, "elapsed_time": "4:30:31", "remaining_time": "1:44:20"} +{"current_steps": 1173, "total_steps": 1624, "loss": 0.8718, "learning_rate": 4.345244873262426e-06, "epoch": 0.7222906403940886, "percentage": 72.23, "elapsed_time": "4:30:43", "remaining_time": "1:44:05"} +{"current_steps": 1174, "total_steps": 1624, "loss": 0.8901, "learning_rate": 4.327523011972774e-06, "epoch": 0.7229064039408867, "percentage": 72.29, "elapsed_time": "4:30:55", "remaining_time": "1:43:50"} +{"current_steps": 1175, "total_steps": 1624, "loss": 0.8967, "learning_rate": 4.309827379088589e-06, "epoch": 0.7235221674876847, "percentage": 72.35, "elapsed_time": "4:31:06", "remaining_time": "1:43:36"} +{"current_steps": 1176, "total_steps": 1624, "loss": 0.9126, "learning_rate": 4.292158056430966e-06, "epoch": 0.7241379310344828, "percentage": 72.41, "elapsed_time": "4:31:18", "remaining_time": "1:43:21"} +{"current_steps": 1177, "total_steps": 1624, "loss": 0.9134, "learning_rate": 4.2745151256993325e-06, "epoch": 0.7247536945812808, "percentage": 72.48, "elapsed_time": "4:31:30", "remaining_time": "1:43:06"} +{"current_steps": 1178, "total_steps": 1624, "loss": 0.846, "learning_rate": 4.256898668471092e-06, "epoch": 0.7253694581280788, "percentage": 72.54, "elapsed_time": "4:31:42", "remaining_time": "1:42:52"} +{"current_steps": 1179, "total_steps": 1624, "loss": 0.8955, "learning_rate": 4.239308766201246e-06, "epoch": 0.7259852216748769, "percentage": 72.6, "elapsed_time": "4:31:53", "remaining_time": "1:42:37"} +{"current_steps": 1180, "total_steps": 1624, "loss": 0.8867, "learning_rate": 4.221745500221992e-06, "epoch": 0.7266009852216748, "percentage": 72.66, "elapsed_time": "4:32:05", "remaining_time": "1:42:22"} +{"current_steps": 1181, "total_steps": 1624, "loss": 0.8921, "learning_rate": 4.204208951742393e-06, "epoch": 0.7272167487684729, "percentage": 72.72, "elapsed_time": "4:32:16", "remaining_time": "1:42:08"} +{"current_steps": 1182, "total_steps": 1624, "loss": 0.8614, "learning_rate": 4.186699201847954e-06, "epoch": 0.7278325123152709, "percentage": 72.78, "elapsed_time": "4:32:28", "remaining_time": "1:41:53"} +{"current_steps": 1183, "total_steps": 1624, "loss": 0.9178, "learning_rate": 4.169216331500279e-06, "epoch": 0.728448275862069, "percentage": 72.84, "elapsed_time": "4:32:40", "remaining_time": "1:41:38"} +{"current_steps": 1184, "total_steps": 1624, "loss": 0.8485, "learning_rate": 4.151760421536678e-06, "epoch": 0.729064039408867, "percentage": 72.91, "elapsed_time": "4:32:51", "remaining_time": "1:41:24"} +{"current_steps": 1185, "total_steps": 1624, "loss": 0.8766, "learning_rate": 4.134331552669812e-06, "epoch": 0.729679802955665, "percentage": 72.97, "elapsed_time": "4:33:03", "remaining_time": "1:41:09"} +{"current_steps": 1186, "total_steps": 1624, "loss": 0.8753, "learning_rate": 4.116929805487307e-06, "epoch": 0.7302955665024631, "percentage": 73.03, "elapsed_time": "4:33:14", "remaining_time": "1:40:54"} +{"current_steps": 1187, "total_steps": 1624, "loss": 0.8675, "learning_rate": 4.099555260451373e-06, "epoch": 0.7309113300492611, "percentage": 73.09, "elapsed_time": "4:33:26", "remaining_time": "1:40:40"} +{"current_steps": 1188, "total_steps": 1624, "loss": 0.8846, "learning_rate": 4.082207997898458e-06, "epoch": 0.7315270935960592, "percentage": 73.15, "elapsed_time": "4:33:38", "remaining_time": "1:40:25"} +{"current_steps": 1189, "total_steps": 1624, "loss": 0.9066, "learning_rate": 4.064888098038853e-06, "epoch": 0.7321428571428571, "percentage": 73.21, "elapsed_time": "4:33:49", "remaining_time": "1:40:10"} +{"current_steps": 1190, "total_steps": 1624, "loss": 0.9042, "learning_rate": 4.047595640956326e-06, "epoch": 0.7327586206896551, "percentage": 73.28, "elapsed_time": "4:34:01", "remaining_time": "1:39:56"} +{"current_steps": 1191, "total_steps": 1624, "loss": 0.9008, "learning_rate": 4.030330706607766e-06, "epoch": 0.7333743842364532, "percentage": 73.34, "elapsed_time": "4:34:12", "remaining_time": "1:39:41"} +{"current_steps": 1192, "total_steps": 1624, "loss": 0.8836, "learning_rate": 4.013093374822789e-06, "epoch": 0.7339901477832512, "percentage": 73.4, "elapsed_time": "4:34:24", "remaining_time": "1:39:26"} +{"current_steps": 1193, "total_steps": 1624, "loss": 0.87, "learning_rate": 3.995883725303392e-06, "epoch": 0.7346059113300493, "percentage": 73.46, "elapsed_time": "4:34:35", "remaining_time": "1:39:12"} +{"current_steps": 1194, "total_steps": 1624, "loss": 0.8953, "learning_rate": 3.978701837623573e-06, "epoch": 0.7352216748768473, "percentage": 73.52, "elapsed_time": "4:34:47", "remaining_time": "1:38:57"} +{"current_steps": 1195, "total_steps": 1624, "loss": 0.8588, "learning_rate": 3.961547791228963e-06, "epoch": 0.7358374384236454, "percentage": 73.58, "elapsed_time": "4:34:59", "remaining_time": "1:38:43"} +{"current_steps": 1196, "total_steps": 1624, "loss": 0.8553, "learning_rate": 3.944421665436462e-06, "epoch": 0.7364532019704434, "percentage": 73.65, "elapsed_time": "4:35:10", "remaining_time": "1:38:28"} +{"current_steps": 1197, "total_steps": 1624, "loss": 0.8846, "learning_rate": 3.927323539433867e-06, "epoch": 0.7370689655172413, "percentage": 73.71, "elapsed_time": "4:35:22", "remaining_time": "1:38:14"} +{"current_steps": 1198, "total_steps": 1624, "loss": 0.9056, "learning_rate": 3.9102534922795166e-06, "epoch": 0.7376847290640394, "percentage": 73.77, "elapsed_time": "4:35:34", "remaining_time": "1:37:59"} +{"current_steps": 1199, "total_steps": 1624, "loss": 0.97, "learning_rate": 3.893211602901908e-06, "epoch": 0.7383004926108374, "percentage": 73.83, "elapsed_time": "4:35:45", "remaining_time": "1:37:44"} +{"current_steps": 1200, "total_steps": 1624, "loss": 0.8783, "learning_rate": 3.876197950099351e-06, "epoch": 0.7389162561576355, "percentage": 73.89, "elapsed_time": "4:35:57", "remaining_time": "1:37:30"} +{"current_steps": 1200, "total_steps": 1624, "eval_loss": 0.896390438079834, "epoch": 0.7389162561576355, "percentage": 73.89, "elapsed_time": "4:44:39", "remaining_time": "1:40:34"} +{"current_steps": 1201, "total_steps": 1624, "loss": 0.8747, "learning_rate": 3.859212612539597e-06, "epoch": 0.7395320197044335, "percentage": 73.95, "elapsed_time": "4:44:51", "remaining_time": "1:40:19"} +{"current_steps": 1202, "total_steps": 1624, "loss": 0.937, "learning_rate": 3.842255668759462e-06, "epoch": 0.7401477832512315, "percentage": 74.01, "elapsed_time": "4:45:02", "remaining_time": "1:40:04"} +{"current_steps": 1203, "total_steps": 1624, "loss": 0.859, "learning_rate": 3.8253271971644835e-06, "epoch": 0.7407635467980296, "percentage": 74.08, "elapsed_time": "4:45:14", "remaining_time": "1:39:49"} +{"current_steps": 1204, "total_steps": 1624, "loss": 0.9263, "learning_rate": 3.8084272760285523e-06, "epoch": 0.7413793103448276, "percentage": 74.14, "elapsed_time": "4:45:25", "remaining_time": "1:39:34"} +{"current_steps": 1205, "total_steps": 1624, "loss": 0.864, "learning_rate": 3.7915559834935355e-06, "epoch": 0.7419950738916257, "percentage": 74.2, "elapsed_time": "4:45:37", "remaining_time": "1:39:18"} +{"current_steps": 1206, "total_steps": 1624, "loss": 0.8938, "learning_rate": 3.7747133975689387e-06, "epoch": 0.7426108374384236, "percentage": 74.26, "elapsed_time": "4:45:48", "remaining_time": "1:39:03"} +{"current_steps": 1207, "total_steps": 1624, "loss": 0.8643, "learning_rate": 3.757899596131529e-06, "epoch": 0.7432266009852216, "percentage": 74.32, "elapsed_time": "4:46:00", "remaining_time": "1:38:48"} +{"current_steps": 1208, "total_steps": 1624, "loss": 0.8452, "learning_rate": 3.7411146569249836e-06, "epoch": 0.7438423645320197, "percentage": 74.38, "elapsed_time": "4:46:12", "remaining_time": "1:38:33"} +{"current_steps": 1209, "total_steps": 1624, "loss": 0.8802, "learning_rate": 3.724358657559517e-06, "epoch": 0.7444581280788177, "percentage": 74.45, "elapsed_time": "4:46:23", "remaining_time": "1:38:18"} +{"current_steps": 1210, "total_steps": 1624, "loss": 0.9277, "learning_rate": 3.7076316755115407e-06, "epoch": 0.7450738916256158, "percentage": 74.51, "elapsed_time": "4:46:35", "remaining_time": "1:38:03"} +{"current_steps": 1211, "total_steps": 1624, "loss": 0.9218, "learning_rate": 3.6909337881232965e-06, "epoch": 0.7456896551724138, "percentage": 74.57, "elapsed_time": "4:46:46", "remaining_time": "1:37:48"} +{"current_steps": 1212, "total_steps": 1624, "loss": 0.8131, "learning_rate": 3.6742650726024887e-06, "epoch": 0.7463054187192119, "percentage": 74.63, "elapsed_time": "4:46:58", "remaining_time": "1:37:33"} +{"current_steps": 1213, "total_steps": 1624, "loss": 0.8522, "learning_rate": 3.6576256060219486e-06, "epoch": 0.7469211822660099, "percentage": 74.69, "elapsed_time": "4:47:10", "remaining_time": "1:37:18"} +{"current_steps": 1214, "total_steps": 1624, "loss": 0.9387, "learning_rate": 3.6410154653192544e-06, "epoch": 0.7475369458128078, "percentage": 74.75, "elapsed_time": "4:47:22", "remaining_time": "1:37:03"} +{"current_steps": 1215, "total_steps": 1624, "loss": 0.853, "learning_rate": 3.6244347272963974e-06, "epoch": 0.7481527093596059, "percentage": 74.82, "elapsed_time": "4:47:33", "remaining_time": "1:36:47"} +{"current_steps": 1216, "total_steps": 1624, "loss": 0.8785, "learning_rate": 3.607883468619414e-06, "epoch": 0.7487684729064039, "percentage": 74.88, "elapsed_time": "4:47:45", "remaining_time": "1:36:32"} +{"current_steps": 1217, "total_steps": 1624, "loss": 0.9263, "learning_rate": 3.591361765818029e-06, "epoch": 0.749384236453202, "percentage": 74.94, "elapsed_time": "4:47:56", "remaining_time": "1:36:17"} +{"current_steps": 1218, "total_steps": 1624, "loss": 0.8644, "learning_rate": 3.5748696952853147e-06, "epoch": 0.75, "percentage": 75.0, "elapsed_time": "4:48:08", "remaining_time": "1:36:02"} +{"current_steps": 1219, "total_steps": 1624, "loss": 0.8732, "learning_rate": 3.558407333277315e-06, "epoch": 0.750615763546798, "percentage": 75.06, "elapsed_time": "4:48:19", "remaining_time": "1:35:47"} +{"current_steps": 1220, "total_steps": 1624, "loss": 0.9039, "learning_rate": 3.5419747559127294e-06, "epoch": 0.7512315270935961, "percentage": 75.12, "elapsed_time": "4:48:31", "remaining_time": "1:35:32"} +{"current_steps": 1221, "total_steps": 1624, "loss": 0.8528, "learning_rate": 3.525572039172528e-06, "epoch": 0.7518472906403941, "percentage": 75.18, "elapsed_time": "4:48:43", "remaining_time": "1:35:17"} +{"current_steps": 1222, "total_steps": 1624, "loss": 0.9072, "learning_rate": 3.5091992588996026e-06, "epoch": 0.7524630541871922, "percentage": 75.25, "elapsed_time": "4:48:54", "remaining_time": "1:35:02"} +{"current_steps": 1223, "total_steps": 1624, "loss": 0.8794, "learning_rate": 3.4928564907984395e-06, "epoch": 0.7530788177339901, "percentage": 75.31, "elapsed_time": "4:49:06", "remaining_time": "1:34:47"} +{"current_steps": 1224, "total_steps": 1624, "loss": 0.8723, "learning_rate": 3.476543810434744e-06, "epoch": 0.7536945812807881, "percentage": 75.37, "elapsed_time": "4:49:18", "remaining_time": "1:34:32"} +{"current_steps": 1225, "total_steps": 1624, "loss": 0.8758, "learning_rate": 3.4602612932351065e-06, "epoch": 0.7543103448275862, "percentage": 75.43, "elapsed_time": "4:49:28", "remaining_time": "1:34:17"} +{"current_steps": 1226, "total_steps": 1624, "loss": 0.8444, "learning_rate": 3.4440090144866533e-06, "epoch": 0.7549261083743842, "percentage": 75.49, "elapsed_time": "4:49:40", "remaining_time": "1:34:02"} +{"current_steps": 1227, "total_steps": 1624, "loss": 0.9033, "learning_rate": 3.4277870493366816e-06, "epoch": 0.7555418719211823, "percentage": 75.55, "elapsed_time": "4:49:51", "remaining_time": "1:33:47"} +{"current_steps": 1228, "total_steps": 1624, "loss": 0.9093, "learning_rate": 3.4115954727923394e-06, "epoch": 0.7561576354679803, "percentage": 75.62, "elapsed_time": "4:50:03", "remaining_time": "1:33:32"} +{"current_steps": 1229, "total_steps": 1624, "loss": 0.9511, "learning_rate": 3.395434359720249e-06, "epoch": 0.7567733990147784, "percentage": 75.68, "elapsed_time": "4:50:15", "remaining_time": "1:33:17"} +{"current_steps": 1230, "total_steps": 1624, "loss": 0.9011, "learning_rate": 3.3793037848461873e-06, "epoch": 0.7573891625615764, "percentage": 75.74, "elapsed_time": "4:50:26", "remaining_time": "1:33:02"} +{"current_steps": 1231, "total_steps": 1624, "loss": 0.8963, "learning_rate": 3.3632038227547283e-06, "epoch": 0.7580049261083743, "percentage": 75.8, "elapsed_time": "4:50:38", "remaining_time": "1:32:47"} +{"current_steps": 1232, "total_steps": 1624, "loss": 0.97, "learning_rate": 3.3471345478888863e-06, "epoch": 0.7586206896551724, "percentage": 75.86, "elapsed_time": "4:50:50", "remaining_time": "1:32:32"} +{"current_steps": 1233, "total_steps": 1624, "loss": 0.95, "learning_rate": 3.3310960345497976e-06, "epoch": 0.7592364532019704, "percentage": 75.92, "elapsed_time": "4:51:01", "remaining_time": "1:32:17"} +{"current_steps": 1234, "total_steps": 1624, "loss": 0.8814, "learning_rate": 3.3150883568963577e-06, "epoch": 0.7598522167487685, "percentage": 75.99, "elapsed_time": "4:51:13", "remaining_time": "1:32:02"} +{"current_steps": 1235, "total_steps": 1624, "loss": 0.8922, "learning_rate": 3.2991115889448877e-06, "epoch": 0.7604679802955665, "percentage": 76.05, "elapsed_time": "4:51:24", "remaining_time": "1:31:47"} +{"current_steps": 1236, "total_steps": 1624, "loss": 0.9481, "learning_rate": 3.2831658045687786e-06, "epoch": 0.7610837438423645, "percentage": 76.11, "elapsed_time": "4:51:35", "remaining_time": "1:31:32"} +{"current_steps": 1237, "total_steps": 1624, "loss": 0.9125, "learning_rate": 3.2672510774981692e-06, "epoch": 0.7616995073891626, "percentage": 76.17, "elapsed_time": "4:51:47", "remaining_time": "1:31:17"} +{"current_steps": 1238, "total_steps": 1624, "loss": 0.9144, "learning_rate": 3.251367481319596e-06, "epoch": 0.7623152709359606, "percentage": 76.23, "elapsed_time": "4:51:59", "remaining_time": "1:31:02"} +{"current_steps": 1239, "total_steps": 1624, "loss": 0.9062, "learning_rate": 3.2355150894756426e-06, "epoch": 0.7629310344827587, "percentage": 76.29, "elapsed_time": "4:52:10", "remaining_time": "1:30:47"} +{"current_steps": 1240, "total_steps": 1624, "loss": 0.9128, "learning_rate": 3.2196939752646183e-06, "epoch": 0.7635467980295566, "percentage": 76.35, "elapsed_time": "4:52:22", "remaining_time": "1:30:32"} +{"current_steps": 1241, "total_steps": 1624, "loss": 0.942, "learning_rate": 3.203904211840213e-06, "epoch": 0.7641625615763546, "percentage": 76.42, "elapsed_time": "4:52:34", "remaining_time": "1:30:17"} +{"current_steps": 1242, "total_steps": 1624, "loss": 0.9271, "learning_rate": 3.188145872211147e-06, "epoch": 0.7647783251231527, "percentage": 76.48, "elapsed_time": "4:52:45", "remaining_time": "1:30:02"} +{"current_steps": 1243, "total_steps": 1624, "loss": 0.864, "learning_rate": 3.172419029240853e-06, "epoch": 0.7653940886699507, "percentage": 76.54, "elapsed_time": "4:52:57", "remaining_time": "1:29:47"} +{"current_steps": 1244, "total_steps": 1624, "loss": 0.8779, "learning_rate": 3.1567237556471197e-06, "epoch": 0.7660098522167488, "percentage": 76.6, "elapsed_time": "4:53:08", "remaining_time": "1:29:32"} +{"current_steps": 1245, "total_steps": 1624, "loss": 0.8923, "learning_rate": 3.141060124001776e-06, "epoch": 0.7666256157635468, "percentage": 76.66, "elapsed_time": "4:53:20", "remaining_time": "1:29:17"} +{"current_steps": 1246, "total_steps": 1624, "loss": 0.8838, "learning_rate": 3.1254282067303353e-06, "epoch": 0.7672413793103449, "percentage": 76.72, "elapsed_time": "4:53:32", "remaining_time": "1:29:02"} +{"current_steps": 1247, "total_steps": 1624, "loss": 0.8813, "learning_rate": 3.1098280761116784e-06, "epoch": 0.7678571428571429, "percentage": 76.79, "elapsed_time": "4:53:43", "remaining_time": "1:28:48"} +{"current_steps": 1248, "total_steps": 1624, "loss": 0.8875, "learning_rate": 3.0942598042777074e-06, "epoch": 0.7684729064039408, "percentage": 76.85, "elapsed_time": "4:53:55", "remaining_time": "1:28:33"} +{"current_steps": 1249, "total_steps": 1624, "loss": 0.8719, "learning_rate": 3.07872346321301e-06, "epoch": 0.7690886699507389, "percentage": 76.91, "elapsed_time": "4:54:07", "remaining_time": "1:28:18"} +{"current_steps": 1250, "total_steps": 1624, "loss": 0.922, "learning_rate": 3.063219124754543e-06, "epoch": 0.7697044334975369, "percentage": 76.97, "elapsed_time": "4:54:18", "remaining_time": "1:28:03"} +{"current_steps": 1251, "total_steps": 1624, "loss": 0.894, "learning_rate": 3.0477468605912788e-06, "epoch": 0.770320197044335, "percentage": 77.03, "elapsed_time": "4:54:30", "remaining_time": "1:27:48"} +{"current_steps": 1252, "total_steps": 1624, "loss": 0.9017, "learning_rate": 3.032306742263891e-06, "epoch": 0.770935960591133, "percentage": 77.09, "elapsed_time": "4:54:42", "remaining_time": "1:27:33"} +{"current_steps": 1253, "total_steps": 1624, "loss": 0.9047, "learning_rate": 3.0168988411644207e-06, "epoch": 0.771551724137931, "percentage": 77.16, "elapsed_time": "4:54:53", "remaining_time": "1:27:18"} +{"current_steps": 1254, "total_steps": 1624, "loss": 0.9236, "learning_rate": 3.001523228535932e-06, "epoch": 0.7721674876847291, "percentage": 77.22, "elapsed_time": "4:55:05", "remaining_time": "1:27:04"} +{"current_steps": 1255, "total_steps": 1624, "loss": 0.8395, "learning_rate": 2.9861799754722033e-06, "epoch": 0.7727832512315271, "percentage": 77.28, "elapsed_time": "4:55:16", "remaining_time": "1:26:49"} +{"current_steps": 1256, "total_steps": 1624, "loss": 0.8382, "learning_rate": 2.970869152917387e-06, "epoch": 0.7733990147783252, "percentage": 77.34, "elapsed_time": "4:55:28", "remaining_time": "1:26:34"} +{"current_steps": 1257, "total_steps": 1624, "loss": 0.8607, "learning_rate": 2.955590831665677e-06, "epoch": 0.7740147783251231, "percentage": 77.4, "elapsed_time": "4:55:40", "remaining_time": "1:26:19"} +{"current_steps": 1258, "total_steps": 1624, "loss": 0.8552, "learning_rate": 2.940345082360997e-06, "epoch": 0.7746305418719212, "percentage": 77.46, "elapsed_time": "4:55:51", "remaining_time": "1:26:04"} +{"current_steps": 1259, "total_steps": 1624, "loss": 0.9408, "learning_rate": 2.9251319754966525e-06, "epoch": 0.7752463054187192, "percentage": 77.52, "elapsed_time": "4:56:03", "remaining_time": "1:25:49"} +{"current_steps": 1260, "total_steps": 1624, "loss": 0.8508, "learning_rate": 2.9099515814150335e-06, "epoch": 0.7758620689655172, "percentage": 77.59, "elapsed_time": "4:56:14", "remaining_time": "1:25:34"} +{"current_steps": 1261, "total_steps": 1624, "loss": 0.9461, "learning_rate": 2.8948039703072574e-06, "epoch": 0.7764778325123153, "percentage": 77.65, "elapsed_time": "4:56:26", "remaining_time": "1:25:20"} +{"current_steps": 1262, "total_steps": 1624, "loss": 0.8768, "learning_rate": 2.879689212212866e-06, "epoch": 0.7770935960591133, "percentage": 77.71, "elapsed_time": "4:56:37", "remaining_time": "1:25:05"} +{"current_steps": 1263, "total_steps": 1624, "loss": 0.9061, "learning_rate": 2.8646073770194983e-06, "epoch": 0.7777093596059114, "percentage": 77.77, "elapsed_time": "4:56:49", "remaining_time": "1:24:50"} +{"current_steps": 1264, "total_steps": 1624, "loss": 0.8893, "learning_rate": 2.8495585344625566e-06, "epoch": 0.7783251231527094, "percentage": 77.83, "elapsed_time": "4:57:00", "remaining_time": "1:24:35"} +{"current_steps": 1265, "total_steps": 1624, "loss": 0.8708, "learning_rate": 2.8345427541248993e-06, "epoch": 0.7789408866995073, "percentage": 77.89, "elapsed_time": "4:57:12", "remaining_time": "1:24:20"} +{"current_steps": 1266, "total_steps": 1624, "loss": 0.8974, "learning_rate": 2.819560105436504e-06, "epoch": 0.7795566502463054, "percentage": 77.96, "elapsed_time": "4:57:24", "remaining_time": "1:24:06"} +{"current_steps": 1267, "total_steps": 1624, "loss": 0.8388, "learning_rate": 2.8046106576741605e-06, "epoch": 0.7801724137931034, "percentage": 78.02, "elapsed_time": "4:57:35", "remaining_time": "1:23:51"} +{"current_steps": 1268, "total_steps": 1624, "loss": 0.8696, "learning_rate": 2.789694479961147e-06, "epoch": 0.7807881773399015, "percentage": 78.08, "elapsed_time": "4:57:47", "remaining_time": "1:23:36"} +{"current_steps": 1269, "total_steps": 1624, "loss": 0.8815, "learning_rate": 2.7748116412668944e-06, "epoch": 0.7814039408866995, "percentage": 78.14, "elapsed_time": "4:57:59", "remaining_time": "1:23:21"} +{"current_steps": 1270, "total_steps": 1624, "loss": 0.8794, "learning_rate": 2.7599622104066937e-06, "epoch": 0.7820197044334976, "percentage": 78.2, "elapsed_time": "4:58:11", "remaining_time": "1:23:06"} +{"current_steps": 1271, "total_steps": 1624, "loss": 0.8807, "learning_rate": 2.7451462560413634e-06, "epoch": 0.7826354679802956, "percentage": 78.26, "elapsed_time": "4:58:22", "remaining_time": "1:22:52"} +{"current_steps": 1272, "total_steps": 1624, "loss": 0.8392, "learning_rate": 2.730363846676922e-06, "epoch": 0.7832512315270936, "percentage": 78.33, "elapsed_time": "4:58:33", "remaining_time": "1:22:37"} +{"current_steps": 1273, "total_steps": 1624, "loss": 0.8916, "learning_rate": 2.715615050664294e-06, "epoch": 0.7838669950738916, "percentage": 78.39, "elapsed_time": "4:58:45", "remaining_time": "1:22:22"} +{"current_steps": 1274, "total_steps": 1624, "loss": 0.8862, "learning_rate": 2.7008999361989808e-06, "epoch": 0.7844827586206896, "percentage": 78.45, "elapsed_time": "4:58:56", "remaining_time": "1:22:07"} +{"current_steps": 1275, "total_steps": 1624, "loss": 0.9372, "learning_rate": 2.6862185713207467e-06, "epoch": 0.7850985221674877, "percentage": 78.51, "elapsed_time": "4:59:08", "remaining_time": "1:21:52"} +{"current_steps": 1276, "total_steps": 1624, "loss": 0.8751, "learning_rate": 2.6715710239132976e-06, "epoch": 0.7857142857142857, "percentage": 78.57, "elapsed_time": "4:59:20", "remaining_time": "1:21:38"} +{"current_steps": 1277, "total_steps": 1624, "loss": 0.8543, "learning_rate": 2.6569573617039813e-06, "epoch": 0.7863300492610837, "percentage": 78.63, "elapsed_time": "4:59:31", "remaining_time": "1:21:23"} +{"current_steps": 1278, "total_steps": 1624, "loss": 0.8621, "learning_rate": 2.64237765226347e-06, "epoch": 0.7869458128078818, "percentage": 78.69, "elapsed_time": "4:59:43", "remaining_time": "1:21:08"} +{"current_steps": 1279, "total_steps": 1624, "loss": 0.9202, "learning_rate": 2.627831963005435e-06, "epoch": 0.7875615763546798, "percentage": 78.76, "elapsed_time": "4:59:54", "remaining_time": "1:20:53"} +{"current_steps": 1280, "total_steps": 1624, "loss": 0.8943, "learning_rate": 2.6133203611862554e-06, "epoch": 0.7881773399014779, "percentage": 78.82, "elapsed_time": "5:00:06", "remaining_time": "1:20:39"} +{"current_steps": 1281, "total_steps": 1624, "loss": 0.934, "learning_rate": 2.598842913904687e-06, "epoch": 0.7887931034482759, "percentage": 78.88, "elapsed_time": "5:00:18", "remaining_time": "1:20:24"} +{"current_steps": 1282, "total_steps": 1624, "loss": 0.8896, "learning_rate": 2.5843996881015676e-06, "epoch": 0.7894088669950738, "percentage": 78.94, "elapsed_time": "5:00:29", "remaining_time": "1:20:09"} +{"current_steps": 1283, "total_steps": 1624, "loss": 0.8538, "learning_rate": 2.569990750559507e-06, "epoch": 0.7900246305418719, "percentage": 79.0, "elapsed_time": "5:00:41", "remaining_time": "1:19:55"} +{"current_steps": 1284, "total_steps": 1624, "loss": 0.8486, "learning_rate": 2.5556161679025594e-06, "epoch": 0.7906403940886699, "percentage": 79.06, "elapsed_time": "5:00:52", "remaining_time": "1:19:40"} +{"current_steps": 1285, "total_steps": 1624, "loss": 0.8377, "learning_rate": 2.5412760065959386e-06, "epoch": 0.791256157635468, "percentage": 79.13, "elapsed_time": "5:01:04", "remaining_time": "1:19:25"} +{"current_steps": 1286, "total_steps": 1624, "loss": 0.9109, "learning_rate": 2.5269703329456996e-06, "epoch": 0.791871921182266, "percentage": 79.19, "elapsed_time": "5:01:15", "remaining_time": "1:19:10"} +{"current_steps": 1287, "total_steps": 1624, "loss": 0.8655, "learning_rate": 2.5126992130984317e-06, "epoch": 0.7924876847290641, "percentage": 79.25, "elapsed_time": "5:01:27", "remaining_time": "1:18:56"} +{"current_steps": 1288, "total_steps": 1624, "loss": 0.9521, "learning_rate": 2.498462713040958e-06, "epoch": 0.7931034482758621, "percentage": 79.31, "elapsed_time": "5:01:38", "remaining_time": "1:18:41"} +{"current_steps": 1289, "total_steps": 1624, "loss": 0.8974, "learning_rate": 2.484260898600018e-06, "epoch": 0.7937192118226601, "percentage": 79.37, "elapsed_time": "5:01:49", "remaining_time": "1:18:26"} +{"current_steps": 1290, "total_steps": 1624, "loss": 0.8676, "learning_rate": 2.4700938354419823e-06, "epoch": 0.7943349753694581, "percentage": 79.43, "elapsed_time": "5:02:01", "remaining_time": "1:18:11"} +{"current_steps": 1291, "total_steps": 1624, "loss": 0.8823, "learning_rate": 2.4559615890725286e-06, "epoch": 0.7949507389162561, "percentage": 79.5, "elapsed_time": "5:02:13", "remaining_time": "1:17:57"} +{"current_steps": 1292, "total_steps": 1624, "loss": 0.9115, "learning_rate": 2.4418642248363554e-06, "epoch": 0.7955665024630542, "percentage": 79.56, "elapsed_time": "5:02:25", "remaining_time": "1:17:42"} +{"current_steps": 1293, "total_steps": 1624, "loss": 0.8988, "learning_rate": 2.427801807916874e-06, "epoch": 0.7961822660098522, "percentage": 79.62, "elapsed_time": "5:02:36", "remaining_time": "1:17:28"} +{"current_steps": 1294, "total_steps": 1624, "loss": 0.8715, "learning_rate": 2.4137744033359e-06, "epoch": 0.7967980295566502, "percentage": 79.68, "elapsed_time": "5:02:48", "remaining_time": "1:17:13"} +{"current_steps": 1295, "total_steps": 1624, "loss": 0.8601, "learning_rate": 2.3997820759533654e-06, "epoch": 0.7974137931034483, "percentage": 79.74, "elapsed_time": "5:03:00", "remaining_time": "1:16:58"} +{"current_steps": 1296, "total_steps": 1624, "loss": 0.9083, "learning_rate": 2.3858248904670056e-06, "epoch": 0.7980295566502463, "percentage": 79.8, "elapsed_time": "5:03:11", "remaining_time": "1:16:43"} +{"current_steps": 1297, "total_steps": 1624, "loss": 0.8833, "learning_rate": 2.3719029114120716e-06, "epoch": 0.7986453201970444, "percentage": 79.86, "elapsed_time": "5:03:22", "remaining_time": "1:16:29"} +{"current_steps": 1298, "total_steps": 1624, "loss": 0.9341, "learning_rate": 2.358016203161031e-06, "epoch": 0.7992610837438424, "percentage": 79.93, "elapsed_time": "5:03:34", "remaining_time": "1:16:14"} +{"current_steps": 1299, "total_steps": 1624, "loss": 0.8583, "learning_rate": 2.34416482992325e-06, "epoch": 0.7998768472906403, "percentage": 79.99, "elapsed_time": "5:03:45", "remaining_time": "1:15:59"} +{"current_steps": 1300, "total_steps": 1624, "loss": 0.8359, "learning_rate": 2.3303488557447374e-06, "epoch": 0.8004926108374384, "percentage": 80.05, "elapsed_time": "5:03:57", "remaining_time": "1:15:45"} +{"current_steps": 1301, "total_steps": 1624, "loss": 0.8659, "learning_rate": 2.316568344507799e-06, "epoch": 0.8011083743842364, "percentage": 80.11, "elapsed_time": "5:04:08", "remaining_time": "1:15:30"} +{"current_steps": 1302, "total_steps": 1624, "loss": 0.9435, "learning_rate": 2.3028233599307837e-06, "epoch": 0.8017241379310345, "percentage": 80.17, "elapsed_time": "5:04:20", "remaining_time": "1:15:16"} +{"current_steps": 1303, "total_steps": 1624, "loss": 0.9088, "learning_rate": 2.2891139655677674e-06, "epoch": 0.8023399014778325, "percentage": 80.23, "elapsed_time": "5:04:32", "remaining_time": "1:15:01"} +{"current_steps": 1304, "total_steps": 1624, "loss": 0.8567, "learning_rate": 2.2754402248082584e-06, "epoch": 0.8029556650246306, "percentage": 80.3, "elapsed_time": "5:04:43", "remaining_time": "1:14:46"} +{"current_steps": 1305, "total_steps": 1624, "loss": 0.8616, "learning_rate": 2.26180220087692e-06, "epoch": 0.8035714285714286, "percentage": 80.36, "elapsed_time": "5:04:55", "remaining_time": "1:14:32"} +{"current_steps": 1306, "total_steps": 1624, "loss": 0.8696, "learning_rate": 2.248199956833258e-06, "epoch": 0.8041871921182266, "percentage": 80.42, "elapsed_time": "5:05:06", "remaining_time": "1:14:17"} +{"current_steps": 1307, "total_steps": 1624, "loss": 0.8976, "learning_rate": 2.234633555571345e-06, "epoch": 0.8048029556650246, "percentage": 80.48, "elapsed_time": "5:05:18", "remaining_time": "1:14:02"} +{"current_steps": 1308, "total_steps": 1624, "loss": 0.8761, "learning_rate": 2.2211030598195247e-06, "epoch": 0.8054187192118226, "percentage": 80.54, "elapsed_time": "5:05:30", "remaining_time": "1:13:48"} +{"current_steps": 1309, "total_steps": 1624, "loss": 0.8873, "learning_rate": 2.2076085321401152e-06, "epoch": 0.8060344827586207, "percentage": 80.6, "elapsed_time": "5:05:41", "remaining_time": "1:13:33"} +{"current_steps": 1310, "total_steps": 1624, "loss": 0.9312, "learning_rate": 2.194150034929133e-06, "epoch": 0.8066502463054187, "percentage": 80.67, "elapsed_time": "5:05:53", "remaining_time": "1:13:19"} +{"current_steps": 1311, "total_steps": 1624, "loss": 0.832, "learning_rate": 2.1807276304159874e-06, "epoch": 0.8072660098522167, "percentage": 80.73, "elapsed_time": "5:06:05", "remaining_time": "1:13:04"} +{"current_steps": 1312, "total_steps": 1624, "loss": 0.8672, "learning_rate": 2.1673413806632104e-06, "epoch": 0.8078817733990148, "percentage": 80.79, "elapsed_time": "5:06:16", "remaining_time": "1:12:50"} +{"current_steps": 1313, "total_steps": 1624, "loss": 0.8916, "learning_rate": 2.1539913475661578e-06, "epoch": 0.8084975369458128, "percentage": 80.85, "elapsed_time": "5:06:28", "remaining_time": "1:12:35"} +{"current_steps": 1314, "total_steps": 1624, "loss": 0.8537, "learning_rate": 2.140677592852728e-06, "epoch": 0.8091133004926109, "percentage": 80.91, "elapsed_time": "5:06:39", "remaining_time": "1:12:20"} +{"current_steps": 1315, "total_steps": 1624, "loss": 0.8706, "learning_rate": 2.1274001780830776e-06, "epoch": 0.8097290640394089, "percentage": 80.97, "elapsed_time": "5:06:51", "remaining_time": "1:12:06"} +{"current_steps": 1316, "total_steps": 1624, "loss": 0.8464, "learning_rate": 2.1141591646493275e-06, "epoch": 0.8103448275862069, "percentage": 81.03, "elapsed_time": "5:07:03", "remaining_time": "1:11:51"} +{"current_steps": 1317, "total_steps": 1624, "loss": 0.8659, "learning_rate": 2.100954613775292e-06, "epoch": 0.8109605911330049, "percentage": 81.1, "elapsed_time": "5:07:14", "remaining_time": "1:11:37"} +{"current_steps": 1318, "total_steps": 1624, "loss": 0.9033, "learning_rate": 2.0877865865161916e-06, "epoch": 0.8115763546798029, "percentage": 81.16, "elapsed_time": "5:07:26", "remaining_time": "1:11:22"} +{"current_steps": 1319, "total_steps": 1624, "loss": 0.8665, "learning_rate": 2.0746551437583607e-06, "epoch": 0.812192118226601, "percentage": 81.22, "elapsed_time": "5:07:38", "remaining_time": "1:11:08"} +{"current_steps": 1320, "total_steps": 1624, "loss": 0.8422, "learning_rate": 2.0615603462189824e-06, "epoch": 0.812807881773399, "percentage": 81.28, "elapsed_time": "5:07:49", "remaining_time": "1:10:53"} +{"current_steps": 1321, "total_steps": 1624, "loss": 0.8902, "learning_rate": 2.0485022544457933e-06, "epoch": 0.8134236453201971, "percentage": 81.34, "elapsed_time": "5:08:01", "remaining_time": "1:10:39"} +{"current_steps": 1322, "total_steps": 1624, "loss": 0.939, "learning_rate": 2.0354809288168143e-06, "epoch": 0.8140394088669951, "percentage": 81.4, "elapsed_time": "5:08:13", "remaining_time": "1:10:24"} +{"current_steps": 1323, "total_steps": 1624, "loss": 0.8814, "learning_rate": 2.0224964295400684e-06, "epoch": 0.8146551724137931, "percentage": 81.47, "elapsed_time": "5:08:24", "remaining_time": "1:10:10"} +{"current_steps": 1324, "total_steps": 1624, "loss": 0.8396, "learning_rate": 2.009548816653293e-06, "epoch": 0.8152709359605911, "percentage": 81.53, "elapsed_time": "5:08:36", "remaining_time": "1:09:55"} +{"current_steps": 1325, "total_steps": 1624, "loss": 0.8545, "learning_rate": 1.9966381500236786e-06, "epoch": 0.8158866995073891, "percentage": 81.59, "elapsed_time": "5:08:47", "remaining_time": "1:09:41"} +{"current_steps": 1326, "total_steps": 1624, "loss": 0.9176, "learning_rate": 1.983764489347574e-06, "epoch": 0.8165024630541872, "percentage": 81.65, "elapsed_time": "5:08:59", "remaining_time": "1:09:26"} +{"current_steps": 1327, "total_steps": 1624, "loss": 0.889, "learning_rate": 1.9709278941502363e-06, "epoch": 0.8171182266009852, "percentage": 81.71, "elapsed_time": "5:09:11", "remaining_time": "1:09:12"} +{"current_steps": 1328, "total_steps": 1624, "loss": 0.9315, "learning_rate": 1.9581284237855204e-06, "epoch": 0.8177339901477833, "percentage": 81.77, "elapsed_time": "5:09:22", "remaining_time": "1:08:57"} +{"current_steps": 1329, "total_steps": 1624, "loss": 0.8784, "learning_rate": 1.945366137435635e-06, "epoch": 0.8183497536945813, "percentage": 81.83, "elapsed_time": "5:09:34", "remaining_time": "1:08:42"} +{"current_steps": 1330, "total_steps": 1624, "loss": 0.8498, "learning_rate": 1.932641094110855e-06, "epoch": 0.8189655172413793, "percentage": 81.9, "elapsed_time": "5:09:46", "remaining_time": "1:08:28"} +{"current_steps": 1331, "total_steps": 1624, "loss": 0.9022, "learning_rate": 1.9199533526492465e-06, "epoch": 0.8195812807881774, "percentage": 81.96, "elapsed_time": "5:09:57", "remaining_time": "1:08:14"} +{"current_steps": 1332, "total_steps": 1624, "loss": 0.858, "learning_rate": 1.9073029717164048e-06, "epoch": 0.8201970443349754, "percentage": 82.02, "elapsed_time": "5:10:09", "remaining_time": "1:07:59"} +{"current_steps": 1333, "total_steps": 1624, "loss": 0.8682, "learning_rate": 1.894690009805178e-06, "epoch": 0.8208128078817734, "percentage": 82.08, "elapsed_time": "5:10:20", "remaining_time": "1:07:45"} +{"current_steps": 1334, "total_steps": 1624, "loss": 0.8269, "learning_rate": 1.882114525235389e-06, "epoch": 0.8214285714285714, "percentage": 82.14, "elapsed_time": "5:10:32", "remaining_time": "1:07:30"} +{"current_steps": 1335, "total_steps": 1624, "loss": 0.9205, "learning_rate": 1.869576576153581e-06, "epoch": 0.8220443349753694, "percentage": 82.2, "elapsed_time": "5:10:44", "remaining_time": "1:07:16"} +{"current_steps": 1336, "total_steps": 1624, "loss": 0.8624, "learning_rate": 1.857076220532734e-06, "epoch": 0.8226600985221675, "percentage": 82.27, "elapsed_time": "5:10:55", "remaining_time": "1:07:01"} +{"current_steps": 1337, "total_steps": 1624, "loss": 0.8885, "learning_rate": 1.844613516172008e-06, "epoch": 0.8232758620689655, "percentage": 82.33, "elapsed_time": "5:11:06", "remaining_time": "1:06:47"} +{"current_steps": 1338, "total_steps": 1624, "loss": 0.8895, "learning_rate": 1.8321885206964719e-06, "epoch": 0.8238916256157636, "percentage": 82.39, "elapsed_time": "5:11:18", "remaining_time": "1:06:32"} +{"current_steps": 1339, "total_steps": 1624, "loss": 0.9117, "learning_rate": 1.8198012915568253e-06, "epoch": 0.8245073891625616, "percentage": 82.45, "elapsed_time": "5:11:29", "remaining_time": "1:06:18"} +{"current_steps": 1340, "total_steps": 1624, "loss": 0.8399, "learning_rate": 1.8074518860291646e-06, "epoch": 0.8251231527093597, "percentage": 82.51, "elapsed_time": "5:11:41", "remaining_time": "1:06:03"} +{"current_steps": 1341, "total_steps": 1624, "loss": 0.9115, "learning_rate": 1.7951403612146745e-06, "epoch": 0.8257389162561576, "percentage": 82.57, "elapsed_time": "5:11:52", "remaining_time": "1:05:49"} +{"current_steps": 1342, "total_steps": 1624, "loss": 0.8787, "learning_rate": 1.7828667740394045e-06, "epoch": 0.8263546798029556, "percentage": 82.64, "elapsed_time": "5:12:04", "remaining_time": "1:05:34"} +{"current_steps": 1343, "total_steps": 1624, "loss": 0.9154, "learning_rate": 1.7706311812539756e-06, "epoch": 0.8269704433497537, "percentage": 82.7, "elapsed_time": "5:12:15", "remaining_time": "1:05:20"} +{"current_steps": 1344, "total_steps": 1624, "loss": 0.9315, "learning_rate": 1.7584336394333367e-06, "epoch": 0.8275862068965517, "percentage": 82.76, "elapsed_time": "5:12:27", "remaining_time": "1:05:05"} +{"current_steps": 1345, "total_steps": 1624, "loss": 0.9278, "learning_rate": 1.746274204976498e-06, "epoch": 0.8282019704433498, "percentage": 82.82, "elapsed_time": "5:12:39", "remaining_time": "1:04:51"} +{"current_steps": 1346, "total_steps": 1624, "loss": 0.8857, "learning_rate": 1.7341529341062624e-06, "epoch": 0.8288177339901478, "percentage": 82.88, "elapsed_time": "5:12:50", "remaining_time": "1:04:36"} +{"current_steps": 1347, "total_steps": 1624, "loss": 0.8615, "learning_rate": 1.7220698828689785e-06, "epoch": 0.8294334975369458, "percentage": 82.94, "elapsed_time": "5:13:02", "remaining_time": "1:04:22"} +{"current_steps": 1348, "total_steps": 1624, "loss": 0.9057, "learning_rate": 1.7100251071342721e-06, "epoch": 0.8300492610837439, "percentage": 83.0, "elapsed_time": "5:13:14", "remaining_time": "1:04:08"} +{"current_steps": 1349, "total_steps": 1624, "loss": 0.8943, "learning_rate": 1.698018662594789e-06, "epoch": 0.8306650246305419, "percentage": 83.07, "elapsed_time": "5:13:25", "remaining_time": "1:03:53"} +{"current_steps": 1350, "total_steps": 1624, "loss": 0.9455, "learning_rate": 1.6860506047659442e-06, "epoch": 0.8312807881773399, "percentage": 83.13, "elapsed_time": "5:13:37", "remaining_time": "1:03:39"} +{"current_steps": 1351, "total_steps": 1624, "loss": 0.8889, "learning_rate": 1.6741209889856513e-06, "epoch": 0.8318965517241379, "percentage": 83.19, "elapsed_time": "5:13:49", "remaining_time": "1:03:24"} +{"current_steps": 1352, "total_steps": 1624, "loss": 0.8438, "learning_rate": 1.662229870414086e-06, "epoch": 0.8325123152709359, "percentage": 83.25, "elapsed_time": "5:14:00", "remaining_time": "1:03:10"} +{"current_steps": 1353, "total_steps": 1624, "loss": 0.911, "learning_rate": 1.6503773040334126e-06, "epoch": 0.833128078817734, "percentage": 83.31, "elapsed_time": "5:14:12", "remaining_time": "1:02:56"} +{"current_steps": 1354, "total_steps": 1624, "loss": 0.8988, "learning_rate": 1.6385633446475434e-06, "epoch": 0.833743842364532, "percentage": 83.37, "elapsed_time": "5:14:23", "remaining_time": "1:02:41"} +{"current_steps": 1355, "total_steps": 1624, "loss": 0.8584, "learning_rate": 1.6267880468818787e-06, "epoch": 0.8343596059113301, "percentage": 83.44, "elapsed_time": "5:14:35", "remaining_time": "1:02:27"} +{"current_steps": 1356, "total_steps": 1624, "loss": 0.8621, "learning_rate": 1.6150514651830485e-06, "epoch": 0.8349753694581281, "percentage": 83.5, "elapsed_time": "5:14:47", "remaining_time": "1:02:12"} +{"current_steps": 1357, "total_steps": 1624, "loss": 0.8891, "learning_rate": 1.6033536538186778e-06, "epoch": 0.8355911330049262, "percentage": 83.56, "elapsed_time": "5:14:58", "remaining_time": "1:01:58"} +{"current_steps": 1358, "total_steps": 1624, "loss": 0.8881, "learning_rate": 1.591694666877114e-06, "epoch": 0.8362068965517241, "percentage": 83.62, "elapsed_time": "5:15:10", "remaining_time": "1:01:44"} +{"current_steps": 1359, "total_steps": 1624, "loss": 0.8964, "learning_rate": 1.5800745582671973e-06, "epoch": 0.8368226600985221, "percentage": 83.68, "elapsed_time": "5:15:21", "remaining_time": "1:01:29"} +{"current_steps": 1360, "total_steps": 1624, "loss": 0.8817, "learning_rate": 1.5684933817180014e-06, "epoch": 0.8374384236453202, "percentage": 83.74, "elapsed_time": "5:15:33", "remaining_time": "1:01:15"} +{"current_steps": 1361, "total_steps": 1624, "loss": 0.8281, "learning_rate": 1.5569511907785783e-06, "epoch": 0.8380541871921182, "percentage": 83.81, "elapsed_time": "5:15:45", "remaining_time": "1:01:00"} +{"current_steps": 1362, "total_steps": 1624, "loss": 0.8421, "learning_rate": 1.5454480388177263e-06, "epoch": 0.8386699507389163, "percentage": 83.87, "elapsed_time": "5:15:56", "remaining_time": "1:00:46"} +{"current_steps": 1363, "total_steps": 1624, "loss": 0.9335, "learning_rate": 1.5339839790237333e-06, "epoch": 0.8392857142857143, "percentage": 83.93, "elapsed_time": "5:16:08", "remaining_time": "1:00:32"} +{"current_steps": 1364, "total_steps": 1624, "loss": 0.852, "learning_rate": 1.5225590644041287e-06, "epoch": 0.8399014778325123, "percentage": 83.99, "elapsed_time": "5:16:19", "remaining_time": "1:00:17"} +{"current_steps": 1365, "total_steps": 1624, "loss": 0.845, "learning_rate": 1.5111733477854507e-06, "epoch": 0.8405172413793104, "percentage": 84.05, "elapsed_time": "5:16:31", "remaining_time": "1:00:03"} +{"current_steps": 1366, "total_steps": 1624, "loss": 0.9002, "learning_rate": 1.4998268818129801e-06, "epoch": 0.8411330049261084, "percentage": 84.11, "elapsed_time": "5:16:43", "remaining_time": "0:59:49"} +{"current_steps": 1367, "total_steps": 1624, "loss": 0.8833, "learning_rate": 1.4885197189505285e-06, "epoch": 0.8417487684729064, "percentage": 84.17, "elapsed_time": "5:16:54", "remaining_time": "0:59:34"} +{"current_steps": 1368, "total_steps": 1624, "loss": 0.884, "learning_rate": 1.477251911480162e-06, "epoch": 0.8423645320197044, "percentage": 84.24, "elapsed_time": "5:17:06", "remaining_time": "0:59:20"} +{"current_steps": 1369, "total_steps": 1624, "loss": 0.9182, "learning_rate": 1.4660235115019838e-06, "epoch": 0.8429802955665024, "percentage": 84.3, "elapsed_time": "5:17:18", "remaining_time": "0:59:06"} +{"current_steps": 1370, "total_steps": 1624, "loss": 0.8939, "learning_rate": 1.454834570933884e-06, "epoch": 0.8435960591133005, "percentage": 84.36, "elapsed_time": "5:17:29", "remaining_time": "0:58:51"} +{"current_steps": 1371, "total_steps": 1624, "loss": 0.8049, "learning_rate": 1.4436851415112941e-06, "epoch": 0.8442118226600985, "percentage": 84.42, "elapsed_time": "5:17:41", "remaining_time": "0:58:37"} +{"current_steps": 1372, "total_steps": 1624, "loss": 0.8653, "learning_rate": 1.4325752747869626e-06, "epoch": 0.8448275862068966, "percentage": 84.48, "elapsed_time": "5:17:53", "remaining_time": "0:58:23"} +{"current_steps": 1373, "total_steps": 1624, "loss": 0.8738, "learning_rate": 1.4215050221307002e-06, "epoch": 0.8454433497536946, "percentage": 84.54, "elapsed_time": "5:18:04", "remaining_time": "0:58:08"} +{"current_steps": 1374, "total_steps": 1624, "loss": 0.8955, "learning_rate": 1.4104744347291555e-06, "epoch": 0.8460591133004927, "percentage": 84.61, "elapsed_time": "5:18:16", "remaining_time": "0:57:54"} +{"current_steps": 1375, "total_steps": 1624, "loss": 0.9048, "learning_rate": 1.399483563585573e-06, "epoch": 0.8466748768472906, "percentage": 84.67, "elapsed_time": "5:18:28", "remaining_time": "0:57:40"} +{"current_steps": 1376, "total_steps": 1624, "loss": 0.8713, "learning_rate": 1.3885324595195493e-06, "epoch": 0.8472906403940886, "percentage": 84.73, "elapsed_time": "5:18:39", "remaining_time": "0:57:25"} +{"current_steps": 1377, "total_steps": 1624, "loss": 0.9508, "learning_rate": 1.3776211731668187e-06, "epoch": 0.8479064039408867, "percentage": 84.79, "elapsed_time": "5:18:51", "remaining_time": "0:57:11"} +{"current_steps": 1378, "total_steps": 1624, "loss": 0.9321, "learning_rate": 1.3667497549789933e-06, "epoch": 0.8485221674876847, "percentage": 84.85, "elapsed_time": "5:19:02", "remaining_time": "0:56:57"} +{"current_steps": 1379, "total_steps": 1624, "loss": 0.9239, "learning_rate": 1.3559182552233497e-06, "epoch": 0.8491379310344828, "percentage": 84.91, "elapsed_time": "5:19:14", "remaining_time": "0:56:43"} +{"current_steps": 1380, "total_steps": 1624, "loss": 0.8675, "learning_rate": 1.345126723982594e-06, "epoch": 0.8497536945812808, "percentage": 84.98, "elapsed_time": "5:19:25", "remaining_time": "0:56:28"} +{"current_steps": 1381, "total_steps": 1624, "loss": 0.8132, "learning_rate": 1.3343752111546139e-06, "epoch": 0.8503694581280788, "percentage": 85.04, "elapsed_time": "5:19:37", "remaining_time": "0:56:14"} +{"current_steps": 1382, "total_steps": 1624, "loss": 0.9271, "learning_rate": 1.3236637664522722e-06, "epoch": 0.8509852216748769, "percentage": 85.1, "elapsed_time": "5:19:48", "remaining_time": "0:56:00"} +{"current_steps": 1383, "total_steps": 1624, "loss": 0.8941, "learning_rate": 1.3129924394031535e-06, "epoch": 0.8516009852216748, "percentage": 85.16, "elapsed_time": "5:20:00", "remaining_time": "0:55:45"} +{"current_steps": 1384, "total_steps": 1624, "loss": 0.8917, "learning_rate": 1.3023612793493535e-06, "epoch": 0.8522167487684729, "percentage": 85.22, "elapsed_time": "5:20:12", "remaining_time": "0:55:31"} +{"current_steps": 1385, "total_steps": 1624, "loss": 0.8746, "learning_rate": 1.2917703354472467e-06, "epoch": 0.8528325123152709, "percentage": 85.28, "elapsed_time": "5:20:23", "remaining_time": "0:55:17"} +{"current_steps": 1386, "total_steps": 1624, "loss": 0.8366, "learning_rate": 1.2812196566672441e-06, "epoch": 0.853448275862069, "percentage": 85.34, "elapsed_time": "5:20:35", "remaining_time": "0:55:03"} +{"current_steps": 1387, "total_steps": 1624, "loss": 0.8815, "learning_rate": 1.2707092917935914e-06, "epoch": 0.854064039408867, "percentage": 85.41, "elapsed_time": "5:20:47", "remaining_time": "0:54:48"} +{"current_steps": 1388, "total_steps": 1624, "loss": 0.8984, "learning_rate": 1.2602392894241222e-06, "epoch": 0.854679802955665, "percentage": 85.47, "elapsed_time": "5:20:59", "remaining_time": "0:54:34"} +{"current_steps": 1389, "total_steps": 1624, "loss": 0.9105, "learning_rate": 1.2498096979700459e-06, "epoch": 0.8552955665024631, "percentage": 85.53, "elapsed_time": "5:21:10", "remaining_time": "0:54:20"} +{"current_steps": 1390, "total_steps": 1624, "loss": 0.8682, "learning_rate": 1.2394205656557224e-06, "epoch": 0.8559113300492611, "percentage": 85.59, "elapsed_time": "5:21:22", "remaining_time": "0:54:06"} +{"current_steps": 1391, "total_steps": 1624, "loss": 0.9168, "learning_rate": 1.2290719405184294e-06, "epoch": 0.8565270935960592, "percentage": 85.65, "elapsed_time": "5:21:33", "remaining_time": "0:53:51"} +{"current_steps": 1392, "total_steps": 1624, "loss": 0.917, "learning_rate": 1.2187638704081516e-06, "epoch": 0.8571428571428571, "percentage": 85.71, "elapsed_time": "5:21:45", "remaining_time": "0:53:37"} +{"current_steps": 1393, "total_steps": 1624, "loss": 0.8557, "learning_rate": 1.208496402987358e-06, "epoch": 0.8577586206896551, "percentage": 85.78, "elapsed_time": "5:21:57", "remaining_time": "0:53:23"} +{"current_steps": 1394, "total_steps": 1624, "loss": 0.8749, "learning_rate": 1.1982695857307757e-06, "epoch": 0.8583743842364532, "percentage": 85.84, "elapsed_time": "5:22:08", "remaining_time": "0:53:09"} +{"current_steps": 1395, "total_steps": 1624, "loss": 0.8604, "learning_rate": 1.1880834659251706e-06, "epoch": 0.8589901477832512, "percentage": 85.9, "elapsed_time": "5:22:20", "remaining_time": "0:52:54"} +{"current_steps": 1396, "total_steps": 1624, "loss": 0.8999, "learning_rate": 1.1779380906691362e-06, "epoch": 0.8596059113300493, "percentage": 85.96, "elapsed_time": "5:22:32", "remaining_time": "0:52:40"} +{"current_steps": 1397, "total_steps": 1624, "loss": 0.8898, "learning_rate": 1.167833506872874e-06, "epoch": 0.8602216748768473, "percentage": 86.02, "elapsed_time": "5:22:43", "remaining_time": "0:52:26"} +{"current_steps": 1398, "total_steps": 1624, "loss": 0.8629, "learning_rate": 1.1577697612579642e-06, "epoch": 0.8608374384236454, "percentage": 86.08, "elapsed_time": "5:22:55", "remaining_time": "0:52:12"} +{"current_steps": 1399, "total_steps": 1624, "loss": 0.8611, "learning_rate": 1.1477469003571672e-06, "epoch": 0.8614532019704434, "percentage": 86.15, "elapsed_time": "5:23:07", "remaining_time": "0:51:58"} +{"current_steps": 1400, "total_steps": 1624, "loss": 0.8915, "learning_rate": 1.1377649705142012e-06, "epoch": 0.8620689655172413, "percentage": 86.21, "elapsed_time": "5:23:18", "remaining_time": "0:51:43"} +{"current_steps": 1400, "total_steps": 1624, "eval_loss": 0.8917863368988037, "epoch": 0.8620689655172413, "percentage": 86.21, "elapsed_time": "5:32:01", "remaining_time": "0:53:07"} +{"current_steps": 1401, "total_steps": 1624, "loss": 0.8731, "learning_rate": 1.1278240178835197e-06, "epoch": 0.8626847290640394, "percentage": 86.27, "elapsed_time": "5:32:13", "remaining_time": "0:52:52"} +{"current_steps": 1402, "total_steps": 1624, "loss": 0.8285, "learning_rate": 1.1179240884301158e-06, "epoch": 0.8633004926108374, "percentage": 86.33, "elapsed_time": "5:32:25", "remaining_time": "0:52:38"} +{"current_steps": 1403, "total_steps": 1624, "loss": 0.8705, "learning_rate": 1.1080652279292892e-06, "epoch": 0.8639162561576355, "percentage": 86.39, "elapsed_time": "5:32:36", "remaining_time": "0:52:23"} +{"current_steps": 1404, "total_steps": 1624, "loss": 0.912, "learning_rate": 1.0982474819664524e-06, "epoch": 0.8645320197044335, "percentage": 86.45, "elapsed_time": "5:32:48", "remaining_time": "0:52:08"} +{"current_steps": 1405, "total_steps": 1624, "loss": 0.8913, "learning_rate": 1.0884708959369116e-06, "epoch": 0.8651477832512315, "percentage": 86.51, "elapsed_time": "5:32:59", "remaining_time": "0:51:54"} +{"current_steps": 1406, "total_steps": 1624, "loss": 0.8407, "learning_rate": 1.0787355150456546e-06, "epoch": 0.8657635467980296, "percentage": 86.58, "elapsed_time": "5:33:11", "remaining_time": "0:51:39"} +{"current_steps": 1407, "total_steps": 1624, "loss": 0.8498, "learning_rate": 1.069041384307149e-06, "epoch": 0.8663793103448276, "percentage": 86.64, "elapsed_time": "5:33:22", "remaining_time": "0:51:24"} +{"current_steps": 1408, "total_steps": 1624, "loss": 0.9355, "learning_rate": 1.0593885485451239e-06, "epoch": 0.8669950738916257, "percentage": 86.7, "elapsed_time": "5:33:34", "remaining_time": "0:51:10"} +{"current_steps": 1409, "total_steps": 1624, "loss": 0.8838, "learning_rate": 1.0497770523923756e-06, "epoch": 0.8676108374384236, "percentage": 86.76, "elapsed_time": "5:33:45", "remaining_time": "0:50:55"} +{"current_steps": 1410, "total_steps": 1624, "loss": 0.9456, "learning_rate": 1.040206940290547e-06, "epoch": 0.8682266009852216, "percentage": 86.82, "elapsed_time": "5:33:57", "remaining_time": "0:50:41"} +{"current_steps": 1411, "total_steps": 1624, "loss": 0.9018, "learning_rate": 1.0306782564899353e-06, "epoch": 0.8688423645320197, "percentage": 86.88, "elapsed_time": "5:34:08", "remaining_time": "0:50:26"} +{"current_steps": 1412, "total_steps": 1624, "loss": 0.8696, "learning_rate": 1.0211910450492813e-06, "epoch": 0.8694581280788177, "percentage": 86.95, "elapsed_time": "5:34:20", "remaining_time": "0:50:11"} +{"current_steps": 1413, "total_steps": 1624, "loss": 0.854, "learning_rate": 1.0117453498355589e-06, "epoch": 0.8700738916256158, "percentage": 87.01, "elapsed_time": "5:34:32", "remaining_time": "0:49:57"} +{"current_steps": 1414, "total_steps": 1624, "loss": 0.8612, "learning_rate": 1.0023412145237888e-06, "epoch": 0.8706896551724138, "percentage": 87.07, "elapsed_time": "5:34:43", "remaining_time": "0:49:42"} +{"current_steps": 1415, "total_steps": 1624, "loss": 0.9478, "learning_rate": 9.929786825968213e-07, "epoch": 0.8713054187192119, "percentage": 87.13, "elapsed_time": "5:34:55", "remaining_time": "0:49:28"} +{"current_steps": 1416, "total_steps": 1624, "loss": 0.9266, "learning_rate": 9.83657797345141e-07, "epoch": 0.8719211822660099, "percentage": 87.19, "elapsed_time": "5:35:07", "remaining_time": "0:49:13"} +{"current_steps": 1417, "total_steps": 1624, "loss": 0.8825, "learning_rate": 9.74378601866669e-07, "epoch": 0.8725369458128078, "percentage": 87.25, "elapsed_time": "5:35:18", "remaining_time": "0:48:59"} +{"current_steps": 1418, "total_steps": 1624, "loss": 0.8231, "learning_rate": 9.651411390665577e-07, "epoch": 0.8731527093596059, "percentage": 87.32, "elapsed_time": "5:35:30", "remaining_time": "0:48:44"} +{"current_steps": 1419, "total_steps": 1624, "loss": 0.8668, "learning_rate": 9.559454516569988e-07, "epoch": 0.8737684729064039, "percentage": 87.38, "elapsed_time": "5:35:42", "remaining_time": "0:48:29"} +{"current_steps": 1420, "total_steps": 1624, "loss": 0.8568, "learning_rate": 9.467915821570228e-07, "epoch": 0.874384236453202, "percentage": 87.44, "elapsed_time": "5:35:53", "remaining_time": "0:48:15"} +{"current_steps": 1421, "total_steps": 1624, "loss": 0.8677, "learning_rate": 9.376795728923016e-07, "epoch": 0.875, "percentage": 87.5, "elapsed_time": "5:36:05", "remaining_time": "0:48:00"} +{"current_steps": 1422, "total_steps": 1624, "loss": 0.9087, "learning_rate": 9.286094659949552e-07, "epoch": 0.875615763546798, "percentage": 87.56, "elapsed_time": "5:36:17", "remaining_time": "0:47:46"} +{"current_steps": 1423, "total_steps": 1624, "loss": 0.8677, "learning_rate": 9.195813034033507e-07, "epoch": 0.8762315270935961, "percentage": 87.62, "elapsed_time": "5:36:28", "remaining_time": "0:47:31"} +{"current_steps": 1424, "total_steps": 1624, "loss": 0.8861, "learning_rate": 9.105951268619206e-07, "epoch": 0.8768472906403941, "percentage": 87.68, "elapsed_time": "5:36:40", "remaining_time": "0:47:17"} +{"current_steps": 1425, "total_steps": 1624, "loss": 0.8793, "learning_rate": 9.016509779209536e-07, "epoch": 0.8774630541871922, "percentage": 87.75, "elapsed_time": "5:36:52", "remaining_time": "0:47:02"} +{"current_steps": 1426, "total_steps": 1624, "loss": 0.8492, "learning_rate": 8.927488979364185e-07, "epoch": 0.8780788177339901, "percentage": 87.81, "elapsed_time": "5:37:03", "remaining_time": "0:46:48"} +{"current_steps": 1427, "total_steps": 1624, "loss": 0.8668, "learning_rate": 8.838889280697637e-07, "epoch": 0.8786945812807881, "percentage": 87.87, "elapsed_time": "5:37:15", "remaining_time": "0:46:33"} +{"current_steps": 1428, "total_steps": 1624, "loss": 0.9062, "learning_rate": 8.75071109287724e-07, "epoch": 0.8793103448275862, "percentage": 87.93, "elapsed_time": "5:37:26", "remaining_time": "0:46:18"} +{"current_steps": 1429, "total_steps": 1624, "loss": 0.9033, "learning_rate": 8.662954823621428e-07, "epoch": 0.8799261083743842, "percentage": 87.99, "elapsed_time": "5:37:38", "remaining_time": "0:46:04"} +{"current_steps": 1430, "total_steps": 1624, "loss": 0.9595, "learning_rate": 8.575620878697744e-07, "epoch": 0.8805418719211823, "percentage": 88.05, "elapsed_time": "5:37:49", "remaining_time": "0:45:49"} +{"current_steps": 1431, "total_steps": 1624, "loss": 0.8487, "learning_rate": 8.488709661920946e-07, "epoch": 0.8811576354679803, "percentage": 88.12, "elapsed_time": "5:38:01", "remaining_time": "0:45:35"} +{"current_steps": 1432, "total_steps": 1624, "loss": 0.882, "learning_rate": 8.402221575151238e-07, "epoch": 0.8817733990147784, "percentage": 88.18, "elapsed_time": "5:38:13", "remaining_time": "0:45:20"} +{"current_steps": 1433, "total_steps": 1624, "loss": 0.9101, "learning_rate": 8.316157018292326e-07, "epoch": 0.8823891625615764, "percentage": 88.24, "elapsed_time": "5:38:24", "remaining_time": "0:45:06"} +{"current_steps": 1434, "total_steps": 1624, "loss": 0.8982, "learning_rate": 8.230516389289634e-07, "epoch": 0.8830049261083743, "percentage": 88.3, "elapsed_time": "5:38:36", "remaining_time": "0:44:51"} +{"current_steps": 1435, "total_steps": 1624, "loss": 0.8571, "learning_rate": 8.145300084128349e-07, "epoch": 0.8836206896551724, "percentage": 88.36, "elapsed_time": "5:38:47", "remaining_time": "0:44:37"} +{"current_steps": 1436, "total_steps": 1624, "loss": 0.85, "learning_rate": 8.060508496831742e-07, "epoch": 0.8842364532019704, "percentage": 88.42, "elapsed_time": "5:38:59", "remaining_time": "0:44:22"} +{"current_steps": 1437, "total_steps": 1624, "loss": 0.8926, "learning_rate": 7.976142019459277e-07, "epoch": 0.8848522167487685, "percentage": 88.49, "elapsed_time": "5:39:11", "remaining_time": "0:44:08"} +{"current_steps": 1438, "total_steps": 1624, "loss": 0.8635, "learning_rate": 7.892201042104719e-07, "epoch": 0.8854679802955665, "percentage": 88.55, "elapsed_time": "5:39:22", "remaining_time": "0:43:53"} +{"current_steps": 1439, "total_steps": 1624, "loss": 0.9409, "learning_rate": 7.808685952894501e-07, "epoch": 0.8860837438423645, "percentage": 88.61, "elapsed_time": "5:39:34", "remaining_time": "0:43:39"} +{"current_steps": 1440, "total_steps": 1624, "loss": 0.9409, "learning_rate": 7.725597137985741e-07, "epoch": 0.8866995073891626, "percentage": 88.67, "elapsed_time": "5:39:46", "remaining_time": "0:43:24"} +{"current_steps": 1441, "total_steps": 1624, "loss": 0.9179, "learning_rate": 7.642934981564609e-07, "epoch": 0.8873152709359606, "percentage": 88.73, "elapsed_time": "5:39:57", "remaining_time": "0:43:10"} +{"current_steps": 1442, "total_steps": 1624, "loss": 0.9113, "learning_rate": 7.560699865844501e-07, "epoch": 0.8879310344827587, "percentage": 88.79, "elapsed_time": "5:40:09", "remaining_time": "0:42:55"} +{"current_steps": 1443, "total_steps": 1624, "loss": 0.882, "learning_rate": 7.478892171064201e-07, "epoch": 0.8885467980295566, "percentage": 88.85, "elapsed_time": "5:40:21", "remaining_time": "0:42:41"} +{"current_steps": 1444, "total_steps": 1624, "loss": 0.8568, "learning_rate": 7.397512275486241e-07, "epoch": 0.8891625615763546, "percentage": 88.92, "elapsed_time": "5:40:32", "remaining_time": "0:42:27"} +{"current_steps": 1445, "total_steps": 1624, "loss": 0.8745, "learning_rate": 7.316560555395069e-07, "epoch": 0.8897783251231527, "percentage": 88.98, "elapsed_time": "5:40:44", "remaining_time": "0:42:12"} +{"current_steps": 1446, "total_steps": 1624, "loss": 0.8951, "learning_rate": 7.23603738509534e-07, "epoch": 0.8903940886699507, "percentage": 89.04, "elapsed_time": "5:40:55", "remaining_time": "0:41:58"} +{"current_steps": 1447, "total_steps": 1624, "loss": 0.9267, "learning_rate": 7.155943136910193e-07, "epoch": 0.8910098522167488, "percentage": 89.1, "elapsed_time": "5:41:07", "remaining_time": "0:41:43"} +{"current_steps": 1448, "total_steps": 1624, "loss": 0.8283, "learning_rate": 7.076278181179486e-07, "epoch": 0.8916256157635468, "percentage": 89.16, "elapsed_time": "5:41:18", "remaining_time": "0:41:29"} +{"current_steps": 1449, "total_steps": 1624, "loss": 0.885, "learning_rate": 6.997042886258143e-07, "epoch": 0.8922413793103449, "percentage": 89.22, "elapsed_time": "5:41:30", "remaining_time": "0:41:14"} +{"current_steps": 1450, "total_steps": 1624, "loss": 0.9014, "learning_rate": 6.918237618514378e-07, "epoch": 0.8928571428571429, "percentage": 89.29, "elapsed_time": "5:41:42", "remaining_time": "0:41:00"} +{"current_steps": 1451, "total_steps": 1624, "loss": 0.9372, "learning_rate": 6.839862742328107e-07, "epoch": 0.8934729064039408, "percentage": 89.35, "elapsed_time": "5:41:53", "remaining_time": "0:40:45"} +{"current_steps": 1452, "total_steps": 1624, "loss": 0.8871, "learning_rate": 6.761918620089181e-07, "epoch": 0.8940886699507389, "percentage": 89.41, "elapsed_time": "5:42:05", "remaining_time": "0:40:31"} +{"current_steps": 1453, "total_steps": 1624, "loss": 0.8813, "learning_rate": 6.684405612195688e-07, "epoch": 0.8947044334975369, "percentage": 89.47, "elapsed_time": "5:42:17", "remaining_time": "0:40:16"} +{"current_steps": 1454, "total_steps": 1624, "loss": 0.8997, "learning_rate": 6.60732407705239e-07, "epoch": 0.895320197044335, "percentage": 89.53, "elapsed_time": "5:42:28", "remaining_time": "0:40:02"} +{"current_steps": 1455, "total_steps": 1624, "loss": 0.9209, "learning_rate": 6.530674371068946e-07, "epoch": 0.895935960591133, "percentage": 89.59, "elapsed_time": "5:42:40", "remaining_time": "0:39:48"} +{"current_steps": 1456, "total_steps": 1624, "loss": 0.8808, "learning_rate": 6.454456848658364e-07, "epoch": 0.896551724137931, "percentage": 89.66, "elapsed_time": "5:42:52", "remaining_time": "0:39:33"} +{"current_steps": 1457, "total_steps": 1624, "loss": 0.8363, "learning_rate": 6.378671862235331e-07, "epoch": 0.8971674876847291, "percentage": 89.72, "elapsed_time": "5:43:04", "remaining_time": "0:39:19"} +{"current_steps": 1458, "total_steps": 1624, "loss": 0.8993, "learning_rate": 6.3033197622145e-07, "epoch": 0.8977832512315271, "percentage": 89.78, "elapsed_time": "5:43:15", "remaining_time": "0:39:04"} +{"current_steps": 1459, "total_steps": 1624, "loss": 0.841, "learning_rate": 6.228400897009068e-07, "epoch": 0.8983990147783252, "percentage": 89.84, "elapsed_time": "5:43:27", "remaining_time": "0:38:50"} +{"current_steps": 1460, "total_steps": 1624, "loss": 0.8487, "learning_rate": 6.153915613028915e-07, "epoch": 0.8990147783251231, "percentage": 89.9, "elapsed_time": "5:43:38", "remaining_time": "0:38:36"} +{"current_steps": 1461, "total_steps": 1624, "loss": 0.8441, "learning_rate": 6.07986425467919e-07, "epoch": 0.8996305418719212, "percentage": 89.96, "elapsed_time": "5:43:50", "remaining_time": "0:38:21"} +{"current_steps": 1462, "total_steps": 1624, "loss": 0.9265, "learning_rate": 6.00624716435868e-07, "epoch": 0.9002463054187192, "percentage": 90.02, "elapsed_time": "5:44:02", "remaining_time": "0:38:07"} +{"current_steps": 1463, "total_steps": 1624, "loss": 0.8573, "learning_rate": 5.933064682458123e-07, "epoch": 0.9008620689655172, "percentage": 90.09, "elapsed_time": "5:44:13", "remaining_time": "0:37:52"} +{"current_steps": 1464, "total_steps": 1624, "loss": 0.8826, "learning_rate": 5.860317147358796e-07, "epoch": 0.9014778325123153, "percentage": 90.15, "elapsed_time": "5:44:25", "remaining_time": "0:37:38"} +{"current_steps": 1465, "total_steps": 1624, "loss": 0.9048, "learning_rate": 5.788004895430799e-07, "epoch": 0.9020935960591133, "percentage": 90.21, "elapsed_time": "5:44:37", "remaining_time": "0:37:24"} +{"current_steps": 1466, "total_steps": 1624, "loss": 0.9012, "learning_rate": 5.716128261031628e-07, "epoch": 0.9027093596059114, "percentage": 90.27, "elapsed_time": "5:44:48", "remaining_time": "0:37:09"} +{"current_steps": 1467, "total_steps": 1624, "loss": 0.846, "learning_rate": 5.64468757650456e-07, "epoch": 0.9033251231527094, "percentage": 90.33, "elapsed_time": "5:45:00", "remaining_time": "0:36:55"} +{"current_steps": 1468, "total_steps": 1624, "loss": 0.9116, "learning_rate": 5.57368317217708e-07, "epoch": 0.9039408866995073, "percentage": 90.39, "elapsed_time": "5:45:12", "remaining_time": "0:36:41"} +{"current_steps": 1469, "total_steps": 1624, "loss": 0.8701, "learning_rate": 5.503115376359459e-07, "epoch": 0.9045566502463054, "percentage": 90.46, "elapsed_time": "5:45:23", "remaining_time": "0:36:26"} +{"current_steps": 1470, "total_steps": 1624, "loss": 0.8651, "learning_rate": 5.43298451534312e-07, "epoch": 0.9051724137931034, "percentage": 90.52, "elapsed_time": "5:45:35", "remaining_time": "0:36:12"} +{"current_steps": 1471, "total_steps": 1624, "loss": 0.8844, "learning_rate": 5.363290913399232e-07, "epoch": 0.9057881773399015, "percentage": 90.58, "elapsed_time": "5:45:47", "remaining_time": "0:35:57"} +{"current_steps": 1472, "total_steps": 1624, "loss": 0.9383, "learning_rate": 5.294034892777167e-07, "epoch": 0.9064039408866995, "percentage": 90.64, "elapsed_time": "5:45:58", "remaining_time": "0:35:43"} +{"current_steps": 1473, "total_steps": 1624, "loss": 0.8472, "learning_rate": 5.225216773702968e-07, "epoch": 0.9070197044334976, "percentage": 90.7, "elapsed_time": "5:46:10", "remaining_time": "0:35:29"} +{"current_steps": 1474, "total_steps": 1624, "loss": 0.8696, "learning_rate": 5.156836874377958e-07, "epoch": 0.9076354679802956, "percentage": 90.76, "elapsed_time": "5:46:21", "remaining_time": "0:35:14"} +{"current_steps": 1475, "total_steps": 1624, "loss": 0.8511, "learning_rate": 5.088895510977154e-07, "epoch": 0.9082512315270936, "percentage": 90.83, "elapsed_time": "5:46:33", "remaining_time": "0:35:00"} +{"current_steps": 1476, "total_steps": 1624, "loss": 0.8422, "learning_rate": 5.021392997647933e-07, "epoch": 0.9088669950738916, "percentage": 90.89, "elapsed_time": "5:46:44", "remaining_time": "0:34:46"} +{"current_steps": 1477, "total_steps": 1624, "loss": 0.8906, "learning_rate": 4.954329646508505e-07, "epoch": 0.9094827586206896, "percentage": 90.95, "elapsed_time": "5:46:56", "remaining_time": "0:34:31"} +{"current_steps": 1478, "total_steps": 1624, "loss": 0.8757, "learning_rate": 4.887705767646433e-07, "epoch": 0.9100985221674877, "percentage": 91.01, "elapsed_time": "5:47:08", "remaining_time": "0:34:17"} +{"current_steps": 1479, "total_steps": 1624, "loss": 0.9328, "learning_rate": 4.821521669117324e-07, "epoch": 0.9107142857142857, "percentage": 91.07, "elapsed_time": "5:47:19", "remaining_time": "0:34:03"} +{"current_steps": 1480, "total_steps": 1624, "loss": 0.8872, "learning_rate": 4.755777656943239e-07, "epoch": 0.9113300492610837, "percentage": 91.13, "elapsed_time": "5:47:30", "remaining_time": "0:33:48"} +{"current_steps": 1481, "total_steps": 1624, "loss": 0.8644, "learning_rate": 4.6904740351114477e-07, "epoch": 0.9119458128078818, "percentage": 91.19, "elapsed_time": "5:47:42", "remaining_time": "0:33:34"} +{"current_steps": 1482, "total_steps": 1624, "loss": 0.9111, "learning_rate": 4.6256111055729134e-07, "epoch": 0.9125615763546798, "percentage": 91.26, "elapsed_time": "5:47:54", "remaining_time": "0:33:20"} +{"current_steps": 1483, "total_steps": 1624, "loss": 0.9148, "learning_rate": 4.561189168240909e-07, "epoch": 0.9131773399014779, "percentage": 91.32, "elapsed_time": "5:48:05", "remaining_time": "0:33:05"} +{"current_steps": 1484, "total_steps": 1624, "loss": 0.86, "learning_rate": 4.497208520989671e-07, "epoch": 0.9137931034482759, "percentage": 91.38, "elapsed_time": "5:48:17", "remaining_time": "0:32:51"} +{"current_steps": 1485, "total_steps": 1624, "loss": 0.8652, "learning_rate": 4.433669459652945e-07, "epoch": 0.9144088669950738, "percentage": 91.44, "elapsed_time": "5:48:28", "remaining_time": "0:32:37"} +{"current_steps": 1486, "total_steps": 1624, "loss": 0.8981, "learning_rate": 4.3705722780227887e-07, "epoch": 0.9150246305418719, "percentage": 91.5, "elapsed_time": "5:48:39", "remaining_time": "0:32:22"} +{"current_steps": 1487, "total_steps": 1624, "loss": 0.8874, "learning_rate": 4.3079172678479717e-07, "epoch": 0.9156403940886699, "percentage": 91.56, "elapsed_time": "5:48:50", "remaining_time": "0:32:08"} +{"current_steps": 1488, "total_steps": 1624, "loss": 0.9171, "learning_rate": 4.2457047188328104e-07, "epoch": 0.916256157635468, "percentage": 91.63, "elapsed_time": "5:49:02", "remaining_time": "0:31:54"} +{"current_steps": 1489, "total_steps": 1624, "loss": 0.9081, "learning_rate": 4.183934918635768e-07, "epoch": 0.916871921182266, "percentage": 91.69, "elapsed_time": "5:49:14", "remaining_time": "0:31:39"} +{"current_steps": 1490, "total_steps": 1624, "loss": 0.8722, "learning_rate": 4.1226081528680907e-07, "epoch": 0.9174876847290641, "percentage": 91.75, "elapsed_time": "5:49:25", "remaining_time": "0:31:25"} +{"current_steps": 1491, "total_steps": 1624, "loss": 0.9213, "learning_rate": 4.0617247050925733e-07, "epoch": 0.9181034482758621, "percentage": 91.81, "elapsed_time": "5:49:37", "remaining_time": "0:31:11"} +{"current_steps": 1492, "total_steps": 1624, "loss": 0.8758, "learning_rate": 4.001284856822174e-07, "epoch": 0.9187192118226601, "percentage": 91.87, "elapsed_time": "5:49:49", "remaining_time": "0:30:56"} +{"current_steps": 1493, "total_steps": 1624, "loss": 0.9012, "learning_rate": 3.9412888875187127e-07, "epoch": 0.9193349753694581, "percentage": 91.93, "elapsed_time": "5:50:00", "remaining_time": "0:30:42"} +{"current_steps": 1494, "total_steps": 1624, "loss": 0.9029, "learning_rate": 3.881737074591629e-07, "epoch": 0.9199507389162561, "percentage": 92.0, "elapsed_time": "5:50:12", "remaining_time": "0:30:28"} +{"current_steps": 1495, "total_steps": 1624, "loss": 0.8983, "learning_rate": 3.822629693396651e-07, "epoch": 0.9205665024630542, "percentage": 92.06, "elapsed_time": "5:50:24", "remaining_time": "0:30:14"} +{"current_steps": 1496, "total_steps": 1624, "loss": 0.8324, "learning_rate": 3.76396701723456e-07, "epoch": 0.9211822660098522, "percentage": 92.12, "elapsed_time": "5:50:35", "remaining_time": "0:29:59"} +{"current_steps": 1497, "total_steps": 1624, "loss": 0.9164, "learning_rate": 3.705749317349916e-07, "epoch": 0.9217980295566502, "percentage": 92.18, "elapsed_time": "5:50:47", "remaining_time": "0:29:45"} +{"current_steps": 1498, "total_steps": 1624, "loss": 0.8084, "learning_rate": 3.6479768629297473e-07, "epoch": 0.9224137931034483, "percentage": 92.24, "elapsed_time": "5:50:58", "remaining_time": "0:29:31"} +{"current_steps": 1499, "total_steps": 1624, "loss": 0.8909, "learning_rate": 3.5906499211024514e-07, "epoch": 0.9230295566502463, "percentage": 92.3, "elapsed_time": "5:51:10", "remaining_time": "0:29:17"} +{"current_steps": 1500, "total_steps": 1624, "loss": 0.868, "learning_rate": 3.5337687569363734e-07, "epoch": 0.9236453201970444, "percentage": 92.36, "elapsed_time": "5:51:21", "remaining_time": "0:29:02"} +{"current_steps": 1501, "total_steps": 1624, "loss": 0.8725, "learning_rate": 3.4773336334387063e-07, "epoch": 0.9242610837438424, "percentage": 92.43, "elapsed_time": "5:51:33", "remaining_time": "0:28:48"} +{"current_steps": 1502, "total_steps": 1624, "loss": 0.8624, "learning_rate": 3.421344811554228e-07, "epoch": 0.9248768472906403, "percentage": 92.49, "elapsed_time": "5:51:45", "remaining_time": "0:28:34"} +{"current_steps": 1503, "total_steps": 1624, "loss": 0.9132, "learning_rate": 3.365802550164132e-07, "epoch": 0.9254926108374384, "percentage": 92.55, "elapsed_time": "5:51:57", "remaining_time": "0:28:20"} +{"current_steps": 1504, "total_steps": 1624, "loss": 0.8749, "learning_rate": 3.310707106084798e-07, "epoch": 0.9261083743842364, "percentage": 92.61, "elapsed_time": "5:52:08", "remaining_time": "0:28:05"} +{"current_steps": 1505, "total_steps": 1624, "loss": 0.8913, "learning_rate": 3.2560587340665694e-07, "epoch": 0.9267241379310345, "percentage": 92.67, "elapsed_time": "5:52:20", "remaining_time": "0:27:51"} +{"current_steps": 1506, "total_steps": 1624, "loss": 0.9168, "learning_rate": 3.2018576867926644e-07, "epoch": 0.9273399014778325, "percentage": 92.73, "elapsed_time": "5:52:32", "remaining_time": "0:27:37"} +{"current_steps": 1507, "total_steps": 1624, "loss": 0.8626, "learning_rate": 3.1481042148779674e-07, "epoch": 0.9279556650246306, "percentage": 92.8, "elapsed_time": "5:52:43", "remaining_time": "0:27:23"} +{"current_steps": 1508, "total_steps": 1624, "loss": 0.8943, "learning_rate": 3.0947985668678183e-07, "epoch": 0.9285714285714286, "percentage": 92.86, "elapsed_time": "5:52:55", "remaining_time": "0:27:08"} +{"current_steps": 1509, "total_steps": 1624, "loss": 0.8964, "learning_rate": 3.041940989236947e-07, "epoch": 0.9291871921182266, "percentage": 92.92, "elapsed_time": "5:53:06", "remaining_time": "0:26:54"} +{"current_steps": 1510, "total_steps": 1624, "loss": 0.9161, "learning_rate": 2.989531726388262e-07, "epoch": 0.9298029556650246, "percentage": 92.98, "elapsed_time": "5:53:18", "remaining_time": "0:26:40"} +{"current_steps": 1511, "total_steps": 1624, "loss": 0.8723, "learning_rate": 2.9375710206517747e-07, "epoch": 0.9304187192118226, "percentage": 93.04, "elapsed_time": "5:53:29", "remaining_time": "0:26:26"} +{"current_steps": 1512, "total_steps": 1624, "loss": 0.9444, "learning_rate": 2.886059112283468e-07, "epoch": 0.9310344827586207, "percentage": 93.1, "elapsed_time": "5:53:41", "remaining_time": "0:26:11"} +{"current_steps": 1513, "total_steps": 1624, "loss": 0.9329, "learning_rate": 2.8349962394641604e-07, "epoch": 0.9316502463054187, "percentage": 93.17, "elapsed_time": "5:53:52", "remaining_time": "0:25:57"} +{"current_steps": 1514, "total_steps": 1624, "loss": 0.9431, "learning_rate": 2.784382638298422e-07, "epoch": 0.9322660098522167, "percentage": 93.23, "elapsed_time": "5:54:04", "remaining_time": "0:25:43"} +{"current_steps": 1515, "total_steps": 1624, "loss": 0.8394, "learning_rate": 2.7342185428134604e-07, "epoch": 0.9328817733990148, "percentage": 93.29, "elapsed_time": "5:54:16", "remaining_time": "0:25:29"} +{"current_steps": 1516, "total_steps": 1624, "loss": 0.9047, "learning_rate": 2.6845041849581034e-07, "epoch": 0.9334975369458128, "percentage": 93.35, "elapsed_time": "5:54:27", "remaining_time": "0:25:15"} +{"current_steps": 1517, "total_steps": 1624, "loss": 0.8828, "learning_rate": 2.6352397946016293e-07, "epoch": 0.9341133004926109, "percentage": 93.41, "elapsed_time": "5:54:39", "remaining_time": "0:25:00"} +{"current_steps": 1518, "total_steps": 1624, "loss": 0.8441, "learning_rate": 2.5864255995327937e-07, "epoch": 0.9347290640394089, "percentage": 93.47, "elapsed_time": "5:54:50", "remaining_time": "0:24:46"} +{"current_steps": 1519, "total_steps": 1624, "loss": 0.881, "learning_rate": 2.5380618254587376e-07, "epoch": 0.9353448275862069, "percentage": 93.53, "elapsed_time": "5:55:02", "remaining_time": "0:24:32"} +{"current_steps": 1520, "total_steps": 1624, "loss": 0.8521, "learning_rate": 2.4901486960039025e-07, "epoch": 0.9359605911330049, "percentage": 93.6, "elapsed_time": "5:55:14", "remaining_time": "0:24:18"} +{"current_steps": 1521, "total_steps": 1624, "loss": 0.9035, "learning_rate": 2.442686432709096e-07, "epoch": 0.9365763546798029, "percentage": 93.66, "elapsed_time": "5:55:25", "remaining_time": "0:24:04"} +{"current_steps": 1522, "total_steps": 1624, "loss": 0.8858, "learning_rate": 2.395675255030383e-07, "epoch": 0.937192118226601, "percentage": 93.72, "elapsed_time": "5:55:36", "remaining_time": "0:23:49"} +{"current_steps": 1523, "total_steps": 1624, "loss": 0.8933, "learning_rate": 2.349115380338096e-07, "epoch": 0.937807881773399, "percentage": 93.78, "elapsed_time": "5:55:48", "remaining_time": "0:23:35"} +{"current_steps": 1524, "total_steps": 1624, "loss": 0.8825, "learning_rate": 2.3030070239158375e-07, "epoch": 0.9384236453201971, "percentage": 93.84, "elapsed_time": "5:56:00", "remaining_time": "0:23:21"} +{"current_steps": 1525, "total_steps": 1624, "loss": 0.8497, "learning_rate": 2.257350398959457e-07, "epoch": 0.9390394088669951, "percentage": 93.9, "elapsed_time": "5:56:11", "remaining_time": "0:23:07"} +{"current_steps": 1526, "total_steps": 1624, "loss": 0.909, "learning_rate": 2.2121457165761416e-07, "epoch": 0.9396551724137931, "percentage": 93.97, "elapsed_time": "5:56:22", "remaining_time": "0:22:53"} +{"current_steps": 1527, "total_steps": 1624, "loss": 0.8616, "learning_rate": 2.1673931857833285e-07, "epoch": 0.9402709359605911, "percentage": 94.03, "elapsed_time": "5:56:34", "remaining_time": "0:22:39"} +{"current_steps": 1528, "total_steps": 1624, "loss": 0.8777, "learning_rate": 2.1230930135078377e-07, "epoch": 0.9408866995073891, "percentage": 94.09, "elapsed_time": "5:56:45", "remaining_time": "0:22:24"} +{"current_steps": 1529, "total_steps": 1624, "loss": 0.8798, "learning_rate": 2.0792454045848398e-07, "epoch": 0.9415024630541872, "percentage": 94.15, "elapsed_time": "5:56:57", "remaining_time": "0:22:10"} +{"current_steps": 1530, "total_steps": 1624, "loss": 0.8608, "learning_rate": 2.035850561756969e-07, "epoch": 0.9421182266009852, "percentage": 94.21, "elapsed_time": "5:57:09", "remaining_time": "0:21:56"} +{"current_steps": 1531, "total_steps": 1624, "loss": 0.8705, "learning_rate": 1.992908685673345e-07, "epoch": 0.9427339901477833, "percentage": 94.27, "elapsed_time": "5:57:20", "remaining_time": "0:21:42"} +{"current_steps": 1532, "total_steps": 1624, "loss": 0.8704, "learning_rate": 1.950419974888662e-07, "epoch": 0.9433497536945813, "percentage": 94.33, "elapsed_time": "5:57:32", "remaining_time": "0:21:28"} +{"current_steps": 1533, "total_steps": 1624, "loss": 0.8622, "learning_rate": 1.9083846258622585e-07, "epoch": 0.9439655172413793, "percentage": 94.4, "elapsed_time": "5:57:44", "remaining_time": "0:21:14"} +{"current_steps": 1534, "total_steps": 1624, "loss": 0.8697, "learning_rate": 1.8668028329572485e-07, "epoch": 0.9445812807881774, "percentage": 94.46, "elapsed_time": "5:57:55", "remaining_time": "0:20:59"} +{"current_steps": 1535, "total_steps": 1624, "loss": 0.8813, "learning_rate": 1.8256747884395577e-07, "epoch": 0.9451970443349754, "percentage": 94.52, "elapsed_time": "5:58:07", "remaining_time": "0:20:45"} +{"current_steps": 1536, "total_steps": 1624, "loss": 0.853, "learning_rate": 1.7850006824771005e-07, "epoch": 0.9458128078817734, "percentage": 94.58, "elapsed_time": "5:58:19", "remaining_time": "0:20:31"} +{"current_steps": 1537, "total_steps": 1624, "loss": 0.9104, "learning_rate": 1.7447807031388264e-07, "epoch": 0.9464285714285714, "percentage": 94.64, "elapsed_time": "5:58:30", "remaining_time": "0:20:17"} +{"current_steps": 1538, "total_steps": 1624, "loss": 0.9206, "learning_rate": 1.7050150363939311e-07, "epoch": 0.9470443349753694, "percentage": 94.7, "elapsed_time": "5:58:42", "remaining_time": "0:20:03"} +{"current_steps": 1539, "total_steps": 1624, "loss": 0.8924, "learning_rate": 1.6657038661109791e-07, "epoch": 0.9476600985221675, "percentage": 94.77, "elapsed_time": "5:58:53", "remaining_time": "0:19:49"} +{"current_steps": 1540, "total_steps": 1624, "loss": 0.9013, "learning_rate": 1.6268473740569723e-07, "epoch": 0.9482758620689655, "percentage": 94.83, "elapsed_time": "5:59:05", "remaining_time": "0:19:35"} +{"current_steps": 1541, "total_steps": 1624, "loss": 0.8926, "learning_rate": 1.5884457398966046e-07, "epoch": 0.9488916256157636, "percentage": 94.89, "elapsed_time": "5:59:17", "remaining_time": "0:19:21"} +{"current_steps": 1542, "total_steps": 1624, "loss": 0.8596, "learning_rate": 1.5504991411914083e-07, "epoch": 0.9495073891625616, "percentage": 94.95, "elapsed_time": "5:59:28", "remaining_time": "0:19:06"} +{"current_steps": 1543, "total_steps": 1624, "loss": 0.9267, "learning_rate": 1.5130077533988874e-07, "epoch": 0.9501231527093597, "percentage": 95.01, "elapsed_time": "5:59:40", "remaining_time": "0:18:52"} +{"current_steps": 1544, "total_steps": 1624, "loss": 0.8332, "learning_rate": 1.4759717498717962e-07, "epoch": 0.9507389162561576, "percentage": 95.07, "elapsed_time": "5:59:52", "remaining_time": "0:18:38"} +{"current_steps": 1545, "total_steps": 1624, "loss": 0.9332, "learning_rate": 1.4393913018572182e-07, "epoch": 0.9513546798029556, "percentage": 95.14, "elapsed_time": "6:00:03", "remaining_time": "0:18:24"} +{"current_steps": 1546, "total_steps": 1624, "loss": 0.871, "learning_rate": 1.4032665784958877e-07, "epoch": 0.9519704433497537, "percentage": 95.2, "elapsed_time": "6:00:15", "remaining_time": "0:18:10"} +{"current_steps": 1547, "total_steps": 1624, "loss": 0.8416, "learning_rate": 1.3675977468213365e-07, "epoch": 0.9525862068965517, "percentage": 95.26, "elapsed_time": "6:00:27", "remaining_time": "0:17:56"} +{"current_steps": 1548, "total_steps": 1624, "loss": 0.9209, "learning_rate": 1.3323849717591376e-07, "epoch": 0.9532019704433498, "percentage": 95.32, "elapsed_time": "6:00:38", "remaining_time": "0:17:42"} +{"current_steps": 1549, "total_steps": 1624, "loss": 0.9443, "learning_rate": 1.2976284161261843e-07, "epoch": 0.9538177339901478, "percentage": 95.38, "elapsed_time": "6:00:49", "remaining_time": "0:17:28"} +{"current_steps": 1550, "total_steps": 1624, "loss": 0.8861, "learning_rate": 1.2633282406298576e-07, "epoch": 0.9544334975369458, "percentage": 95.44, "elapsed_time": "6:01:01", "remaining_time": "0:17:14"} +{"current_steps": 1551, "total_steps": 1624, "loss": 0.8909, "learning_rate": 1.229484603867348e-07, "epoch": 0.9550492610837439, "percentage": 95.5, "elapsed_time": "6:01:13", "remaining_time": "0:17:00"} +{"current_steps": 1552, "total_steps": 1624, "loss": 0.8397, "learning_rate": 1.196097662324902e-07, "epoch": 0.9556650246305419, "percentage": 95.57, "elapsed_time": "6:01:24", "remaining_time": "0:16:45"} +{"current_steps": 1553, "total_steps": 1624, "loss": 0.8918, "learning_rate": 1.1631675703771106e-07, "epoch": 0.9562807881773399, "percentage": 95.63, "elapsed_time": "6:01:36", "remaining_time": "0:16:31"} +{"current_steps": 1554, "total_steps": 1624, "loss": 0.905, "learning_rate": 1.1306944802861652e-07, "epoch": 0.9568965517241379, "percentage": 95.69, "elapsed_time": "6:01:47", "remaining_time": "0:16:17"} +{"current_steps": 1555, "total_steps": 1624, "loss": 0.8912, "learning_rate": 1.0986785422011593e-07, "epoch": 0.9575123152709359, "percentage": 95.75, "elapsed_time": "6:01:59", "remaining_time": "0:16:03"} +{"current_steps": 1556, "total_steps": 1624, "loss": 0.9068, "learning_rate": 1.0671199041574542e-07, "epoch": 0.958128078817734, "percentage": 95.81, "elapsed_time": "6:02:11", "remaining_time": "0:15:49"} +{"current_steps": 1557, "total_steps": 1624, "loss": 0.8228, "learning_rate": 1.0360187120758813e-07, "epoch": 0.958743842364532, "percentage": 95.87, "elapsed_time": "6:02:22", "remaining_time": "0:15:35"} +{"current_steps": 1558, "total_steps": 1624, "loss": 0.8261, "learning_rate": 1.0053751097621855e-07, "epoch": 0.9593596059113301, "percentage": 95.94, "elapsed_time": "6:02:34", "remaining_time": "0:15:21"} +{"current_steps": 1559, "total_steps": 1624, "loss": 0.9401, "learning_rate": 9.751892389063045e-08, "epoch": 0.9599753694581281, "percentage": 96.0, "elapsed_time": "6:02:46", "remaining_time": "0:15:07"} +{"current_steps": 1560, "total_steps": 1624, "loss": 0.9055, "learning_rate": 9.454612390816686e-08, "epoch": 0.9605911330049262, "percentage": 96.06, "elapsed_time": "6:02:57", "remaining_time": "0:14:53"} +{"current_steps": 1561, "total_steps": 1624, "loss": 0.8702, "learning_rate": 9.161912477446689e-08, "epoch": 0.9612068965517241, "percentage": 96.12, "elapsed_time": "6:03:08", "remaining_time": "0:14:39"} +{"current_steps": 1562, "total_steps": 1624, "loss": 0.869, "learning_rate": 8.873794002338898e-08, "epoch": 0.9618226600985221, "percentage": 96.18, "elapsed_time": "6:03:20", "remaining_time": "0:14:25"} +{"current_steps": 1563, "total_steps": 1624, "loss": 0.8704, "learning_rate": 8.590258297696108e-08, "epoch": 0.9624384236453202, "percentage": 96.24, "elapsed_time": "6:03:32", "remaining_time": "0:14:11"} +{"current_steps": 1564, "total_steps": 1624, "loss": 0.9072, "learning_rate": 8.311306674531062e-08, "epoch": 0.9630541871921182, "percentage": 96.31, "elapsed_time": "6:03:44", "remaining_time": "0:13:57"} +{"current_steps": 1565, "total_steps": 1624, "loss": 0.8793, "learning_rate": 8.036940422660345e-08, "epoch": 0.9636699507389163, "percentage": 96.37, "elapsed_time": "6:03:55", "remaining_time": "0:13:43"} +{"current_steps": 1566, "total_steps": 1624, "loss": 0.8356, "learning_rate": 7.76716081069917e-08, "epoch": 0.9642857142857143, "percentage": 96.43, "elapsed_time": "6:04:07", "remaining_time": "0:13:29"} +{"current_steps": 1567, "total_steps": 1624, "loss": 0.9219, "learning_rate": 7.501969086054717e-08, "epoch": 0.9649014778325123, "percentage": 96.49, "elapsed_time": "6:04:18", "remaining_time": "0:13:15"} +{"current_steps": 1568, "total_steps": 1624, "loss": 0.8704, "learning_rate": 7.241366474920796e-08, "epoch": 0.9655172413793104, "percentage": 96.55, "elapsed_time": "6:04:30", "remaining_time": "0:13:01"} +{"current_steps": 1569, "total_steps": 1624, "loss": 0.8656, "learning_rate": 6.985354182271975e-08, "epoch": 0.9661330049261084, "percentage": 96.61, "elapsed_time": "6:04:42", "remaining_time": "0:12:47"} +{"current_steps": 1570, "total_steps": 1624, "loss": 0.9008, "learning_rate": 6.733933391858238e-08, "epoch": 0.9667487684729064, "percentage": 96.67, "elapsed_time": "6:04:53", "remaining_time": "0:12:33"} +{"current_steps": 1571, "total_steps": 1624, "loss": 0.882, "learning_rate": 6.487105266199333e-08, "epoch": 0.9673645320197044, "percentage": 96.74, "elapsed_time": "6:05:05", "remaining_time": "0:12:19"} +{"current_steps": 1572, "total_steps": 1624, "loss": 0.82, "learning_rate": 6.24487094657944e-08, "epoch": 0.9679802955665024, "percentage": 96.8, "elapsed_time": "6:05:17", "remaining_time": "0:12:04"} +{"current_steps": 1573, "total_steps": 1624, "loss": 0.952, "learning_rate": 6.007231553041837e-08, "epoch": 0.9685960591133005, "percentage": 96.86, "elapsed_time": "6:05:28", "remaining_time": "0:11:50"} +{"current_steps": 1574, "total_steps": 1624, "loss": 0.9196, "learning_rate": 5.774188184383911e-08, "epoch": 0.9692118226600985, "percentage": 96.92, "elapsed_time": "6:05:40", "remaining_time": "0:11:36"} +{"current_steps": 1575, "total_steps": 1624, "loss": 0.8773, "learning_rate": 5.5457419181517145e-08, "epoch": 0.9698275862068966, "percentage": 96.98, "elapsed_time": "6:05:52", "remaining_time": "0:11:22"} +{"current_steps": 1576, "total_steps": 1624, "loss": 0.8663, "learning_rate": 5.321893810635526e-08, "epoch": 0.9704433497536946, "percentage": 97.04, "elapsed_time": "6:06:03", "remaining_time": "0:11:08"} +{"current_steps": 1577, "total_steps": 1624, "loss": 0.8987, "learning_rate": 5.102644896864184e-08, "epoch": 0.9710591133004927, "percentage": 97.11, "elapsed_time": "6:06:15", "remaining_time": "0:10:54"} +{"current_steps": 1578, "total_steps": 1624, "loss": 0.8571, "learning_rate": 4.8879961906013184e-08, "epoch": 0.9716748768472906, "percentage": 97.17, "elapsed_time": "6:06:27", "remaining_time": "0:10:40"} +{"current_steps": 1579, "total_steps": 1624, "loss": 0.8857, "learning_rate": 4.6779486843397946e-08, "epoch": 0.9722906403940886, "percentage": 97.23, "elapsed_time": "6:06:38", "remaining_time": "0:10:26"} +{"current_steps": 1580, "total_steps": 1624, "loss": 0.8913, "learning_rate": 4.472503349297497e-08, "epoch": 0.9729064039408867, "percentage": 97.29, "elapsed_time": "6:06:50", "remaining_time": "0:10:12"} +{"current_steps": 1581, "total_steps": 1624, "loss": 0.8737, "learning_rate": 4.271661135412775e-08, "epoch": 0.9735221674876847, "percentage": 97.35, "elapsed_time": "6:07:01", "remaining_time": "0:09:58"} +{"current_steps": 1582, "total_steps": 1624, "loss": 0.8232, "learning_rate": 4.075422971340115e-08, "epoch": 0.9741379310344828, "percentage": 97.41, "elapsed_time": "6:07:13", "remaining_time": "0:09:44"} +{"current_steps": 1583, "total_steps": 1624, "loss": 0.8673, "learning_rate": 3.8837897644457e-08, "epoch": 0.9747536945812808, "percentage": 97.48, "elapsed_time": "6:07:25", "remaining_time": "0:09:30"} +{"current_steps": 1584, "total_steps": 1624, "loss": 0.8886, "learning_rate": 3.6967624008035216e-08, "epoch": 0.9753694581280788, "percentage": 97.54, "elapsed_time": "6:07:36", "remaining_time": "0:09:16"} +{"current_steps": 1585, "total_steps": 1624, "loss": 0.8312, "learning_rate": 3.5143417451907195e-08, "epoch": 0.9759852216748769, "percentage": 97.6, "elapsed_time": "6:07:48", "remaining_time": "0:09:03"} +{"current_steps": 1586, "total_steps": 1624, "loss": 0.8679, "learning_rate": 3.3365286410842465e-08, "epoch": 0.9766009852216748, "percentage": 97.66, "elapsed_time": "6:08:00", "remaining_time": "0:08:49"} +{"current_steps": 1587, "total_steps": 1624, "loss": 0.9403, "learning_rate": 3.163323910656546e-08, "epoch": 0.9772167487684729, "percentage": 97.72, "elapsed_time": "6:08:11", "remaining_time": "0:08:35"} +{"current_steps": 1588, "total_steps": 1624, "loss": 0.9131, "learning_rate": 2.994728354771659e-08, "epoch": 0.9778325123152709, "percentage": 97.78, "elapsed_time": "6:08:23", "remaining_time": "0:08:21"} +{"current_steps": 1589, "total_steps": 1624, "loss": 0.8468, "learning_rate": 2.8307427529822295e-08, "epoch": 0.978448275862069, "percentage": 97.84, "elapsed_time": "6:08:34", "remaining_time": "0:08:07"} +{"current_steps": 1590, "total_steps": 1624, "loss": 0.9027, "learning_rate": 2.671367863524732e-08, "epoch": 0.979064039408867, "percentage": 97.91, "elapsed_time": "6:08:46", "remaining_time": "0:07:53"} +{"current_steps": 1591, "total_steps": 1624, "loss": 0.8856, "learning_rate": 2.5166044233172483e-08, "epoch": 0.979679802955665, "percentage": 97.97, "elapsed_time": "6:08:58", "remaining_time": "0:07:39"} +{"current_steps": 1592, "total_steps": 1624, "loss": 0.848, "learning_rate": 2.366453147954917e-08, "epoch": 0.9802955665024631, "percentage": 98.03, "elapsed_time": "6:09:09", "remaining_time": "0:07:25"} +{"current_steps": 1593, "total_steps": 1624, "loss": 0.8723, "learning_rate": 2.220914731707491e-08, "epoch": 0.9809113300492611, "percentage": 98.09, "elapsed_time": "6:09:21", "remaining_time": "0:07:11"} +{"current_steps": 1594, "total_steps": 1624, "loss": 0.8572, "learning_rate": 2.0799898475156732e-08, "epoch": 0.9815270935960592, "percentage": 98.15, "elapsed_time": "6:09:33", "remaining_time": "0:06:57"} +{"current_steps": 1595, "total_steps": 1624, "loss": 0.8567, "learning_rate": 1.943679146988009e-08, "epoch": 0.9821428571428571, "percentage": 98.21, "elapsed_time": "6:09:44", "remaining_time": "0:06:43"} +{"current_steps": 1596, "total_steps": 1624, "loss": 0.9266, "learning_rate": 1.8119832603982202e-08, "epoch": 0.9827586206896551, "percentage": 98.28, "elapsed_time": "6:09:56", "remaining_time": "0:06:29"} +{"current_steps": 1597, "total_steps": 1624, "loss": 0.8926, "learning_rate": 1.6849027966816535e-08, "epoch": 0.9833743842364532, "percentage": 98.34, "elapsed_time": "6:10:07", "remaining_time": "0:06:15"} +{"current_steps": 1598, "total_steps": 1624, "loss": 0.8758, "learning_rate": 1.5624383434333923e-08, "epoch": 0.9839901477832512, "percentage": 98.4, "elapsed_time": "6:10:19", "remaining_time": "0:06:01"} +{"current_steps": 1599, "total_steps": 1624, "loss": 0.8631, "learning_rate": 1.444590466904483e-08, "epoch": 0.9846059113300493, "percentage": 98.46, "elapsed_time": "6:10:30", "remaining_time": "0:05:47"} +{"current_steps": 1600, "total_steps": 1624, "loss": 0.9246, "learning_rate": 1.3313597120002686e-08, "epoch": 0.9852216748768473, "percentage": 98.52, "elapsed_time": "6:10:42", "remaining_time": "0:05:33"} +{"current_steps": 1600, "total_steps": 1624, "eval_loss": 0.8905929923057556, "epoch": 0.9852216748768473, "percentage": 98.52, "elapsed_time": "6:19:25", "remaining_time": "0:05:41"} +{"current_steps": 1601, "total_steps": 1624, "loss": 0.8713, "learning_rate": 1.2227466022770584e-08, "epoch": 0.9858374384236454, "percentage": 98.58, "elapsed_time": "6:19:37", "remaining_time": "0:05:27"} +{"current_steps": 1602, "total_steps": 1624, "loss": 0.874, "learning_rate": 1.118751639940352e-08, "epoch": 0.9864532019704434, "percentage": 98.65, "elapsed_time": "6:19:48", "remaining_time": "0:05:12"} +{"current_steps": 1603, "total_steps": 1624, "loss": 0.919, "learning_rate": 1.0193753058420631e-08, "epoch": 0.9870689655172413, "percentage": 98.71, "elapsed_time": "6:20:00", "remaining_time": "0:04:58"} +{"current_steps": 1604, "total_steps": 1624, "loss": 0.8661, "learning_rate": 9.246180594788546e-09, "epoch": 0.9876847290640394, "percentage": 98.77, "elapsed_time": "6:20:12", "remaining_time": "0:04:44"} +{"current_steps": 1605, "total_steps": 1624, "loss": 0.8885, "learning_rate": 8.34480338989141e-09, "epoch": 0.9883004926108374, "percentage": 98.83, "elapsed_time": "6:20:23", "remaining_time": "0:04:30"} +{"current_steps": 1606, "total_steps": 1624, "loss": 0.8795, "learning_rate": 7.48962561151978e-09, "epoch": 0.9889162561576355, "percentage": 98.89, "elapsed_time": "6:20:35", "remaining_time": "0:04:15"} +{"current_steps": 1607, "total_steps": 1624, "loss": 0.8996, "learning_rate": 6.68065121384398e-09, "epoch": 0.9895320197044335, "percentage": 98.95, "elapsed_time": "6:20:47", "remaining_time": "0:04:01"} +{"current_steps": 1608, "total_steps": 1624, "loss": 0.8929, "learning_rate": 5.917883937401892e-09, "epoch": 0.9901477832512315, "percentage": 99.01, "elapsed_time": "6:20:58", "remaining_time": "0:03:47"} +{"current_steps": 1609, "total_steps": 1624, "loss": 0.9307, "learning_rate": 5.201327309077853e-09, "epoch": 0.9907635467980296, "percentage": 99.08, "elapsed_time": "6:21:10", "remaining_time": "0:03:33"} +{"current_steps": 1610, "total_steps": 1624, "loss": 0.853, "learning_rate": 4.530984642087122e-09, "epoch": 0.9913793103448276, "percentage": 99.14, "elapsed_time": "6:21:21", "remaining_time": "0:03:18"} +{"current_steps": 1611, "total_steps": 1624, "loss": 0.8851, "learning_rate": 3.906859035960331e-09, "epoch": 0.9919950738916257, "percentage": 99.2, "elapsed_time": "6:21:33", "remaining_time": "0:03:04"} +{"current_steps": 1612, "total_steps": 1624, "loss": 0.8835, "learning_rate": 3.328953376530164e-09, "epoch": 0.9926108374384236, "percentage": 99.26, "elapsed_time": "6:21:44", "remaining_time": "0:02:50"} +{"current_steps": 1613, "total_steps": 1624, "loss": 0.8757, "learning_rate": 2.797270335916924e-09, "epoch": 0.9932266009852216, "percentage": 99.32, "elapsed_time": "6:21:56", "remaining_time": "0:02:36"} +{"current_steps": 1614, "total_steps": 1624, "loss": 0.9226, "learning_rate": 2.3118123725196506e-09, "epoch": 0.9938423645320197, "percentage": 99.38, "elapsed_time": "6:22:08", "remaining_time": "0:02:22"} +{"current_steps": 1615, "total_steps": 1624, "loss": 0.8911, "learning_rate": 1.872581730997247e-09, "epoch": 0.9944581280788177, "percentage": 99.45, "elapsed_time": "6:22:19", "remaining_time": "0:02:07"} +{"current_steps": 1616, "total_steps": 1624, "loss": 0.8144, "learning_rate": 1.4795804422651494e-09, "epoch": 0.9950738916256158, "percentage": 99.51, "elapsed_time": "6:22:31", "remaining_time": "0:01:53"} +{"current_steps": 1617, "total_steps": 1624, "loss": 0.8811, "learning_rate": 1.1328103234831133e-09, "epoch": 0.9956896551724138, "percentage": 99.57, "elapsed_time": "6:22:43", "remaining_time": "0:01:39"} +{"current_steps": 1618, "total_steps": 1624, "loss": 0.9123, "learning_rate": 8.322729780474437e-10, "epoch": 0.9963054187192119, "percentage": 99.63, "elapsed_time": "6:22:54", "remaining_time": "0:01:25"} +{"current_steps": 1619, "total_steps": 1624, "loss": 0.8845, "learning_rate": 5.779697955843322e-10, "epoch": 0.9969211822660099, "percentage": 99.69, "elapsed_time": "6:23:06", "remaining_time": "0:01:10"} +{"current_steps": 1620, "total_steps": 1624, "loss": 0.8795, "learning_rate": 3.699019519387559e-10, "epoch": 0.9975369458128078, "percentage": 99.75, "elapsed_time": "6:23:18", "remaining_time": "0:00:56"} +{"current_steps": 1621, "total_steps": 1624, "loss": 0.8602, "learning_rate": 2.0807040917669719e-10, "epoch": 0.9981527093596059, "percentage": 99.82, "elapsed_time": "6:23:29", "remaining_time": "0:00:42"} +{"current_steps": 1622, "total_steps": 1624, "loss": 0.8385, "learning_rate": 9.247591557404179e-11, "epoch": 0.9987684729064039, "percentage": 99.88, "elapsed_time": "6:23:41", "remaining_time": "0:00:28"} +{"current_steps": 1623, "total_steps": 1624, "loss": 0.8834, "learning_rate": 2.311900561768887e-11, "epoch": 0.999384236453202, "percentage": 99.94, "elapsed_time": "6:23:52", "remaining_time": "0:00:14"} +{"current_steps": 1624, "total_steps": 1624, "loss": 0.8729, "learning_rate": 0.0, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "6:24:04", "remaining_time": "0:00:00"} +{"current_steps": 1624, "total_steps": 1624, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "6:27:05", "remaining_time": "0:00:00"}