File size: 6,419 Bytes
9ba7d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ef6db
9ba7d3b
 
 
 
 
 
 
b3ef6db
 
 
9ba7d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ef6db
9ba7d3b
b3ef6db
9ba7d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ef6db
9ba7d3b
b3ef6db
 
9ba7d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ef6db
9ba7d3b
 
 
 
 
 
 
 
b3ef6db
9ba7d3b
 
b3ef6db
9ba7d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import torch.nn as nn
import torch.nn.functional as F
import math


class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_seq_length):
        super(PositionalEncoding, self).__init__()

        pe = torch.zeros(max_seq_length, d_model)
        position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        self.register_buffer('pe', pe.unsqueeze(0))

    def forward(self, x):
        return x + self.pe[:, :x.size(1)]


class MultiHeadSelfAttention(nn.Module):
    def __init__(self, d_model, num_heads, bias=False):
        super(MultiHeadSelfAttention, self).__init__()
        assert d_model % num_heads == 0, "d_model must be divisible by num_heads"

        self.d_model = d_model
        self.num_heads = num_heads
        self.depth = d_model // num_heads

        self.wq = nn.Linear(d_model, d_model, bias)
        self.wk = nn.Linear(d_model, d_model, bias)
        self.wv = nn.Linear(d_model, d_model, bias)

        self.fc = nn.Linear(d_model, d_model)

    def split_heads(self, x, batch_size):
        x = x.view(batch_size, -1, self.num_heads, self.depth)
        return x.permute(0, 2, 1, 3)

    def forward(self, q, k, v, mask=None):
        batch_size = q.size(0)

        q = self.split_heads(self.wq(q), batch_size)
        k = self.split_heads(self.wk(k), batch_size)
        v = self.split_heads(self.wv(v), batch_size)

        scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.depth, dtype=torch.float32))
        if mask is not None:
            scores = scores.masked_fill(mask == 0, -1e9)
        attn = F.softmax(scores, dim=-1)

        out = torch.matmul(attn, v)
        out = out.permute(0, 2, 1, 3).contiguous()
        out = out.view(batch_size, -1, self.d_model)

        out = self.fc(out)
        return out


class FeedForwardNetwork(nn.Module):
    def __init__(self, d_model, d_ff, dropout=0.1):
        super(FeedForwardNetwork, self).__init__()
        self.fc1 = nn.Linear(d_model, d_ff)
        self.fc2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout(x)
        x = self.fc2(x)
        return x


class EncoderLayer(nn.Module):
    def __init__(self, d_model, num_heads, d_ff, dropout=0.1, bias=False):
        super(EncoderLayer, self).__init__()
        self.self_attn = MultiHeadSelfAttention(d_model, num_heads, bias)
        self.ffn = FeedForwardNetwork(d_model, d_ff, dropout)

        self.layernorm1 = nn.LayerNorm(d_model)
        self.layernorm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, mask=None):
        attn_output = self.self_attn(x, x, x, mask)
        x = self.layernorm1(x + self.dropout(attn_output))

        ffn_output = self.ffn(x)
        x = self.layernorm2(x + self.dropout(ffn_output))
        return x


class DecoderLayer(nn.Module):
    def __init__(self, d_model, num_heads, d_ff, dropout=0.1, bias=False):
        super(DecoderLayer, self).__init__()
        self.self_attn = MultiHeadSelfAttention(d_model, num_heads, bias)
        self.cross_attn = MultiHeadSelfAttention(d_model, num_heads, bias)
        self.ffn = FeedForwardNetwork(d_model, d_ff, dropout)

        self.layernorm1 = nn.LayerNorm(d_model)
        self.layernorm2 = nn.LayerNorm(d_model)
        self.layernorm3 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, enc_output, src_mask=None, tgt_mask=None):
        self_attn_output = self.self_attn(q=x, k=x, v=x, mask=tgt_mask)
        x = self.layernorm1(x + self.dropout(self_attn_output))

        cross_attn_output = self.cross_attn(q=x, k=enc_output, v=enc_output, mask=src_mask)
        x = self.layernorm2(x + self.dropout(cross_attn_output))

        ffn_output = self.ffn(x)
        x = self.layernorm3(x + self.dropout(ffn_output))
        return x


class TransformerBlock(nn.Module):
    def __init__(self, tokenizer=None, config=None, stress=False):
        super(TransformerBlock, self).__init__()

        self.config = config
        self.tokenizer = tokenizer
        self.input_vocab_size = tokenizer.get_vocab_size()
        self.target_vocab_size = tokenizer.get_vocab_size()
        self.d_model = config.get('D_MODEL', 512)
        self.num_heads = config.get('NUM_HEADS', 8)
        self.num_encoder_layers = config.get('NUM', 6)
        self.num_decoder_layers = config.get('NUM', 6)
        self.d_ff = config.get('D_FF', 2048)
        self.dropout = config.get('DROPOUT', 0.1)
        self.bias = config.get('BIAS', False)
        self.stress = stress

        self.encoder_embedding = nn.Embedding(self.input_vocab_size, self.d_model)
        self.decoder_embedding = nn.Embedding(self.target_vocab_size, self.d_model)

        self.pos_embedding = PositionalEncoding(self.d_model, config.get('MAX_LEN', 32))

        self.encoder_layers = nn.ModuleList(
            [EncoderLayer(self.d_model, self.num_heads, self.d_ff, self.dropout, self.bias) for _ in
             range(self.num_encoder_layers)])
        self.decoder_layers = nn.ModuleList(
            [DecoderLayer(self.d_model, self.num_heads, self.d_ff, self.dropout, self.bias) for _ in
             range(self.num_decoder_layers)])

        self.fc_out = nn.Linear(self.d_model, self.target_vocab_size)

    def encode(self, src, src_mask):
        src = self.pos_embedding(self.encoder_embedding(src))
        for layer in self.encoder_layers:
            src = layer(src, src_mask)
        return src

    def decode(self, memory, src_mask, tgt, tgt_mask):
        tgt = self.pos_embedding(self.decoder_embedding(tgt))
        for layer in self.decoder_layers:
            tgt = layer(tgt, memory, src_mask, tgt_mask)
        return tgt

    def forward(self, src, tgt, src_mask, tgt_mask):
        memory = self.encode(src, src_mask)
        output = self.decode(memory, src_mask, tgt, tgt_mask)
        output = self.fc_out(output)
        return output