|
import os |
|
import torch |
|
import torch._dynamo |
|
import gc |
|
|
|
import json |
|
import transformers |
|
from huggingface_hub.constants import HF_HUB_CACHE |
|
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel |
|
|
|
|
|
|
|
from torch import Generator |
|
from diffusers import FluxTransformer2DModel, DiffusionPipeline |
|
|
|
from PIL.Image import Image |
|
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny |
|
from pipelines.models import TextToImageRequest |
|
from optimum.quanto import requantize |
|
import json |
|
|
|
|
|
|
|
|
|
|
|
torch._dynamo.config.suppress_errors = True |
|
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True" |
|
os.environ["TOKENIZERS_PARALLELISM"] = "True" |
|
|
|
ckpt_root = "MyApricity/FLUX_OPT_SCHNELL_1.2" |
|
revision_root = "488528b6f815bff1bbc747cf1e0947c77c544665" |
|
Pipeline = None |
|
use_com = False |
|
|
|
import torch |
|
import math |
|
from typing import Dict, Any |
|
|
|
def remove_cache(): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
gc.collect() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
|
|
|
|
def text_t5_loader() -> T5EncoderModel: |
|
print("Loading text encoder...") |
|
text_encoder = T5EncoderModel.from_pretrained( |
|
"city96/t5-v1_1-xxl-encoder-bf16", |
|
revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
return text_encoder.to(memory_format=torch.channels_last) |
|
|
|
|
|
class StableDiffusionTransformerCompile: |
|
def __init__(self, pipeline, optimize=False): |
|
self.pipeline = pipeline |
|
self.optimize = optimize |
|
if self.optimize: |
|
self.model_compiling() |
|
|
|
def model_compiling(self): |
|
|
|
self.pipeline.unet = torch.compile(self.pipeline.unet) |
|
|
|
def __call__(self, *args, **kwargs): |
|
return self.pipeline(*args, **kwargs) |
|
|
|
def load_pipeline() -> Pipeline: |
|
|
|
text_t5_encoder = text_t5_loader() |
|
|
|
transformer_path__ = os.path.join(HF_HUB_CACHE, "models--MyApricity--FLUX_OPT_SCHNELL_1.2/snapshots/488528b6f815bff1bbc747cf1e0947c77c544665") |
|
|
|
transformer__ = FluxTransformer2DModel.from_pretrained(transformer_path__, torch_dtype=torch.bfloat16, use_safetensors=False) |
|
|
|
try: |
|
pipeline = DiffusionPipeline.from_pretrained(ckpt_root, |
|
revision=revision_root, |
|
transformer=transformer__, |
|
torch_dtype=torch.bfloat16) |
|
|
|
except: |
|
pipeline = DiffusionPipeline.from_pretrained(ckpt_root, |
|
revision=revision_root, |
|
torch_dtype=torch.bfloat16) |
|
|
|
pipeline.to("cuda") |
|
|
|
try: |
|
compiled_pipeline = StableDiffusionTransformerCompile(pipeline, optimize=False) |
|
|
|
if use_com: |
|
pipeline = compiled_pipeline |
|
else: |
|
print("Currently not compling affectively") |
|
|
|
pipeline.disable_vae_compress() |
|
pipeline.text_encoder_2 = text_t5_encoder |
|
|
|
except: |
|
print("pipeline") |
|
|
|
|
|
prompt_1 = "albaspidin, pillmonger, palaeocrystalline" |
|
pipeline(prompt=prompt_1, |
|
width=1024, |
|
height=1024, |
|
guidance_scale=0.0, |
|
num_inference_steps=4, |
|
max_sequence_length=256) |
|
|
|
prompt_2 = "obe, kilometrage, circuition" |
|
pipeline(prompt=prompt_2, |
|
width=1024, |
|
height=1024, |
|
guidance_scale=0.0, |
|
num_inference_steps=4, |
|
max_sequence_length=256) |
|
|
|
return pipeline |
|
|
|
|
|
@torch.no_grad() |
|
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image: |
|
|
|
remove_cache() |
|
|
|
generator = Generator(pipeline.device).manual_seed(request.seed) |
|
|
|
return pipeline( |
|
request.prompt, |
|
generator=generator, |
|
guidance_scale=0.0, |
|
num_inference_steps=4, |
|
max_sequence_length=256, |
|
height=request.height, |
|
width=request.width, |
|
).images[0] |