--- base_model: csebuetnlp/banglabert tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: banglabert-MLTC-BB1 results: [] --- # banglabert-MLTC-BB1 This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3670 - F1: 0.8559 - Roc Auc: 0.8534 - Accuracy: 0.5681 - Hamming Loss: 0.1465 - Jaccard Score: 0.7481 - Zero One Loss: 0.4319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Hamming Loss | Jaccard Score | Zero One Loss | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|:------------:|:-------------:|:-------------:| | 0.5656 | 1.0 | 49 | 0.5135 | 0.7799 | 0.7750 | 0.4113 | 0.2249 | 0.6392 | 0.5887 | | 0.4157 | 2.0 | 98 | 0.4203 | 0.8359 | 0.8309 | 0.5398 | 0.1690 | 0.7181 | 0.4602 | | 0.3652 | 3.0 | 147 | 0.3970 | 0.8507 | 0.8431 | 0.5604 | 0.1568 | 0.7401 | 0.4396 | | 0.3096 | 4.0 | 196 | 0.3716 | 0.8530 | 0.8489 | 0.5656 | 0.1510 | 0.7437 | 0.4344 | | 0.2674 | 5.0 | 245 | 0.3693 | 0.8521 | 0.8489 | 0.5527 | 0.1510 | 0.7423 | 0.4473 | | 0.2709 | 6.0 | 294 | 0.3660 | 0.8532 | 0.8509 | 0.5630 | 0.1491 | 0.7439 | 0.4370 | | 0.2208 | 7.0 | 343 | 0.3626 | 0.8550 | 0.8534 | 0.5656 | 0.1465 | 0.7467 | 0.4344 | | 0.2388 | 8.0 | 392 | 0.3723 | 0.8573 | 0.8541 | 0.5630 | 0.1459 | 0.7503 | 0.4370 | | 0.2466 | 9.0 | 441 | 0.3685 | 0.8562 | 0.8541 | 0.5656 | 0.1459 | 0.7486 | 0.4344 | | 0.2187 | 10.0 | 490 | 0.3670 | 0.8559 | 0.8534 | 0.5681 | 0.1465 | 0.7481 | 0.4319 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1