Update README.md
Browse files
README.md
CHANGED
@@ -1,142 +1,85 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
<a href="https://ibb.co/vHBx7Q4"><img src="https://i.ibb.co/kxygR92/70e85f3a-7c9c-4420-9661-d30a337d8a33.jpg" alt="70e85f3a-7c9c-4420-9661-d30a337d8a33" border="0"></a>
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
-
### Training Procedure
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
89 |
|
90 |
-
[More Information Needed]
|
91 |
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
- **Training regime:**
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
@@ -144,56 +87,10 @@ Use the code below to get started with the model.
|
|
144 |
|
145 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
|
175 |
-
**BibTeX:**
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
|
199 |
-
[
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
datasets:
|
4 |
+
- Na0s/sft-ready-Text-Generation-Augmented-Data
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- mistralai/Mixtral-8x7B-Instruct-v0.1
|
9 |
+
pipeline_tag: text-generation
|
10 |
---
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
|
|
13 |
|
14 |
+
<a href="https://ibb.co/vHBx7Q4"><img src="https://i.ibb.co/kxygR92/70e85f3a-7c9c-4420-9661-d30a337d8a33.jpg" alt="70e85f3a-7c9c-4420-9661-d30a337d8a33" border="0"></a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
16 |
|
17 |
+
# Model Card for Model ID
|
18 |
|
19 |
+
LoRA fine-tuned version of mistralai/Mixtral-8x7B-Instruct-v0.1 targeting all the modules.
|
20 |
|
|
|
21 |
|
22 |
|
23 |
#### Training Hyperparameters
|
24 |
|
25 |
+
- **Training regime:**
|
26 |
+
|
27 |
+
```python
|
28 |
+
quantization_config = transformers.BitsAndBytesConfig(load_in_4bit=True)
|
29 |
+
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", truncation=True, padding=True, padding_side="right")
|
31 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", quantization_config=quantization_config)
|
32 |
+
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
33 |
+
|
34 |
+
model = prepare_model_for_kbit_training(model)
|
35 |
+
|
36 |
+
config = LoraConfig(r = 4,
|
37 |
+
lora_alpha=4,
|
38 |
+
target_modules = ["gate", "q_proj", "k_proj", "v_proj", "o_proj",
|
39 |
+
"gate_proj", "up_proj", "down_proj"],
|
40 |
+
lora_dropout=0.1
|
41 |
+
)
|
42 |
+
|
43 |
+
lora_model = get_peft_model(model, config)
|
44 |
+
|
45 |
+
lora_model.print_trainable_parameters()
|
46 |
+
|
47 |
+
dataset = load_dataset("Na0s/sft-ready-Text-Generation-Augmented-Data", split="train")
|
48 |
+
|
49 |
+
trainer = SFTTrainer(
|
50 |
+
model = lora_model,
|
51 |
+
tokenizer = tokenizer,
|
52 |
+
train_dataset = dataset,
|
53 |
+
packing = True,
|
54 |
+
args = TrainingArguments(
|
55 |
+
per_device_train_batch_size = 1,
|
56 |
+
gradient_accumulation_steps = 16,
|
57 |
+
group_by_length = True,
|
58 |
+
warmup_steps = 5,
|
59 |
+
bf16 = True,
|
60 |
+
max_steps=10000,
|
61 |
+
learning_rate = 2e-4,
|
62 |
+
optim = "adamw_8bit",
|
63 |
+
weight_decay = 0.01,
|
64 |
+
lr_scheduler_type = "cosine",
|
65 |
+
seed = 3407,
|
66 |
+
eval_strategy="no",
|
67 |
+
do_eval=False,
|
68 |
+
output_dir = "./outputs",
|
69 |
+
push_to_hub=True,
|
70 |
+
remove_unused_columns=False,
|
71 |
+
)
|
72 |
+
)
|
73 |
+
|
74 |
+
torch.cuda.empty_cache()
|
75 |
+
|
76 |
+
trainer.train()
|
77 |
+
```
|
78 |
+
|
79 |
+
|
80 |
+
#### Metrics and results:
|
81 |
+
|
82 |
+
Upcoming.
|
83 |
|
84 |
## Environmental Impact
|
85 |
|
|
|
87 |
|
88 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
|
|
91 |
|
92 |
+
## Technical Specifications
|
93 |
|
94 |
+
### Model Architecture and Objective
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
The objective of the fine-tuning of this MoE based transformer is to implement the expert pruning detailed in the following paper: [A Provably Effective Method for Pruning Experts in Fine-tuned Sparse Mixture-of-Experts](https://arxiv.org/abs/2405.16646)
|