YOURNAME
commited on
Commit
·
0629499
1
Parent(s):
e09c84c
- src/main.py +3 -3
- src/pipeline.py +72 -73
src/main.py
CHANGED
@@ -7,14 +7,14 @@ from pathlib import Path
|
|
7 |
from PIL.JpegImagePlugin import JpegImageFile
|
8 |
from pipelines.models import TextToImageRequest
|
9 |
|
10 |
-
from pipeline import
|
11 |
|
12 |
SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
|
13 |
|
14 |
|
15 |
def main():
|
16 |
print(f"Loading pipeline")
|
17 |
-
pipeline =
|
18 |
|
19 |
print(f"Pipeline loaded! , creating socket at '{SOCKET}'")
|
20 |
|
@@ -36,7 +36,7 @@ def main():
|
|
36 |
|
37 |
return
|
38 |
|
39 |
-
image =
|
40 |
|
41 |
data = BytesIO()
|
42 |
image.save(data, format=JpegImageFile.format)
|
|
|
7 |
from PIL.JpegImagePlugin import JpegImageFile
|
8 |
from pipelines.models import TextToImageRequest
|
9 |
|
10 |
+
from pipeline import pipeline_loader, inference
|
11 |
|
12 |
SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
|
13 |
|
14 |
|
15 |
def main():
|
16 |
print(f"Loading pipeline")
|
17 |
+
pipeline = pipeline_loader()
|
18 |
|
19 |
print(f"Pipeline loaded! , creating socket at '{SOCKET}'")
|
20 |
|
|
|
36 |
|
37 |
return
|
38 |
|
39 |
+
image = inference(request, pipeline)
|
40 |
|
41 |
data = BytesIO()
|
42 |
image.save(data, format=JpegImageFile.format)
|
src/pipeline.py
CHANGED
@@ -6,22 +6,24 @@ import gc
|
|
6 |
import json
|
7 |
import transformers
|
8 |
from huggingface_hub.constants import HF_HUB_CACHE
|
9 |
-
from transformers import T5EncoderModel, T5TokenizerFast
|
10 |
-
|
11 |
-
# ApricityApricityApricityApricityApricityApricityApricityApricityApricityApricityApricity
|
12 |
-
|
13 |
-
from torch import Generator
|
14 |
-
from diffusers import FluxTransformer2DModel, DiffusionPipeline
|
15 |
-
|
16 |
from PIL.Image import Image
|
17 |
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny
|
18 |
from pipelines.models import TextToImageRequest
|
19 |
from optimum.quanto import requantize
|
20 |
import json
|
21 |
|
|
|
|
|
22 |
|
23 |
-
#
|
|
|
24 |
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
torch._dynamo.config.suppress_errors = True
|
27 |
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
@@ -32,102 +34,99 @@ revision_root = "488528b6f815bff1bbc747cf1e0947c77c544665"
|
|
32 |
Pipeline = None
|
33 |
use_com = False
|
34 |
|
35 |
-
import torch
|
36 |
-
import math
|
37 |
-
from typing import Dict, Any
|
38 |
|
39 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
torch.cuda.empty_cache()
|
41 |
torch.cuda.reset_max_memory_allocated()
|
42 |
-
gc.collect()
|
43 |
torch.cuda.reset_peak_memory_stats()
|
44 |
|
45 |
|
|
|
|
|
46 |
|
47 |
-
def text_t5_loader() -> T5EncoderModel:
|
48 |
print("Loading text encoder...")
|
49 |
-
|
50 |
"city96/t5-v1_1-xxl-encoder-bf16",
|
51 |
revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86",
|
52 |
torch_dtype=torch.bfloat16,
|
53 |
)
|
54 |
-
return text_encoder.to(memory_format=torch.channels_last)
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
def __init__(self, pipeline, optimize=False):
|
59 |
-
self.pipeline = pipeline
|
60 |
-
self.optimize = optimize
|
61 |
-
if self.optimize:
|
62 |
-
self.model_compiling()
|
63 |
|
64 |
-
|
65 |
-
# Staff doing here
|
66 |
-
self.pipeline.unet = torch.compile(self.pipeline.unet)
|
67 |
-
|
68 |
-
def __call__(self, *args, **kwargs):
|
69 |
-
return self.pipeline(*args, **kwargs)
|
70 |
-
|
71 |
-
def load_pipeline() -> Pipeline:
|
72 |
|
73 |
-
text_t5_encoder = text_t5_loader()
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
78 |
|
79 |
try:
|
80 |
-
pipeline = DiffusionPipeline.from_pretrained(ckpt_root,
|
81 |
-
revision=revision_root,
|
82 |
-
transformer=transformer__,
|
83 |
-
torch_dtype=torch.bfloat16)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
torch_dtype=torch.bfloat16)
|
89 |
|
90 |
-
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
106 |
|
107 |
-
|
108 |
-
pipeline(prompt=prompt_1,
|
109 |
-
width=1024,
|
110 |
-
height=1024,
|
111 |
-
guidance_scale=0.0,
|
112 |
-
num_inference_steps=4,
|
113 |
-
max_sequence_length=256)
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
122 |
|
123 |
-
|
|
|
124 |
|
125 |
|
126 |
@torch.no_grad()
|
127 |
-
def
|
128 |
|
129 |
-
|
130 |
-
# remove cache here for better result
|
131 |
generator = Generator(pipeline.device).manual_seed(request.seed)
|
132 |
|
133 |
return pipeline(
|
|
|
6 |
import json
|
7 |
import transformers
|
8 |
from huggingface_hub.constants import HF_HUB_CACHE
|
9 |
+
from transformers import T5EncoderModel, T5TokenizerFast
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from PIL.Image import Image
|
11 |
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny
|
12 |
from pipelines.models import TextToImageRequest
|
13 |
from optimum.quanto import requantize
|
14 |
import json
|
15 |
|
16 |
+
from torch import Generator
|
17 |
+
from diffusers import FluxTransformer2DModel, DiffusionPipeline
|
18 |
|
19 |
+
# MYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMY
|
20 |
+
# ApricityApricityApricityApricityApricityApricityApricityApricityApricityApricityApricityApricityApricity
|
21 |
|
22 |
+
from torch._dynamo import config
|
23 |
+
from torch._inductor import config as ind_config
|
24 |
+
import torch
|
25 |
+
import math
|
26 |
+
from typing import Dict, Any
|
27 |
|
28 |
torch._dynamo.config.suppress_errors = True
|
29 |
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
|
|
34 |
Pipeline = None
|
35 |
use_com = False
|
36 |
|
|
|
|
|
|
|
37 |
|
38 |
+
def optimize_torch():
|
39 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
40 |
+
torch.backends.cudnn.allow_tf32 = True
|
41 |
+
torch.backends.cudnn.benchmark = True
|
42 |
+
# torch.backends.cudnn.benchmark_limit = 20
|
43 |
+
torch.set_float32_matmul_precision("high")
|
44 |
+
# config.cache_size_limit = 10000000000
|
45 |
+
# ind_config.shape_padding = True
|
46 |
+
|
47 |
+
try:
|
48 |
+
optimize_torch()
|
49 |
+
except:
|
50 |
+
print("nothing wrong")
|
51 |
+
|
52 |
+
def delete_ca_che():
|
53 |
torch.cuda.empty_cache()
|
54 |
torch.cuda.reset_max_memory_allocated()
|
|
|
55 |
torch.cuda.reset_peak_memory_stats()
|
56 |
|
57 |
|
58 |
+
|
59 |
+
def pipeline_loader() -> Pipeline:
|
60 |
|
|
|
61 |
print("Loading text encoder...")
|
62 |
+
en = T5EncoderModel.from_pretrained(
|
63 |
"city96/t5-v1_1-xxl-encoder-bf16",
|
64 |
revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86",
|
65 |
torch_dtype=torch.bfloat16,
|
66 |
)
|
|
|
|
|
67 |
|
68 |
+
transformer_path_main = os.path.join(HF_HUB_CACHE, "models--MyApricity--FLUX_OPT_SCHNELL_1.2/snapshots/488528b6f815bff1bbc747cf1e0947c77c544665")
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
transformer_model = FluxTransformer2DModel.from_pretrained(transformer_path_main, torch_dtype=torch.bfloat16, use_safetensors=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
|
|
72 |
|
73 |
+
pipe = DiffusionPipeline.from_pretrained(ckpt_root,
|
74 |
+
revision=revision_root,
|
75 |
+
transformer=transformer_model,
|
76 |
+
torch_dtype=torch.bfloat16)
|
77 |
+
pipe.to("cuda")
|
78 |
|
79 |
try:
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
# fuse QKV projections in Transformer and VAE
|
82 |
+
pipe.transformer.fuse_qkv_projections()
|
83 |
+
pipe.vae.fuse_qkv_projections()
|
|
|
84 |
|
85 |
+
# switch memory layout to Torch's preferred, channels_last
|
86 |
+
pipe.transformer.to(memory_format=torch.channels_last)
|
87 |
+
pipe.vae.to(memory_format=torch.channels_last)
|
88 |
|
89 |
+
# set torch compile flags
|
90 |
+
config = torch._inductor.config
|
91 |
+
config.disable_progress = False # show progress bar
|
92 |
+
config.conv_1x1_as_mm = True # treat 1x1 convolutions as matrix muls
|
93 |
|
94 |
+
# tag the compute-intensive modules, the Transformer and VAE decoder, for compilation
|
95 |
+
pipe.transformer = torch.compile(
|
96 |
+
pipe.transformer, mode="max-autotune", fullgraph=True
|
97 |
+
)
|
98 |
+
pipe.vae.decode = torch.compile(
|
99 |
+
pipe.vae.decode, mode="max-autotune", fullgraph=True
|
100 |
+
)
|
101 |
|
102 |
+
# trigger torch compilation
|
103 |
+
print("running torch compiliation..")
|
104 |
|
105 |
+
pipe(
|
106 |
+
"dummy prompt to trigger torch compilation",
|
107 |
+
output_type="pil",
|
108 |
+
num_inference_steps=4, # use ~50 for [dev], smaller for [schnell]
|
109 |
+
).images[0]
|
110 |
|
111 |
+
print("finished torch compilation")
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
except:
|
114 |
+
|
115 |
+
pipe(
|
116 |
+
"a beautiful girl",
|
117 |
+
output_type="pil",
|
118 |
+
num_inference_steps=4, # use ~50 for [dev], smaller for [schnell]
|
119 |
+
).images[0]
|
120 |
+
print("Pass error")
|
121 |
|
122 |
+
|
123 |
+
return pipe
|
124 |
|
125 |
|
126 |
@torch.no_grad()
|
127 |
+
def inference(request: TextToImageRequest, pipeline: Pipeline) -> Image:
|
128 |
|
129 |
+
delete_ca_che()
|
|
|
130 |
generator = Generator(pipeline.device).manual_seed(request.seed)
|
131 |
|
132 |
return pipeline(
|