MyMoodAI commited on
Commit
afd3f61
·
verified ·
1 Parent(s): cdce858

Upload 13 files

Browse files

More Fintuned (basic mood); generate random samples and run Mood estimation (describe in a short sentence your mood.

README.md CHANGED
@@ -1,3 +1,204 @@
1
  ---
2
- license: bigscience-openrail-m
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: EleutherAI/gpt-neo-1.3B
4
  ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.10.0
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "EleutherAI/gpt-neo-1.3B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 7,
14
+ "lora_dropout": 0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 25,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "out_proj",
24
+ "Wqkv"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e996bdb1dbcb6cac20a2fff36619e7695a0da37e2705133faa2d8c28c621a1de
3
+ size 9837176
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13b34e726287e9f744e4b092c19bb85caeeaf9e9413823d5a0c6141b1060d069
3
+ size 4979962
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7493896029a86e67ad18907b09847857e5c23f8339314dc20a5e1b7f972f7dbb
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2958a2e3b58fc3babec1ecba4bfe2e1728116905dfc80664b4540e1d6e8a579
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|endoftext|>",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "50256": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ }
13
+ },
14
+ "bos_token": "<|endoftext|>",
15
+ "clean_up_tokenization_spaces": true,
16
+ "eos_token": "<|endoftext|>",
17
+ "errors": "replace",
18
+ "model_max_length": 2048,
19
+ "pad_token": "<|endoftext|>",
20
+ "tokenizer_class": "GPT2Tokenizer",
21
+ "unk_token": "<|endoftext|>"
22
+ }
trainer_state.json ADDED
@@ -0,0 +1,700 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 541.0,
5
+ "eval_steps": 500,
6
+ "global_step": 9738,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 5.56,
13
+ "grad_norm": 0.40853407979011536,
14
+ "learning_rate": 4.998998767795805e-05,
15
+ "loss": 2.5454,
16
+ "step": 100
17
+ },
18
+ {
19
+ "epoch": 11.11,
20
+ "grad_norm": 0.27508941292762756,
21
+ "learning_rate": 4.995538747800402e-05,
22
+ "loss": 0.3265,
23
+ "step": 200
24
+ },
25
+ {
26
+ "epoch": 16.67,
27
+ "grad_norm": 0.19116361439228058,
28
+ "learning_rate": 4.989610999768349e-05,
29
+ "loss": 0.1042,
30
+ "step": 300
31
+ },
32
+ {
33
+ "epoch": 22.22,
34
+ "grad_norm": 0.10925190895795822,
35
+ "learning_rate": 4.9812213853878376e-05,
36
+ "loss": 0.0633,
37
+ "step": 400
38
+ },
39
+ {
40
+ "epoch": 27.78,
41
+ "grad_norm": 0.08680253475904465,
42
+ "learning_rate": 4.970378200777949e-05,
43
+ "loss": 0.0377,
44
+ "step": 500
45
+ },
46
+ {
47
+ "epoch": 33.33,
48
+ "grad_norm": 0.029545623809099197,
49
+ "learning_rate": 4.957092168284987e-05,
50
+ "loss": 0.0181,
51
+ "step": 600
52
+ },
53
+ {
54
+ "epoch": 38.89,
55
+ "grad_norm": 0.030413279309868813,
56
+ "learning_rate": 4.941376425879624e-05,
57
+ "loss": 0.008,
58
+ "step": 700
59
+ },
60
+ {
61
+ "epoch": 44.44,
62
+ "grad_norm": 0.05130019411444664,
63
+ "learning_rate": 4.923246514165339e-05,
64
+ "loss": 0.0037,
65
+ "step": 800
66
+ },
67
+ {
68
+ "epoch": 50.0,
69
+ "grad_norm": 0.005339763592928648,
70
+ "learning_rate": 4.902720361011007e-05,
71
+ "loss": 0.0021,
72
+ "step": 900
73
+ },
74
+ {
75
+ "epoch": 55.56,
76
+ "grad_norm": 0.023293694481253624,
77
+ "learning_rate": 4.8798182638228166e-05,
78
+ "loss": 0.0014,
79
+ "step": 1000
80
+ },
81
+ {
82
+ "epoch": 61.11,
83
+ "grad_norm": 0.014095759950578213,
84
+ "learning_rate": 4.8545628694730624e-05,
85
+ "loss": 0.001,
86
+ "step": 1100
87
+ },
88
+ {
89
+ "epoch": 66.67,
90
+ "grad_norm": 0.00977824255824089,
91
+ "learning_rate": 4.826979151905655e-05,
92
+ "loss": 0.0007,
93
+ "step": 1200
94
+ },
95
+ {
96
+ "epoch": 72.22,
97
+ "grad_norm": 0.006551814265549183,
98
+ "learning_rate": 4.797094387440491e-05,
99
+ "loss": 0.0006,
100
+ "step": 1300
101
+ },
102
+ {
103
+ "epoch": 77.78,
104
+ "grad_norm": 0.008941611275076866,
105
+ "learning_rate": 4.7649381278011e-05,
106
+ "loss": 0.0005,
107
+ "step": 1400
108
+ },
109
+ {
110
+ "epoch": 83.33,
111
+ "grad_norm": 0.0047577545046806335,
112
+ "learning_rate": 4.73054217089226e-05,
113
+ "loss": 0.0004,
114
+ "step": 1500
115
+ },
116
+ {
117
+ "epoch": 88.89,
118
+ "grad_norm": 0.005813396070152521,
119
+ "learning_rate": 4.693940529356444e-05,
120
+ "loss": 0.0003,
121
+ "step": 1600
122
+ },
123
+ {
124
+ "epoch": 94.44,
125
+ "grad_norm": 0.006802932824939489,
126
+ "learning_rate": 4.655169396940229e-05,
127
+ "loss": 0.0003,
128
+ "step": 1700
129
+ },
130
+ {
131
+ "epoch": 100.0,
132
+ "grad_norm": 0.0018754027551040053,
133
+ "learning_rate": 4.6142671127038905e-05,
134
+ "loss": 0.0002,
135
+ "step": 1800
136
+ },
137
+ {
138
+ "epoch": 105.56,
139
+ "grad_norm": 0.0058812773786485195,
140
+ "learning_rate": 4.571274123109606e-05,
141
+ "loss": 0.0002,
142
+ "step": 1900
143
+ },
144
+ {
145
+ "epoch": 111.11,
146
+ "grad_norm": 0.003945046104490757,
147
+ "learning_rate": 4.52623294202573e-05,
148
+ "loss": 0.0002,
149
+ "step": 2000
150
+ },
151
+ {
152
+ "epoch": 116.67,
153
+ "grad_norm": 0.0026905699633061886,
154
+ "learning_rate": 4.479188108686714e-05,
155
+ "loss": 0.0002,
156
+ "step": 2100
157
+ },
158
+ {
159
+ "epoch": 122.22,
160
+ "grad_norm": 0.00241717416793108,
161
+ "learning_rate": 4.4301861436502156e-05,
162
+ "loss": 0.0001,
163
+ "step": 2200
164
+ },
165
+ {
166
+ "epoch": 127.78,
167
+ "grad_norm": 0.002276218729093671,
168
+ "learning_rate": 4.379275502794983e-05,
169
+ "loss": 0.0001,
170
+ "step": 2300
171
+ },
172
+ {
173
+ "epoch": 133.33,
174
+ "grad_norm": 0.0011824576649814844,
175
+ "learning_rate": 4.326506529404972e-05,
176
+ "loss": 0.0001,
177
+ "step": 2400
178
+ },
179
+ {
180
+ "epoch": 138.89,
181
+ "grad_norm": 0.001206545508466661,
182
+ "learning_rate": 4.271931404387096e-05,
183
+ "loss": 0.0001,
184
+ "step": 2500
185
+ },
186
+ {
187
+ "epoch": 144.44,
188
+ "grad_norm": 0.0025704980362206697,
189
+ "learning_rate": 4.215604094671835e-05,
190
+ "loss": 0.0001,
191
+ "step": 2600
192
+ },
193
+ {
194
+ "epoch": 150.0,
195
+ "grad_norm": 0.0012343807611614466,
196
+ "learning_rate": 4.157580299847717e-05,
197
+ "loss": 0.0001,
198
+ "step": 2700
199
+ },
200
+ {
201
+ "epoch": 155.56,
202
+ "grad_norm": 0.0010726838372647762,
203
+ "learning_rate": 4.0979173970824626e-05,
204
+ "loss": 0.0001,
205
+ "step": 2800
206
+ },
207
+ {
208
+ "epoch": 161.11,
209
+ "grad_norm": 0.0008975835517048836,
210
+ "learning_rate": 4.036674384385231e-05,
211
+ "loss": 0.0001,
212
+ "step": 2900
213
+ },
214
+ {
215
+ "epoch": 166.67,
216
+ "grad_norm": 0.0015915404073894024,
217
+ "learning_rate": 3.973911822266099e-05,
218
+ "loss": 0.0001,
219
+ "step": 3000
220
+ },
221
+ {
222
+ "epoch": 172.22,
223
+ "grad_norm": 0.0013330359943211079,
224
+ "learning_rate": 3.909691773850445e-05,
225
+ "loss": 0.0001,
226
+ "step": 3100
227
+ },
228
+ {
229
+ "epoch": 177.78,
230
+ "grad_norm": 0.0007300216238945723,
231
+ "learning_rate": 3.844077743507468e-05,
232
+ "loss": 0.0001,
233
+ "step": 3200
234
+ },
235
+ {
236
+ "epoch": 183.33,
237
+ "grad_norm": 0.0006974161951802671,
238
+ "learning_rate": 3.777134614053522e-05,
239
+ "loss": 0.0001,
240
+ "step": 3300
241
+ },
242
+ {
243
+ "epoch": 188.89,
244
+ "grad_norm": 0.0016547333216294646,
245
+ "learning_rate": 3.7089285825923615e-05,
246
+ "loss": 0.0,
247
+ "step": 3400
248
+ },
249
+ {
250
+ "epoch": 194.44,
251
+ "grad_norm": 0.0006157997995615005,
252
+ "learning_rate": 3.639527095055753e-05,
253
+ "loss": 0.0,
254
+ "step": 3500
255
+ },
256
+ {
257
+ "epoch": 200.0,
258
+ "grad_norm": 0.000979723292402923,
259
+ "learning_rate": 3.568998779509173e-05,
260
+ "loss": 0.0,
261
+ "step": 3600
262
+ },
263
+ {
264
+ "epoch": 205.56,
265
+ "grad_norm": 0.0008198455907404423,
266
+ "learning_rate": 3.497413378288541e-05,
267
+ "loss": 0.0,
268
+ "step": 3700
269
+ },
270
+ {
271
+ "epoch": 211.11,
272
+ "grad_norm": 0.0012410281924530864,
273
+ "learning_rate": 3.424841679035109e-05,
274
+ "loss": 0.0,
275
+ "step": 3800
276
+ },
277
+ {
278
+ "epoch": 216.67,
279
+ "grad_norm": 0.0007560970261693001,
280
+ "learning_rate": 3.351355444696684e-05,
281
+ "loss": 0.0,
282
+ "step": 3900
283
+ },
284
+ {
285
+ "epoch": 222.22,
286
+ "grad_norm": 0.0005174472462385893,
287
+ "learning_rate": 3.277027342564428e-05,
288
+ "loss": 0.0,
289
+ "step": 4000
290
+ },
291
+ {
292
+ "epoch": 227.78,
293
+ "grad_norm": 0.00041007634717971087,
294
+ "learning_rate": 3.201930872415374e-05,
295
+ "loss": 0.0,
296
+ "step": 4100
297
+ },
298
+ {
299
+ "epoch": 233.33,
300
+ "grad_norm": 0.0008007108117453754,
301
+ "learning_rate": 3.126140293831746e-05,
302
+ "loss": 0.0,
303
+ "step": 4200
304
+ },
305
+ {
306
+ "epoch": 238.89,
307
+ "grad_norm": 0.00044247345067560673,
308
+ "learning_rate": 3.0497305527689445e-05,
309
+ "loss": 0.0,
310
+ "step": 4300
311
+ },
312
+ {
313
+ "epoch": 244.44,
314
+ "grad_norm": 0.0001442178909201175,
315
+ "learning_rate": 2.972777207444791e-05,
316
+ "loss": 0.0,
317
+ "step": 4400
318
+ },
319
+ {
320
+ "epoch": 250.0,
321
+ "grad_norm": 0.0005981961148791015,
322
+ "learning_rate": 2.8953563536233525e-05,
323
+ "loss": 0.0,
324
+ "step": 4500
325
+ },
326
+ {
327
+ "epoch": 255.56,
328
+ "grad_norm": 0.00022320376592688262,
329
+ "learning_rate": 2.8175445493671972e-05,
330
+ "loss": 0.0,
331
+ "step": 4600
332
+ },
333
+ {
334
+ "epoch": 261.11,
335
+ "grad_norm": 0.0004137264913879335,
336
+ "learning_rate": 2.7394187393325106e-05,
337
+ "loss": 0.0,
338
+ "step": 4700
339
+ },
340
+ {
341
+ "epoch": 266.67,
342
+ "grad_norm": 0.0003305468999315053,
343
+ "learning_rate": 2.6610561786819204e-05,
344
+ "loss": 0.0,
345
+ "step": 4800
346
+ },
347
+ {
348
+ "epoch": 272.22,
349
+ "grad_norm": 0.00018206202366854995,
350
+ "learning_rate": 2.5825343566902837e-05,
351
+ "loss": 0.0,
352
+ "step": 4900
353
+ },
354
+ {
355
+ "epoch": 277.78,
356
+ "grad_norm": 0.00040663284016773105,
357
+ "learning_rate": 2.5039309201189614e-05,
358
+ "loss": 0.0,
359
+ "step": 5000
360
+ },
361
+ {
362
+ "epoch": 283.33,
363
+ "grad_norm": 0.0004440485790837556,
364
+ "learning_rate": 2.4253235964343676e-05,
365
+ "loss": 0.0,
366
+ "step": 5100
367
+ },
368
+ {
369
+ "epoch": 288.89,
370
+ "grad_norm": 0.0003763148852158338,
371
+ "learning_rate": 2.34679011694671e-05,
372
+ "loss": 0.0,
373
+ "step": 5200
374
+ },
375
+ {
376
+ "epoch": 294.44,
377
+ "grad_norm": 0.0002928711473941803,
378
+ "learning_rate": 2.2684081399449327e-05,
379
+ "loss": 0.0,
380
+ "step": 5300
381
+ },
382
+ {
383
+ "epoch": 300.0,
384
+ "grad_norm": 0.0004030682030133903,
385
+ "learning_rate": 2.1902551739038624e-05,
386
+ "loss": 0.0,
387
+ "step": 5400
388
+ },
389
+ {
390
+ "epoch": 305.56,
391
+ "grad_norm": 0.0004344022599980235,
392
+ "learning_rate": 2.1124085008395054e-05,
393
+ "loss": 0.0,
394
+ "step": 5500
395
+ },
396
+ {
397
+ "epoch": 311.11,
398
+ "grad_norm": 0.00018473710224498063,
399
+ "learning_rate": 2.03494509988827e-05,
400
+ "loss": 0.0,
401
+ "step": 5600
402
+ },
403
+ {
404
+ "epoch": 316.67,
405
+ "grad_norm": 0.00044333594269119203,
406
+ "learning_rate": 1.9579415711857018e-05,
407
+ "loss": 0.0,
408
+ "step": 5700
409
+ },
410
+ {
411
+ "epoch": 322.22,
412
+ "grad_norm": 0.00039796039345674217,
413
+ "learning_rate": 1.881474060119994e-05,
414
+ "loss": 0.0,
415
+ "step": 5800
416
+ },
417
+ {
418
+ "epoch": 327.78,
419
+ "grad_norm": 0.0002483979915268719,
420
+ "learning_rate": 1.8056181820351738e-05,
421
+ "loss": 0.0,
422
+ "step": 5900
423
+ },
424
+ {
425
+ "epoch": 333.33,
426
+ "grad_norm": 0.00021489571372512728,
427
+ "learning_rate": 1.7304489474584307e-05,
428
+ "loss": 0.0,
429
+ "step": 6000
430
+ },
431
+ {
432
+ "epoch": 338.89,
433
+ "grad_norm": 0.00023669018992222846,
434
+ "learning_rate": 1.656040687925519e-05,
435
+ "loss": 0.0,
436
+ "step": 6100
437
+ },
438
+ {
439
+ "epoch": 344.44,
440
+ "grad_norm": 0.00023518071975558996,
441
+ "learning_rate": 1.582466982477587e-05,
442
+ "loss": 0.0,
443
+ "step": 6200
444
+ },
445
+ {
446
+ "epoch": 350.0,
447
+ "grad_norm": 0.00023862645321059972,
448
+ "learning_rate": 1.509800584902108e-05,
449
+ "loss": 0.0,
450
+ "step": 6300
451
+ },
452
+ {
453
+ "epoch": 355.56,
454
+ "grad_norm": 0.00020295938884373754,
455
+ "learning_rate": 1.4381133517898804e-05,
456
+ "loss": 0.0,
457
+ "step": 6400
458
+ },
459
+ {
460
+ "epoch": 361.11,
461
+ "grad_norm": 0.0003517361474223435,
462
+ "learning_rate": 1.3674761714792153e-05,
463
+ "loss": 0.0,
464
+ "step": 6500
465
+ },
466
+ {
467
+ "epoch": 366.67,
468
+ "grad_norm": 0.00022433781123254448,
469
+ "learning_rate": 1.297958893957588e-05,
470
+ "loss": 0.0,
471
+ "step": 6600
472
+ },
473
+ {
474
+ "epoch": 372.22,
475
+ "grad_norm": 0.0002291495620738715,
476
+ "learning_rate": 1.229630261790077e-05,
477
+ "loss": 0.0,
478
+ "step": 6700
479
+ },
480
+ {
481
+ "epoch": 377.78,
482
+ "grad_norm": 0.00021542608737945557,
483
+ "learning_rate": 1.1625578421428714e-05,
484
+ "loss": 0.0,
485
+ "step": 6800
486
+ },
487
+ {
488
+ "epoch": 383.33,
489
+ "grad_norm": 0.00030446049640886486,
490
+ "learning_rate": 1.0968079599690872e-05,
491
+ "loss": 0.0,
492
+ "step": 6900
493
+ },
494
+ {
495
+ "epoch": 388.89,
496
+ "grad_norm": 0.000319374434184283,
497
+ "learning_rate": 1.0324456324229537e-05,
498
+ "loss": 0.0,
499
+ "step": 7000
500
+ },
501
+ {
502
+ "epoch": 394.44,
503
+ "grad_norm": 0.0002203370677307248,
504
+ "learning_rate": 9.695345045672166e-06,
505
+ "loss": 0.0,
506
+ "step": 7100
507
+ },
508
+ {
509
+ "epoch": 400.0,
510
+ "grad_norm": 0.00015890812210272998,
511
+ "learning_rate": 9.081367864373488e-06,
512
+ "loss": 0.0,
513
+ "step": 7200
514
+ },
515
+ {
516
+ "epoch": 405.56,
517
+ "grad_norm": 0.000279374944511801,
518
+ "learning_rate": 8.483131915247968e-06,
519
+ "loss": 0.0,
520
+ "step": 7300
521
+ },
522
+ {
523
+ "epoch": 411.11,
524
+ "grad_norm": 0.00011563805310288444,
525
+ "learning_rate": 7.901228767400859e-06,
526
+ "loss": 0.0,
527
+ "step": 7400
528
+ },
529
+ {
530
+ "epoch": 416.67,
531
+ "grad_norm": 0.00013281428255140781,
532
+ "learning_rate": 7.336233839151693e-06,
533
+ "loss": 0.0,
534
+ "step": 7500
535
+ },
536
+ {
537
+ "epoch": 422.22,
538
+ "grad_norm": 0.0002364695246797055,
539
+ "learning_rate": 6.788705829028483e-06,
540
+ "loss": 0.0,
541
+ "step": 7600
542
+ },
543
+ {
544
+ "epoch": 427.78,
545
+ "grad_norm": 0.00013619402307085693,
546
+ "learning_rate": 6.259186163295438e-06,
547
+ "loss": 0.0,
548
+ "step": 7700
549
+ },
550
+ {
551
+ "epoch": 433.33,
552
+ "grad_norm": 0.0002181720337830484,
553
+ "learning_rate": 5.748198460560475e-06,
554
+ "loss": 0.0,
555
+ "step": 7800
556
+ },
557
+ {
558
+ "epoch": 438.89,
559
+ "grad_norm": 0.0001409970282111317,
560
+ "learning_rate": 5.256248013991857e-06,
561
+ "loss": 0.0,
562
+ "step": 7900
563
+ },
564
+ {
565
+ "epoch": 444.44,
566
+ "grad_norm": 8.899461681721732e-05,
567
+ "learning_rate": 4.78382129165613e-06,
568
+ "loss": 0.0,
569
+ "step": 8000
570
+ },
571
+ {
572
+ "epoch": 450.0,
573
+ "grad_norm": 9.178288746625185e-05,
574
+ "learning_rate": 4.331385455471346e-06,
575
+ "loss": 0.0,
576
+ "step": 8100
577
+ },
578
+ {
579
+ "epoch": 455.56,
580
+ "grad_norm": 0.00016385990602429956,
581
+ "learning_rate": 3.8993878992512415e-06,
582
+ "loss": 0.0,
583
+ "step": 8200
584
+ },
585
+ {
586
+ "epoch": 461.11,
587
+ "grad_norm": 0.00012868938210885972,
588
+ "learning_rate": 3.488255806297311e-06,
589
+ "loss": 0.0,
590
+ "step": 8300
591
+ },
592
+ {
593
+ "epoch": 466.67,
594
+ "grad_norm": 0.00018513025133870542,
595
+ "learning_rate": 3.09839572697605e-06,
596
+ "loss": 0.0,
597
+ "step": 8400
598
+ },
599
+ {
600
+ "epoch": 472.22,
601
+ "grad_norm": 0.00016808818327262998,
602
+ "learning_rate": 2.7301931766992917e-06,
603
+ "loss": 0.0,
604
+ "step": 8500
605
+ },
606
+ {
607
+ "epoch": 477.78,
608
+ "grad_norm": 0.0001630824408493936,
609
+ "learning_rate": 2.384012254705048e-06,
610
+ "loss": 0.0,
611
+ "step": 8600
612
+ },
613
+ {
614
+ "epoch": 483.33,
615
+ "grad_norm": 0.00018219888443127275,
616
+ "learning_rate": 2.0601952840158366e-06,
617
+ "loss": 0.0,
618
+ "step": 8700
619
+ },
620
+ {
621
+ "epoch": 488.89,
622
+ "grad_norm": 0.00011875651398440823,
623
+ "learning_rate": 1.75906247293057e-06,
624
+ "loss": 0.0,
625
+ "step": 8800
626
+ },
627
+ {
628
+ "epoch": 494.44,
629
+ "grad_norm": 0.00015640753554180264,
630
+ "learning_rate": 1.4809115983847266e-06,
631
+ "loss": 0.0,
632
+ "step": 8900
633
+ },
634
+ {
635
+ "epoch": 500.0,
636
+ "grad_norm": 0.00010140336962649599,
637
+ "learning_rate": 1.226017711491867e-06,
638
+ "loss": 0.0,
639
+ "step": 9000
640
+ },
641
+ {
642
+ "epoch": 505.56,
643
+ "grad_norm": 0.00018589019600767642,
644
+ "learning_rate": 9.946328655577624e-07,
645
+ "loss": 0.0,
646
+ "step": 9100
647
+ },
648
+ {
649
+ "epoch": 511.11,
650
+ "grad_norm": 0.00026709603844210505,
651
+ "learning_rate": 7.869858668360042e-07,
652
+ "loss": 0.0,
653
+ "step": 9200
654
+ },
655
+ {
656
+ "epoch": 516.67,
657
+ "grad_norm": 0.00017575189121998847,
658
+ "learning_rate": 6.032820482716001e-07,
659
+ "loss": 0.0,
660
+ "step": 9300
661
+ },
662
+ {
663
+ "epoch": 522.22,
664
+ "grad_norm": 0.0001377611479256302,
665
+ "learning_rate": 4.437030664562969e-07,
666
+ "loss": 0.0,
667
+ "step": 9400
668
+ },
669
+ {
670
+ "epoch": 527.78,
671
+ "grad_norm": 9.088205842999741e-05,
672
+ "learning_rate": 3.084067219964182e-07,
673
+ "loss": 0.0,
674
+ "step": 9500
675
+ },
676
+ {
677
+ "epoch": 533.33,
678
+ "grad_norm": 0.00015840640116948634,
679
+ "learning_rate": 1.975268034707878e-07,
680
+ "loss": 0.0,
681
+ "step": 9600
682
+ },
683
+ {
684
+ "epoch": 538.89,
685
+ "grad_norm": 0.00013717034016735852,
686
+ "learning_rate": 1.1117295513313475e-07,
687
+ "loss": 0.0,
688
+ "step": 9700
689
+ }
690
+ ],
691
+ "logging_steps": 100,
692
+ "max_steps": 10000,
693
+ "num_input_tokens_seen": 0,
694
+ "num_train_epochs": 556,
695
+ "save_steps": 500,
696
+ "total_flos": 2.673487599113011e+16,
697
+ "train_batch_size": 4,
698
+ "trial_name": null,
699
+ "trial_params": null
700
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00974380ed686e937fd2a467e3d1daa4422f095d60bd1f5c19edd5e1a708a266
3
+ size 4984
vocab.json ADDED
The diff for this file is too large to render. See raw diff