--- library_name: peft base_model: EleutherAI/gpt-neo-1.3B --- # Model Card for Model ID ``` from transformers import AutoModelForCausalLM, AutoTokenizer import torch from peft import PeftModel, PeftConfig import shelve model_name = "MyMoodAI/basicmood" adapters_name = "MyMoodAI/basicmood" torch.cuda.empty_cache() print(f"Starting to load the model {model_name} into memory") m = AutoModelForCausalLM.from_pretrained( model_name, #load_in_4bit=True, ) print(f"Loading the adapters from {adapters_name}") m = PeftModel.from_pretrained(m, adapters_name) tokenizer = AutoTokenizer.from_pretrained("MyMoodAI/basicmood", trust_remote_code=True) while True: mood_input = input("Mood: ") inputs = tokenizer("Prompt: %s ### Answer: "%mood_input, return_tensors="pt", return_attention_mask=True) outputs = m.generate(**inputs, max_length=24) print(tokenizer.batch_decode(outputs)[0]) ``` Train Proccedure at the very bottom ## Model Details ### Model Description Classify Guilty, Anxious, Depressed states (low accuracy and rudimentary); trained on a generic dataset from the GEMENI API - **Developed by:** Emmanuel Nsanga (space and a communication channel on Slack. provided by (mainly the AI builders Club - thebuilderclub.org), Canberra Deep Learning and the Sydney Startup Hub - **Funded by**:**Emmanuel Nsanga & Roy Kwan [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] This model specifically (only for now) is English - **License:** [More Information Needed] Big Science RAILS - **Finetuned from model [optional]:** [More Information Needed] gpt-neo-1.3B ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Neede Model name: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz d] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations Risks: Total inaccuracy and sensetive human emotions understanding. (Kudos - 'Crystal Pang') Limitations: Not a real undestanding of emotions - still need human feeback. Bias. Out of distrbution bias and model size. (Kudos Leo Chow) [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data GEMENI API Prompts - (Generate a 1000 samples of very simple guilty/anxious/depressed mood states of short sentences) [More Information Needed] ### Training Procedure SFTTrainer (Kudos - Cheng Yu at Canberra DL) #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results 0.0007 loss (improved by HyperParam Opt.) [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] (Just under roughly 10 hours to fine-tune exactly and/or six months of Google Colab Pro+) - **Cloud Provider:** [More Information Needed] Google Colab Pro+ - **Compute Region:** [More Information Needed] Sydney - **Carbon Emitted:** [More Information Needed] Refer to Google Data Centre Emisions management ## Technical Specifications [optional] Trained for under two hours on one Epoch. ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] Google Colab Pro+, Vultr, AWS #### Hardware V100 High RAM (for Fine-tuning) CPU (Hardware) - 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz Octa-core (4GB - 4GB SWAP) [More Information Needed] #### Software [More Information Needed] ## Citation [optional] Eleuther.ai **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact emmanuel.nsanga@inferencetraining.ai [More Information Needed] ### Framework versions - PEFT 0.10.0 ``` !pip3 install -q -U google-generativeai import google.generativeai as genai GOOGLE_API_KEY = '' genai.configure(api_key=GOOGLE_API_KEY) model = genai.GenerativeModel('gemini-pro') response = model.generate_content("Generate a 1000 samples of very simple guilty mood states of short sentences", stream=True) response.resolve() guiltsamples = response.text.split('\n') response = model.generate_content("Generate a 1000 samples of very simple anxious mood states of short sentences", stream=True) response.resolve() anxioussamples = response.text.split('\n') response = model.generate_content("Generate a 1000 samples of very simple depressed mood states of short sentences", stream=True) response.resolve() depressedsamples = response.text.split('\n') guiltsamples = list(zip(guiltsamples, ["You're feeling guilty" for d in range(len(guiltsamples))])) anxioussamples = list(zip(anxioussamples, ["You're feeling anxious" for d in range(len(anxioussamples))])) depressedsamples = list(zip(depressedsamples, ["You're feeling depressed" for d in range(len(depressedsamples))])) data = guiltsamples + anxioussamples + depressedsamples from peft import PeftModel import pandas as pd import shelve from datasets import Dataset from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling, BitsAndBytesConfig from transformers import AutoModelForCausalLM import torch from datasets import load_dataset, Dataset import datasets from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling, BitsAndBytesConfig from peft import LoraConfig, get_peft_model from peft import prepare_model_for_kbit_training, LoraConfig, get_peft_model from trl import SFTTrainer, DataCollatorForCompletionOnlyLM from transformers import GPTNeoXForCausalLM, AutoTokenizer from transformers import get_scheduler torch.cuda.empty_cache() class TrainModel: def __init__(self, params, data, accu_epochs): self.quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_16bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) self.model = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-1.3B", quantization_config=self.quant_config, device_map="auto" ) self.tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/gpt-neo-1.3B", ) self.params = params self.data = data self.epochs = accu_epochs def lora_config(self): lora_config = LoraConfig( r=abs(int(self.params['r']*100)), lora_alpha=int(self.params['alpha']), target_modules=["Wqkv", "out_proj"], lora_dropout=int(self.params['dropout']), bias="none", task_type="CAUSAL_LM" ) print(self.params['r'], self.params['dropout'], self.params['alpha']) return(lora_config) def formatting_prompts_func(self, example): output_texts = [] for i in range(len(example['Prompt'])): text = f"### Question: {example['Prompt'][i]}\n ### Answer: {example['Completion'][i]}" output_texts.append(text) return(output_texts) def prepare_data(self): df = pd.DataFrame(self.data, columns=['Prompt', 'Completion']) data = Dataset.from_pandas(df) return(data) def training(self): print(abs(self.params['r'].item()*100)) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16 ) self.model = get_peft_model(self.model, self.lora_config()) training_arguments = TrainingArguments( optim='paged_adamw_8bit', output_dir="Multi-lingual-finetuned-med-text", per_device_train_batch_size=4, gradient_accumulation_steps=4, lr_scheduler_type="cosine", save_strategy="epoch", logging_steps=100, max_steps=10000, warmup_steps=10, num_train_epochs=self.epochs, fp16=True ) self.tokenizer.pad_token = self.tokenizer.eos_token response_template = " ### Answer:" collator = DataCollatorForCompletionOnlyLM(response_template, tokenizer=self.tokenizer) trainer = SFTTrainer( model=self.model, train_dataset=self.prepare_data(), args=training_arguments, formatting_func=self.formatting_prompts_func, data_collator=collator ) trainer.train() trainer.state.log_history print(trainer.state.log_history) return(trainer.state.log_history[0]['loss']) class HyperParam: def __init__(self): self.meana = torch.Tensor([8]) self.stda = torch.Tensor([0.1]) self.meanr = torch.Tensor([16.]) self.stdr = torch.Tensor([1.]) self.meand = torch.Tensor([.25]) self.stdd = torch.Tensor([0.01]) self.lr = 0.5 self.accu_epochs = 1 def sample_params(self): alpha = torch.distributions.Normal(self.meana.unsqueeze(0), self.stda.unsqueeze(0)) dropout = torch.distributions.Normal(self.meand.unsqueeze(0), self.stdd.unsqueeze(0)) r = torch.distributions.Normal(self.meand.unsqueeze(0), self.stdd.unsqueeze(0)) return({'alpha': alpha.sample(), 'dropout': dropout.sample(), 'r': r.sample()}) def loss(self): Training = TrainModel(self.sample_params(), data, self.accu_epochs) loss = Training.training() return(12) def hyper(self): optimizer = torch.optim.Adagrad([self.meanr, self.stdr, self.meana, self.stda, self.meand, self.stdd], self.lr) while True: scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=100) scheduler.step() params = optimizer.param_groups params = params[0]['params'] optimizer.step(closure=self.loss) self.lr = scheduler.get_last_lr()[0] self.meanr = params[0] self.stdr = params[1] self.meana = params[2] self.stda = params[3] self.meand = params[4] self.stdd = params[5] self.accu_epochs+=1 Hyper = HyperParam() Hyper.hyper() ```