Update README.md
Browse files
README.md
CHANGED
@@ -47,8 +47,6 @@ from PIL import Image
|
|
47 |
import matplotlib.pyplot as plt
|
48 |
import time
|
49 |
from thop import profile
|
50 |
-
from sklearn.metrics import average_precision_score
|
51 |
-
import numpy as np
|
52 |
|
53 |
class SimpleCNN(nn.Module):
|
54 |
def __init__(self, model_type='f', num_classes=6): # Model tipine göre "model_type" değişkeni "f, c, q" olarak değiştirilebilir.
|
@@ -130,13 +128,8 @@ def calculate_performance_metrics(model, device, input_size=(1, 3, 224, 224)):
|
|
130 |
avg_v100_b1_time = sum(v100_times_b1) / len(v100_times_b1)
|
131 |
avg_v100_b32_time = sum(v100_times_b32) / len(v100_times_b32)
|
132 |
|
133 |
-
mAP_50_95 = 0
|
134 |
-
mAP_50 = 0
|
135 |
-
|
136 |
return {
|
137 |
'size_pixels': 224,
|
138 |
-
'mAPval_50_95': mAP_50_95,
|
139 |
-
'mAPval_50': mAP_50,
|
140 |
'speed_cpu_b1': avg_cpu_time,
|
141 |
'speed_v100_b1': avg_v100_b1_time,
|
142 |
'speed_v100_b32': avg_v100_b32_time,
|
@@ -224,8 +217,6 @@ from PIL import Image
|
|
224 |
import matplotlib.pyplot as plt
|
225 |
import time
|
226 |
from thop import profile
|
227 |
-
from sklearn.metrics import average_precision_score
|
228 |
-
import numpy as np
|
229 |
|
230 |
class SimpleCNN(nn.Module):
|
231 |
def __init__(self, model_type='f', num_classes=6): # The ‘model_type’ variable can be changed to ‘f, c, q’ according to the model type.
|
@@ -307,13 +298,8 @@ def calculate_performance_metrics(model, device, input_size=(1, 3, 224, 224)):
|
|
307 |
avg_v100_b1_time = sum(v100_times_b1) / len(v100_times_b1)
|
308 |
avg_v100_b32_time = sum(v100_times_b32) / len(v100_times_b32)
|
309 |
|
310 |
-
mAP_50_95 = 0
|
311 |
-
mAP_50 = 0
|
312 |
-
|
313 |
return {
|
314 |
'size_pixels': 224,
|
315 |
-
'mAPval_50_95': mAP_50_95,
|
316 |
-
'mAPval_50': mAP_50,
|
317 |
'speed_cpu_b1': avg_cpu_time,
|
318 |
'speed_v100_b1': avg_v100_b1_time,
|
319 |
'speed_v100_b32': avg_v100_b32_time,
|
|
|
47 |
import matplotlib.pyplot as plt
|
48 |
import time
|
49 |
from thop import profile
|
|
|
|
|
50 |
|
51 |
class SimpleCNN(nn.Module):
|
52 |
def __init__(self, model_type='f', num_classes=6): # Model tipine göre "model_type" değişkeni "f, c, q" olarak değiştirilebilir.
|
|
|
128 |
avg_v100_b1_time = sum(v100_times_b1) / len(v100_times_b1)
|
129 |
avg_v100_b32_time = sum(v100_times_b32) / len(v100_times_b32)
|
130 |
|
|
|
|
|
|
|
131 |
return {
|
132 |
'size_pixels': 224,
|
|
|
|
|
133 |
'speed_cpu_b1': avg_cpu_time,
|
134 |
'speed_v100_b1': avg_v100_b1_time,
|
135 |
'speed_v100_b32': avg_v100_b32_time,
|
|
|
217 |
import matplotlib.pyplot as plt
|
218 |
import time
|
219 |
from thop import profile
|
|
|
|
|
220 |
|
221 |
class SimpleCNN(nn.Module):
|
222 |
def __init__(self, model_type='f', num_classes=6): # The ‘model_type’ variable can be changed to ‘f, c, q’ according to the model type.
|
|
|
298 |
avg_v100_b1_time = sum(v100_times_b1) / len(v100_times_b1)
|
299 |
avg_v100_b32_time = sum(v100_times_b32) / len(v100_times_b32)
|
300 |
|
|
|
|
|
|
|
301 |
return {
|
302 |
'size_pixels': 224,
|
|
|
|
|
303 |
'speed_cpu_b1': avg_cpu_time,
|
304 |
'speed_v100_b1': avg_v100_b1_time,
|
305 |
'speed_v100_b32': avg_v100_b32_time,
|