Your Name
commited on
Commit
·
4fcd1d5
0
Parent(s):
Initial commit
Browse files- .gitattributes +36 -0
- pyproject.toml +43 -0
- src/main.py +50 -0
- src/pipeline.py +134 -0
- uv.lock +0 -0
.gitattributes
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
|
pyproject.toml
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[build-system]
|
| 2 |
+
requires = ["setuptools >= 75.0"]
|
| 3 |
+
build-backend = "setuptools.build_meta"
|
| 4 |
+
|
| 5 |
+
[project]
|
| 6 |
+
name = "flux-schnell-edge-inference"
|
| 7 |
+
description = "An Optimization Pipeline"
|
| 8 |
+
requires-python = ">=3.10,<3.13"
|
| 9 |
+
version = "8"
|
| 10 |
+
dependencies = [
|
| 11 |
+
"diffusers==0.31.0",
|
| 12 |
+
"transformers==4.46.2",
|
| 13 |
+
"accelerate==1.1.0",
|
| 14 |
+
"omegaconf==2.3.0",
|
| 15 |
+
"torch==2.5.1",
|
| 16 |
+
"protobuf==5.28.3",
|
| 17 |
+
"sentencepiece==0.2.0",
|
| 18 |
+
"torchao==0.6.1",
|
| 19 |
+
"optimum-quanto",
|
| 20 |
+
"hf_transfer==0.1.8",
|
| 21 |
+
"setuptools==75.2.0",
|
| 22 |
+
"edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
[[tool.edge-maxxing.models]]
|
| 26 |
+
repository = "black-forest-labs/FLUX.1-schnell"
|
| 27 |
+
revision = "741f7c3ce8b383c54771c7003378a50191e9efe9"
|
| 28 |
+
exclude = ["transformer", "vae", "text_encoder_2"]
|
| 29 |
+
|
| 30 |
+
[[tool.edge-maxxing.models]]
|
| 31 |
+
repository = "city96/t5-v1_1-xxl-encoder-bf16"
|
| 32 |
+
revision = "1b9c856aadb864af93c1dcdc226c2774fa67bc86"
|
| 33 |
+
|
| 34 |
+
[[tool.edge-maxxing.models]]
|
| 35 |
+
repository = "MyApricity/Vae_Only"
|
| 36 |
+
revision = "a47d57702caf8ff0c0e21d30b93f9d3297b81920"
|
| 37 |
+
|
| 38 |
+
[[tool.edge-maxxing.models]]
|
| 39 |
+
repository = "MyApricity/Flux_Transformer_float8"
|
| 40 |
+
revision = "66c5f182385555a00ec90272ab711bb6d3c197db"
|
| 41 |
+
|
| 42 |
+
[project.scripts]
|
| 43 |
+
start_inference = "main:main"
|
src/main.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from io import BytesIO
|
| 2 |
+
from multiprocessing.connection import Listener
|
| 3 |
+
from os import chmod, remove
|
| 4 |
+
from os.path import abspath, exists
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
from PIL.JpegImagePlugin import JpegImageFile
|
| 8 |
+
from pipelines.models import TextToImageRequest
|
| 9 |
+
|
| 10 |
+
from pipeline import load_pipeline, infer
|
| 11 |
+
|
| 12 |
+
SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def main():
|
| 16 |
+
print(f"Loading pipeline")
|
| 17 |
+
pipeline = load_pipeline()
|
| 18 |
+
|
| 19 |
+
print(f"Pipeline loaded! , creating socket at '{SOCKET}'")
|
| 20 |
+
|
| 21 |
+
if exists(SOCKET):
|
| 22 |
+
remove(SOCKET)
|
| 23 |
+
|
| 24 |
+
with Listener(SOCKET) as listener:
|
| 25 |
+
chmod(SOCKET, 0o777)
|
| 26 |
+
|
| 27 |
+
print(f"Awaiting connections")
|
| 28 |
+
with listener.accept() as connection:
|
| 29 |
+
print(f"Connected")
|
| 30 |
+
|
| 31 |
+
while True:
|
| 32 |
+
try:
|
| 33 |
+
request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
|
| 34 |
+
except EOFError:
|
| 35 |
+
print(f"Inference socket exiting")
|
| 36 |
+
|
| 37 |
+
return
|
| 38 |
+
|
| 39 |
+
image = infer(request, pipeline)
|
| 40 |
+
|
| 41 |
+
data = BytesIO()
|
| 42 |
+
image.save(data, format=JpegImageFile.format)
|
| 43 |
+
|
| 44 |
+
packet = data.getvalue()
|
| 45 |
+
|
| 46 |
+
connection.send_bytes(packet)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
if __name__ == '__main__':
|
| 50 |
+
main()
|
src/pipeline.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torch._dynamo
|
| 4 |
+
import gc
|
| 5 |
+
|
| 6 |
+
import json
|
| 7 |
+
import transformers
|
| 8 |
+
from huggingface_hub.constants import HF_HUB_CACHE
|
| 9 |
+
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel
|
| 10 |
+
|
| 11 |
+
from torchao.quantization import quantize_, int8_weight_only, fpx_weight_only
|
| 12 |
+
from torch import Generator
|
| 13 |
+
from diffusers import FluxTransformer2DModel, DiffusionPipeline
|
| 14 |
+
|
| 15 |
+
from PIL.Image import Image
|
| 16 |
+
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny
|
| 17 |
+
from pipelines.models import TextToImageRequest
|
| 18 |
+
from optimum.quanto import requantize
|
| 19 |
+
import json
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
torch._dynamo.config.suppress_errors = True
|
| 25 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
| 26 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "True"
|
| 27 |
+
|
| 28 |
+
CHECKPOINT = "black-forest-labs/FLUX.1-schnell"
|
| 29 |
+
REVISION = "741f7c3ce8b383c54771c7003378a50191e9efe9"
|
| 30 |
+
Pipeline = None
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
import torch
|
| 34 |
+
import math
|
| 35 |
+
from typing import Dict, Any
|
| 36 |
+
|
| 37 |
+
def remove_cache():
|
| 38 |
+
gc.collect()
|
| 39 |
+
torch.cuda.empty_cache()
|
| 40 |
+
torch.cuda.reset_max_memory_allocated()
|
| 41 |
+
torch.cuda.reset_peak_memory_stats()
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class InitModel:
|
| 45 |
+
|
| 46 |
+
@staticmethod
|
| 47 |
+
def load_text_encoder() -> T5EncoderModel:
|
| 48 |
+
print("Loading text encoder...")
|
| 49 |
+
text_encoder = T5EncoderModel.from_pretrained(
|
| 50 |
+
"city96/t5-v1_1-xxl-encoder-bf16",
|
| 51 |
+
revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86",
|
| 52 |
+
torch_dtype=torch.bfloat16,
|
| 53 |
+
)
|
| 54 |
+
return text_encoder.to(memory_format=torch.channels_last)
|
| 55 |
+
|
| 56 |
+
@staticmethod
|
| 57 |
+
def load_vae() -> AutoencoderTiny:
|
| 58 |
+
print("Loading VAE model...")
|
| 59 |
+
vae = AutoencoderTiny.from_pretrained(
|
| 60 |
+
"XiangquiAI/FLUX_Vae_Model",
|
| 61 |
+
revision="103bcc03998f48ef311c100ee119f1b9942132ab",
|
| 62 |
+
torch_dtype=torch.bfloat16,
|
| 63 |
+
)
|
| 64 |
+
return vae
|
| 65 |
+
|
| 66 |
+
@staticmethod
|
| 67 |
+
def load_transformer(trans_path: str) -> FluxTransformer2DModel:
|
| 68 |
+
print("Loading transformer model...")
|
| 69 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
| 70 |
+
trans_path,
|
| 71 |
+
torch_dtype=torch.bfloat16,
|
| 72 |
+
use_safetensors=False,
|
| 73 |
+
)
|
| 74 |
+
return transformer.to(memory_format=torch.channels_last)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def load_pipeline() -> Pipeline:
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
transformer_path = os.path.join(HF_HUB_CACHE, "models--MyApricity--Flux_Transformer_float8/snapshots/66c5f182385555a00ec90272ab711bb6d3c197db")
|
| 82 |
+
transformer = InitModel.load_transformer(transformer_path)
|
| 83 |
+
|
| 84 |
+
text_encoder_2 = InitModel.load_text_encoder()
|
| 85 |
+
vae = InitModel.load_vae()
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
pipeline = DiffusionPipeline.from_pretrained(CHECKPOINT,
|
| 89 |
+
revision=REVISION,
|
| 90 |
+
vae=vae,
|
| 91 |
+
transformer=transformer,
|
| 92 |
+
text_encoder_2=text_encoder_2,
|
| 93 |
+
torch_dtype=torch.bfloat16)
|
| 94 |
+
pipeline.to("cuda")
|
| 95 |
+
try:
|
| 96 |
+
pipeline.disable_vae_slice()
|
| 97 |
+
except:
|
| 98 |
+
print("Using origin pipeline")
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
promts_listing = [
|
| 102 |
+
"melanogen, endosome",
|
| 103 |
+
"buffer, cutie, buttinsky, prototrophic",
|
| 104 |
+
"puzzlehead, fistical, must return non duplicate",
|
| 105 |
+
"apical, polymyodous, tiptilt"
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
for p in promts_listing:
|
| 109 |
+
pipeline(prompt=p,
|
| 110 |
+
width=1024,
|
| 111 |
+
height=1024,
|
| 112 |
+
guidance_scale=0.0,
|
| 113 |
+
num_inference_steps=4,
|
| 114 |
+
max_sequence_length=256)
|
| 115 |
+
|
| 116 |
+
return pipeline
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
@torch.no_grad()
|
| 120 |
+
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image:
|
| 121 |
+
|
| 122 |
+
remove_cache()
|
| 123 |
+
# remove cache here for better result
|
| 124 |
+
generator = Generator(pipeline.device).manual_seed(request.seed)
|
| 125 |
+
|
| 126 |
+
return pipeline(
|
| 127 |
+
request.prompt,
|
| 128 |
+
generator=generator,
|
| 129 |
+
guidance_scale=0.0,
|
| 130 |
+
num_inference_steps=4,
|
| 131 |
+
max_sequence_length=256,
|
| 132 |
+
height=request.height,
|
| 133 |
+
width=request.width,
|
| 134 |
+
).images[0]
|
uv.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|