--- base_model: VIT tags: - image-classification - breast cancer - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Vit-CBIS results: [] --- # Vit-CBIS This model is a fine-tuned version of [VIT](https://huggingface.co/VIT) on the CBIS-DDSM dataset. It achieves the following results on the evaluation set: - Loss: 0.6894 - Accuracy: 0.6032 - Precision: 0.6313 - Recall: 0.6032 - F1: 0.6083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.698 | 1.0 | 165 | 0.7030 | 0.4550 | 0.5327 | 0.4550 | 0.4356 | | 0.692 | 2.0 | 330 | 0.6853 | 0.5714 | 0.5532 | 0.5714 | 0.5578 | | 0.6999 | 3.0 | 495 | 0.6894 | 0.6032 | 0.6313 | 0.6032 | 0.6083 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1