Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1829.64 +/- 220.52
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:735720a412269817e76efb29e8bf127270eb29009fface4763ee1997e8447c51
|
3 |
+
size 128976
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7c56f8310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7c56f83a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7c56f8430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7c56f84c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe7c56f8550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe7c56f85e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe7c56f8670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7c56f8700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe7c56f8790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7c56f8820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7c56f88b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7c56f8940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe7c56f7e40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1682306355245375972,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACSFpL1QHnO+r4/dPrjD3z6wMKS+SzEnP9CfHb6Chgu+HINFv0VglT91B4W/xgr+u8SxoT3zc8I/SL+BPvmTbD/1jRy9PJ8XQDlLDL03pYO/47cHv7+yaD9hyvA+/aYJP0F0e798ywQ/JZItP/4Shj8ReKA/wWq+vxcRcL+22H0/ORVTvoI7EL7Nwo+/C0fpvlVT0j5liwZAg08OP51z/T4lypi/iKjbPTl7nz47UEzAP6q4vwruqD5K8Vy/AWKQP9PBgEAswEi/djF6PjDUW8BkUII/q8H2vyWSLT/oZnS/YQFgP9eaTb+y4UM9hd3pP1kEB7+FW+e+OckQPohHDb/zu4++aYiEQCei1z985BY/RLiavwwnOT6VW2W/QqmmvIYpn79YBae/CZz7PRQcGkDcnac+jspmP2ihfb/tbAg/ZFCCP3zLBD8lki0/6GZ0v8Vvqz4ksmC/aDTSvHqPkz/7cg7AmdhjvuTzo76DX627dn8MPm9tCcChYqm+4M8fwOfOWr8V6im+DF46vnF75D8lGMu/itsMvgJngD5qXeu/eZ3Wvulu679PBlU/3aoaP0F0e798ywQ/lcm8v+hmdL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABSN8o2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKljnvQAAAACMJ/e/AAAAAEywnr0AAAAAIBLePwAAAACdSvs9AAAAAGuz4T8AAAAAE0vSvQAAAADAqfC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV07itgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB9Zxz0AAAAAVCEBwAAAAADVo7u9AAAAADZe5D8AAAAAhCKNvAAAAADDAfw/AAAAAEqftT0AAAAAan3ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC16RDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICGs1w8AAAAADIv9b8AAAAA/Y3hPQAAAAANguM/AAAAAEtGrTwAAAAA2MHfPwAAAABAT6+7AAAAAEZ8/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMbIQ1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZjjNvAAAAACXZ/e/AAAAAES9P7sAAAAAaEz9PwAAAADesoY8AAAAAIRi4T8AAAAAIEKSuwAAAACjNNu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxy35WRzRyMAWyUTegDjAF0lEdApB8gc3l0YHV9lChoBkdAnQAGM4tHx2gHTegDaAhHQKQfZqnFYMh1fZQoaAZHQJrM7aFmFrVoB03oA2gIR0CkJLFImPYGdX2UKGgGR0Cd2V7ngYP5aAdN6ANoCEdApCYal1r6+HV9lChoBkdAnJWwLApKBmgHTegDaAhHQKQoyxWT5ft1fZQoaAZHQJi4ZJaq0dBoB03oA2gIR0CkKRP0RODbdX2UKGgGR0CZIMgssg+yaAdN6ANoCEdApC7d5OafBnV9lChoBkdAmnPQyZa3Z2gHTegDaAhHQKQxANwR5C51fZQoaAZHQJq7/dgv115oB03oA2gIR0CkNZtrTH81dX2UKGgGR0CfIWpqREF4aAdN6ANoCEdApDXmXzDn/3V9lChoBkdAoB6MtVaOgmgHTegDaAhHQKQ7FSQYDT11fZQoaAZHQKA6fYigTRJoB03oA2gIR0CkPH/io86ndX2UKGgGR0CfXtxHXmNjaAdN6ANoCEdApD86oQ4CIXV9lChoBkdAmurOCsfaH2gHTegDaAhHQKQ/i52hZhd1fZQoaAZHQJcF6R4hUzdoB03oA2gIR0CkRMQvg3tKdX2UKGgGR0CYcHk4FRpDaAdN6ANoCEdApEYaHCXQdHV9lChoBkdAnZVMo6S1V2gHTegDaAhHQKRIztZ3cHp1fZQoaAZHQJsNAc7yQPtoB03oA2gIR0CkSRMFUyYYdX2UKGgGR0CXxZLiMo+faAdN6ANoCEdApFFGDcuannV9lChoBkdAmrqCIpH7QGgHTegDaAhHQKRSsN96Tnt1fZQoaAZHQJ3x7StvGZNoB03oA2gIR0CkVXIJzDGcdX2UKGgGR0CWpwQSi/O/aAdN6ANoCEdApFW6ya/h2nV9lChoBkdAnn4LhzeXRmgHTegDaAhHQKRbJph4MWp1fZQoaAZHQJa7ttALRa5oB03oA2gIR0CkXKIXbdrPdX2UKGgGR0CfbMYl6Z6VaAdN6ANoCEdApF9i5TZQHnV9lChoBkdAneDrjDKoymgHTegDaAhHQKRfrXiiqQ11fZQoaAZHQJ+NFJBgNPRoB03oA2gIR0CkZOgS39aVdX2UKGgGR0Cd7zsC1Z1WaAdN6ANoCEdApGbLcqOLi3V9lChoBkdAnw6TYAbQ1WgHTegDaAhHQKRrTtu1ndx1fZQoaAZHQJ+hJJvo/zJoB03oA2gIR0Cka9bD2rXEdX2UKGgGR0CdglEzwc5saAdN6ANoCEdApHGYt8NQTHV9lChoBkdAoAp97SiM52gHTegDaAhHQKRzCnqmj0t1fZQoaAZHQKDsFSYPXkJoB03oA2gIR0CkdcM+V1OkdX2UKGgGR0CdQoIZqEeyaAdN6ANoCEdApHYPCTEBKnV9lChoBkdAoBdNAkcCHWgHTegDaAhHQKR7UwQlKK51fZQoaAZHQKFceZv1lGxoB03oA2gIR0CkfLlBppN9dX2UKGgGR0CYmKFXJYDDaAdN6ANoCEdApH92hsZYP3V9lChoBkdAniNv9Hc1wmgHTegDaAhHQKR/vT0g8r91fZQoaAZHQJ+Pe0UoKD1oB03oA2gIR0Ckh1TpgTh6dX2UKGgGR0CaP9A7PppwaAdN6ANoCEdApIly/9Hc13V9lChoBkdAn/5gf+0gKWgHTegDaAhHQKSMJDqnm7t1fZQoaAZHQJyMo4R28qZoB03oA2gIR0CkjGi0v4/NdX2UKGgGR0CamKzHjp9raAdN6ANoCEdApJG5xkupTHV9lChoBkdAn+9ltfoicGgHTegDaAhHQKSTHPUrkKh1fZQoaAZHQKBda89Oh01oB03oA2gIR0CkleaxxDLKdX2UKGgGR0CgjxMNUfgaaAdN6ANoCEdApJYs/OdGzHV9lChoBkdAngqbcsUZemgHTegDaAhHQKSbafjjrAx1fZQoaAZHQJdE9vze41BoB03oA2gIR0CknM0m+j/NdX2UKGgGR0Cehb+j/MnraAdN6ANoCEdApKDVPacqfHV9lChoBkdAoANbpcHGCWgHTegDaAhHQKShUwUxmCl1fZQoaAZHQKArA5Jbt7doB03oA2gIR0CkqEZfUnXvdX2UKGgGR0CeiB0ygwoLaAdN6ANoCEdApKm1jTa0yHV9lChoBkdAoBlCBZpztGgHTegDaAhHQKSsaattALR1fZQoaAZHQKCGvfUF0PpoB03oA2gIR0CkrKyLIgeSdX2UKGgGR0Cfd4gh8pkPaAdN6ANoCEdApLHFbmlqJ3V9lChoBkdAoI3P0oScsmgHTegDaAhHQKSzNTodMkB1fZQoaAZHQJ+rFJ+UhV5oB03oA2gIR0CktekiD/VBdX2UKGgGR0CgXP5p8F6iaAdN6ANoCEdApLYydz4k/3V9lChoBkdAnNCq2BreqWgHTegDaAhHQKS9DgXuVop1fZQoaAZHQKBcEE9t/F1oB03oA2gIR0Ckv5EAHVwxdX2UKGgGR0B9MPzshPj5aAdN6ANoCEdApMLmfdyksXV9lChoBkdAkwLJDeCTU2gHTegDaAhHQKTDLhQ3xWl1fZQoaAZHQJwtnJA+pwVoB03oA2gIR0CkyIa0QbuMdX2UKGgGR0CdqgRDkU9IaAdN6ANoCEdApMn18E3bVXV9lChoBkdAoFvdh7Vrh2gHTegDaAhHQKTMnk9U0el1fZQoaAZHQJ/L1h/iHZdoB03oA2gIR0CkzOMGgSOBdX2UKGgGR0CgiUoQFs55aAdN6ANoCEdApNIGTq0MPXV9lChoBkdAoM/cyvcJt2gHTegDaAhHQKTTak56t1Z1fZQoaAZHQKAvyvgWJrNoB03oA2gIR0Ck1sTmOlwcdX2UKGgGR0CXTvxfv4M4aAdN6ANoCEdApNcfm7rcCnV9lChoBkdAmptDPfKp1mgHTegDaAhHQKTemJVsDW91fZQoaAZHQJt8ALBsQ/ZoB03oA2gIR0Ck4BIx59mZdX2UKGgGR0BE2yBK+SKWaAdN6ANoCEdApOLJj+aScXV9lChoBkdAlN6xIjGDMGgHTegDaAhHQKTjFZha1Tl1fZQoaAZHwHdy7pzLfUFoB03oA2gIR0Ck6GE4vN/wdX2UKGgGR0CX06srNGExaAdN6ANoCEdApOnYxrSE13V9lChoBkdAoCysNvwVkGgHTegDaAhHQKTsktMfzSV1fZQoaAZHQJ0tb9P1tfpoB03oA2gIR0Ck7NsPSUkfdX2UKGgGR0CbgaU21lXjaAdN6ANoCEdApPLK6nR9gHV9lChoBkdAm+ncZ9/jKmgHTegDaAhHQKT1BziCJ411fZQoaAZHQJ87zi4rjHZoB03oA2gIR0Ck+U+CsfaIdX2UKGgGR0Cds1ZAprk9aAdN6ANoCEdApPma0Y0l7nV9lChoBkdAkiywEIPbwmgHTckCaAhHQKT9j1h9b5d1fZQoaAZHQJ8xhUhmoR9oB03oA2gIR0Ck/t925hBrdX2UKGgGR0CgKOMfigkDaAdN6ANoCEdApQMB5Rjz7XV9lChoBkdAnJ9CSeRPoGgHTegDaAhHQKUDSSgXdj51fZQoaAZHQKAFK8VYZEVoB03oA2gIR0ClBzgJswcpdX2UKGgGR0Ce4eMXJo0zaAdN6ANoCEdApQiOP1ct5HV9lChoBkdAm3sHNX5nDmgHTegDaAhHQKUMvTqjaf11fZQoaAZHQJ3MMz544ZNoB03oA2gIR0ClDSUZeiSJdX2UKGgGR0CfNn/jKgZkaAdN6ANoCEdApRMz+5vtMXV9lChoBkdAmY/NVmz0H2gHTegDaAhHQKUVMIOYplV1fZQoaAZHQJ+q/gk1MuhoB03oA2gIR0ClGVPHT7VKdX2UKGgGR0CenRdat9x7aAdN6ANoCEdApRmfIn0CinV9lChoBkdAnDskYbbUPWgHTegDaAhHQKUdjwd8zAN1fZQoaAZHQJiGRj3Ehq1oB03oA2gIR0ClHuvKlpGndX2UKGgGR0CdT15uZThpaAdN6ANoCEdApSMUMEzO5nV9lChoBkdAnn4s3dbgTGgHTegDaAhHQKUjXikwevJ1fZQoaAZHQJ8BPY8Md95oB03oA2gIR0ClJyR9XtBwdX2UKGgGR0Ce/w3RXwLFaAdN6ANoCEdApShnvphWo3VlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a71b6700514b54a7158224a4722c497214f8216baa3781ec9890ce4d631a13f
|
3 |
+
size 56062
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7da4bcd6de254b02e0d19d58d1e2cf514ae96321eb637116a8fb2d550a39f5dc
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7c56f8310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7c56f83a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7c56f8430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7c56f84c0>", "_build": "<function ActorCriticPolicy._build at 0x7fe7c56f8550>", "forward": "<function ActorCriticPolicy.forward at 0x7fe7c56f85e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe7c56f8670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7c56f8700>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe7c56f8790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7c56f8820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7c56f88b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7c56f8940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe7c56f7e40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682306355245375972, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACSFpL1QHnO+r4/dPrjD3z6wMKS+SzEnP9CfHb6Chgu+HINFv0VglT91B4W/xgr+u8SxoT3zc8I/SL+BPvmTbD/1jRy9PJ8XQDlLDL03pYO/47cHv7+yaD9hyvA+/aYJP0F0e798ywQ/JZItP/4Shj8ReKA/wWq+vxcRcL+22H0/ORVTvoI7EL7Nwo+/C0fpvlVT0j5liwZAg08OP51z/T4lypi/iKjbPTl7nz47UEzAP6q4vwruqD5K8Vy/AWKQP9PBgEAswEi/djF6PjDUW8BkUII/q8H2vyWSLT/oZnS/YQFgP9eaTb+y4UM9hd3pP1kEB7+FW+e+OckQPohHDb/zu4++aYiEQCei1z985BY/RLiavwwnOT6VW2W/QqmmvIYpn79YBae/CZz7PRQcGkDcnac+jspmP2ihfb/tbAg/ZFCCP3zLBD8lki0/6GZ0v8Vvqz4ksmC/aDTSvHqPkz/7cg7AmdhjvuTzo76DX627dn8MPm9tCcChYqm+4M8fwOfOWr8V6im+DF46vnF75D8lGMu/itsMvgJngD5qXeu/eZ3Wvulu679PBlU/3aoaP0F0e798ywQ/lcm8v+hmdL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABSN8o2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKljnvQAAAACMJ/e/AAAAAEywnr0AAAAAIBLePwAAAACdSvs9AAAAAGuz4T8AAAAAE0vSvQAAAADAqfC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV07itgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB9Zxz0AAAAAVCEBwAAAAADVo7u9AAAAADZe5D8AAAAAhCKNvAAAAADDAfw/AAAAAEqftT0AAAAAan3ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC16RDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICGs1w8AAAAADIv9b8AAAAA/Y3hPQAAAAANguM/AAAAAEtGrTwAAAAA2MHfPwAAAABAT6+7AAAAAEZ8/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMbIQ1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZjjNvAAAAACXZ/e/AAAAAES9P7sAAAAAaEz9PwAAAADesoY8AAAAAIRi4T8AAAAAIEKSuwAAAACjNNu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxy35WRzRyMAWyUTegDjAF0lEdApB8gc3l0YHV9lChoBkdAnQAGM4tHx2gHTegDaAhHQKQfZqnFYMh1fZQoaAZHQJrM7aFmFrVoB03oA2gIR0CkJLFImPYGdX2UKGgGR0Cd2V7ngYP5aAdN6ANoCEdApCYal1r6+HV9lChoBkdAnJWwLApKBmgHTegDaAhHQKQoyxWT5ft1fZQoaAZHQJi4ZJaq0dBoB03oA2gIR0CkKRP0RODbdX2UKGgGR0CZIMgssg+yaAdN6ANoCEdApC7d5OafBnV9lChoBkdAmnPQyZa3Z2gHTegDaAhHQKQxANwR5C51fZQoaAZHQJq7/dgv115oB03oA2gIR0CkNZtrTH81dX2UKGgGR0CfIWpqREF4aAdN6ANoCEdApDXmXzDn/3V9lChoBkdAoB6MtVaOgmgHTegDaAhHQKQ7FSQYDT11fZQoaAZHQKA6fYigTRJoB03oA2gIR0CkPH/io86ndX2UKGgGR0CfXtxHXmNjaAdN6ANoCEdApD86oQ4CIXV9lChoBkdAmurOCsfaH2gHTegDaAhHQKQ/i52hZhd1fZQoaAZHQJcF6R4hUzdoB03oA2gIR0CkRMQvg3tKdX2UKGgGR0CYcHk4FRpDaAdN6ANoCEdApEYaHCXQdHV9lChoBkdAnZVMo6S1V2gHTegDaAhHQKRIztZ3cHp1fZQoaAZHQJsNAc7yQPtoB03oA2gIR0CkSRMFUyYYdX2UKGgGR0CXxZLiMo+faAdN6ANoCEdApFFGDcuannV9lChoBkdAmrqCIpH7QGgHTegDaAhHQKRSsN96Tnt1fZQoaAZHQJ3x7StvGZNoB03oA2gIR0CkVXIJzDGcdX2UKGgGR0CWpwQSi/O/aAdN6ANoCEdApFW6ya/h2nV9lChoBkdAnn4LhzeXRmgHTegDaAhHQKRbJph4MWp1fZQoaAZHQJa7ttALRa5oB03oA2gIR0CkXKIXbdrPdX2UKGgGR0CfbMYl6Z6VaAdN6ANoCEdApF9i5TZQHnV9lChoBkdAneDrjDKoymgHTegDaAhHQKRfrXiiqQ11fZQoaAZHQJ+NFJBgNPRoB03oA2gIR0CkZOgS39aVdX2UKGgGR0Cd7zsC1Z1WaAdN6ANoCEdApGbLcqOLi3V9lChoBkdAnw6TYAbQ1WgHTegDaAhHQKRrTtu1ndx1fZQoaAZHQJ+hJJvo/zJoB03oA2gIR0Cka9bD2rXEdX2UKGgGR0CdglEzwc5saAdN6ANoCEdApHGYt8NQTHV9lChoBkdAoAp97SiM52gHTegDaAhHQKRzCnqmj0t1fZQoaAZHQKDsFSYPXkJoB03oA2gIR0CkdcM+V1OkdX2UKGgGR0CdQoIZqEeyaAdN6ANoCEdApHYPCTEBKnV9lChoBkdAoBdNAkcCHWgHTegDaAhHQKR7UwQlKK51fZQoaAZHQKFceZv1lGxoB03oA2gIR0CkfLlBppN9dX2UKGgGR0CYmKFXJYDDaAdN6ANoCEdApH92hsZYP3V9lChoBkdAniNv9Hc1wmgHTegDaAhHQKR/vT0g8r91fZQoaAZHQJ+Pe0UoKD1oB03oA2gIR0Ckh1TpgTh6dX2UKGgGR0CaP9A7PppwaAdN6ANoCEdApIly/9Hc13V9lChoBkdAn/5gf+0gKWgHTegDaAhHQKSMJDqnm7t1fZQoaAZHQJyMo4R28qZoB03oA2gIR0CkjGi0v4/NdX2UKGgGR0CamKzHjp9raAdN6ANoCEdApJG5xkupTHV9lChoBkdAn+9ltfoicGgHTegDaAhHQKSTHPUrkKh1fZQoaAZHQKBda89Oh01oB03oA2gIR0CkleaxxDLKdX2UKGgGR0CgjxMNUfgaaAdN6ANoCEdApJYs/OdGzHV9lChoBkdAngqbcsUZemgHTegDaAhHQKSbafjjrAx1fZQoaAZHQJdE9vze41BoB03oA2gIR0CknM0m+j/NdX2UKGgGR0Cehb+j/MnraAdN6ANoCEdApKDVPacqfHV9lChoBkdAoANbpcHGCWgHTegDaAhHQKShUwUxmCl1fZQoaAZHQKArA5Jbt7doB03oA2gIR0CkqEZfUnXvdX2UKGgGR0CeiB0ygwoLaAdN6ANoCEdApKm1jTa0yHV9lChoBkdAoBlCBZpztGgHTegDaAhHQKSsaattALR1fZQoaAZHQKCGvfUF0PpoB03oA2gIR0CkrKyLIgeSdX2UKGgGR0Cfd4gh8pkPaAdN6ANoCEdApLHFbmlqJ3V9lChoBkdAoI3P0oScsmgHTegDaAhHQKSzNTodMkB1fZQoaAZHQJ+rFJ+UhV5oB03oA2gIR0CktekiD/VBdX2UKGgGR0CgXP5p8F6iaAdN6ANoCEdApLYydz4k/3V9lChoBkdAnNCq2BreqWgHTegDaAhHQKS9DgXuVop1fZQoaAZHQKBcEE9t/F1oB03oA2gIR0Ckv5EAHVwxdX2UKGgGR0B9MPzshPj5aAdN6ANoCEdApMLmfdyksXV9lChoBkdAkwLJDeCTU2gHTegDaAhHQKTDLhQ3xWl1fZQoaAZHQJwtnJA+pwVoB03oA2gIR0CkyIa0QbuMdX2UKGgGR0CdqgRDkU9IaAdN6ANoCEdApMn18E3bVXV9lChoBkdAoFvdh7Vrh2gHTegDaAhHQKTMnk9U0el1fZQoaAZHQJ/L1h/iHZdoB03oA2gIR0CkzOMGgSOBdX2UKGgGR0CgiUoQFs55aAdN6ANoCEdApNIGTq0MPXV9lChoBkdAoM/cyvcJt2gHTegDaAhHQKTTak56t1Z1fZQoaAZHQKAvyvgWJrNoB03oA2gIR0Ck1sTmOlwcdX2UKGgGR0CXTvxfv4M4aAdN6ANoCEdApNcfm7rcCnV9lChoBkdAmptDPfKp1mgHTegDaAhHQKTemJVsDW91fZQoaAZHQJt8ALBsQ/ZoB03oA2gIR0Ck4BIx59mZdX2UKGgGR0BE2yBK+SKWaAdN6ANoCEdApOLJj+aScXV9lChoBkdAlN6xIjGDMGgHTegDaAhHQKTjFZha1Tl1fZQoaAZHwHdy7pzLfUFoB03oA2gIR0Ck6GE4vN/wdX2UKGgGR0CX06srNGExaAdN6ANoCEdApOnYxrSE13V9lChoBkdAoCysNvwVkGgHTegDaAhHQKTsktMfzSV1fZQoaAZHQJ0tb9P1tfpoB03oA2gIR0Ck7NsPSUkfdX2UKGgGR0CbgaU21lXjaAdN6ANoCEdApPLK6nR9gHV9lChoBkdAm+ncZ9/jKmgHTegDaAhHQKT1BziCJ411fZQoaAZHQJ87zi4rjHZoB03oA2gIR0Ck+U+CsfaIdX2UKGgGR0Cds1ZAprk9aAdN6ANoCEdApPma0Y0l7nV9lChoBkdAkiywEIPbwmgHTckCaAhHQKT9j1h9b5d1fZQoaAZHQJ8xhUhmoR9oB03oA2gIR0Ck/t925hBrdX2UKGgGR0CgKOMfigkDaAdN6ANoCEdApQMB5Rjz7XV9lChoBkdAnJ9CSeRPoGgHTegDaAhHQKUDSSgXdj51fZQoaAZHQKAFK8VYZEVoB03oA2gIR0ClBzgJswcpdX2UKGgGR0Ce4eMXJo0zaAdN6ANoCEdApQiOP1ct5HV9lChoBkdAm3sHNX5nDmgHTegDaAhHQKUMvTqjaf11fZQoaAZHQJ3MMz544ZNoB03oA2gIR0ClDSUZeiSJdX2UKGgGR0CfNn/jKgZkaAdN6ANoCEdApRMz+5vtMXV9lChoBkdAmY/NVmz0H2gHTegDaAhHQKUVMIOYplV1fZQoaAZHQJ+q/gk1MuhoB03oA2gIR0ClGVPHT7VKdX2UKGgGR0CenRdat9x7aAdN6ANoCEdApRmfIn0CinV9lChoBkdAnDskYbbUPWgHTegDaAhHQKUdjwd8zAN1fZQoaAZHQJiGRj3Ehq1oB03oA2gIR0ClHuvKlpGndX2UKGgGR0CdT15uZThpaAdN6ANoCEdApSMUMEzO5nV9lChoBkdAnn4s3dbgTGgHTegDaAhHQKUjXikwevJ1fZQoaAZHQJ8BPY8Md95oB03oA2gIR0ClJyR9XtBwdX2UKGgGR0Ce/w3RXwLFaAdN6ANoCEdApShnvphWo3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac82df6ff6c9da8040bcb0fd6de4f90a47c8b08d6441206aa26fe3a2ea4cfd90
|
3 |
+
size 1089153
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1829.6364455290138, "std_reward": 220.52084532505097, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-24T04:07:16.523192"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27e33987a689b80d9d1e710f1e458c2f5c15ede5a7cd746e2404652c278e2853
|
3 |
+
size 2170
|