DiffBIR / train_stage1.py
MultiMatrix's picture
Upload train_stage1.py
4bef05b verified
import os
from argparse import ArgumentParser
import warnings
from omegaconf import OmegaConf
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision.utils import make_grid
from accelerate import Accelerator
from accelerate.utils import set_seed
from einops import rearrange
from tqdm import tqdm
import lpips
from model import SwinIR
from utils.common import instantiate_from_config
# https://github.com/XPixelGroup/BasicSR/blob/033cd6896d898fdd3dcda32e3102a792efa1b8f4/basicsr/utils/color_util.py#L186
def rgb2ycbcr_pt(img, y_only=False):
"""Convert RGB images to YCbCr images (PyTorch version).
It implements the ITU-R BT.601 conversion for standard-definition television. See more details in
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
Args:
img (Tensor): Images with shape (n, 3, h, w), the range [0, 1], float, RGB format.
y_only (bool): Whether to only return Y channel. Default: False.
Returns:
(Tensor): converted images with the shape (n, 3/1, h, w), the range [0, 1], float.
"""
if y_only:
weight = torch.tensor([[65.481], [128.553], [24.966]]).to(img)
out_img = torch.matmul(img.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + 16.0
else:
weight = torch.tensor([[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]).to(img)
bias = torch.tensor([16, 128, 128]).view(1, 3, 1, 1).to(img)
out_img = torch.matmul(img.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + bias
out_img = out_img / 255.
return out_img
# https://github.com/XPixelGroup/BasicSR/blob/033cd6896d898fdd3dcda32e3102a792efa1b8f4/basicsr/metrics/psnr_ssim.py#L52
def calculate_psnr_pt(img, img2, crop_border, test_y_channel=False):
"""Calculate PSNR (Peak Signal-to-Noise Ratio) (PyTorch version).
Reference: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
Args:
img (Tensor): Images with range [0, 1], shape (n, 3/1, h, w).
img2 (Tensor): Images with range [0, 1], shape (n, 3/1, h, w).
crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the calculation.
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
Returns:
float: PSNR result.
"""
assert img.shape == img2.shape, (f'Image shapes are different: {img.shape}, {img2.shape}.')
if crop_border != 0:
img = img[:, :, crop_border:-crop_border, crop_border:-crop_border]
img2 = img2[:, :, crop_border:-crop_border, crop_border:-crop_border]
if test_y_channel:
img = rgb2ycbcr_pt(img, y_only=True)
img2 = rgb2ycbcr_pt(img2, y_only=True)
img = img.to(torch.float64)
img2 = img2.to(torch.float64)
mse = torch.mean((img - img2)**2, dim=[1, 2, 3])
return 10. * torch.log10(1. / (mse + 1e-8))
def main(args) -> None:
# Setup accelerator:
accelerator = Accelerator(split_batches=True)
set_seed(231)
device = accelerator.device
cfg = OmegaConf.load(args.config)
# Setup an experiment folder:
if accelerator.is_local_main_process:
exp_dir = cfg.train.exp_dir
os.makedirs(exp_dir, exist_ok=True)
ckpt_dir = os.path.join(exp_dir, "checkpoints")
os.makedirs(ckpt_dir, exist_ok=True)
print(f"Experiment directory created at {exp_dir}")
# Create model:
swinir: SwinIR = instantiate_from_config(cfg.model.swinir)
if cfg.train.resume:
swinir.load_state_dict(torch.load(cfg.train.resume, map_location="cpu"), strict=True)
if accelerator.is_local_main_process:
print(f"strictly load weight from checkpoint: {cfg.train.resume}")
else:
if accelerator.is_local_main_process:
print("initialize from scratch")
# Setup optimizer:
opt = torch.optim.AdamW(
swinir.parameters(), lr=cfg.train.learning_rate,
weight_decay=0
)
# Setup data:
dataset = instantiate_from_config(cfg.dataset.train)
loader = DataLoader(
dataset=dataset, batch_size=cfg.train.batch_size,
num_workers=cfg.train.num_workers,
shuffle=True, drop_last=True
)
val_dataset = instantiate_from_config(cfg.dataset.val)
val_loader = DataLoader(
dataset=val_dataset, batch_size=cfg.train.batch_size,
num_workers=cfg.train.num_workers,
shuffle=False, drop_last=False
)
if accelerator.is_local_main_process:
print(f"Dataset contains {len(dataset):,} images from {dataset.file_list}")
# Prepare models for training:
swinir.train().to(device)
swinir, opt, loader, val_loader = accelerator.prepare(swinir, opt, loader, val_loader)
pure_swinir = accelerator.unwrap_model(swinir)
# Variables for monitoring/logging purposes:
global_step = 0
max_steps = cfg.train.train_steps
step_loss = []
epoch = 0
epoch_loss = []
with warnings.catch_warnings():
# avoid warnings from lpips internal
warnings.simplefilter("ignore")
lpips_model = lpips.LPIPS(net="alex", verbose=accelerator.is_local_main_process).eval().to(device)
if accelerator.is_local_main_process:
writer = SummaryWriter(exp_dir)
print(f"Training for {max_steps} steps...")
while global_step < max_steps:
pbar = tqdm(iterable=None, disable=not accelerator.is_local_main_process, unit="batch", total=len(loader))
for gt, lq, _ in loader:
gt = rearrange((gt + 1) / 2, "b h w c -> b c h w").contiguous().float().to(device)
lq = rearrange(lq, "b h w c -> b c h w").contiguous().float().to(device)
pred = swinir(lq)
loss = F.mse_loss(input=pred, target=gt, reduction="sum")
opt.zero_grad()
accelerator.backward(loss)
opt.step()
accelerator.wait_for_everyone()
global_step += 1
step_loss.append(loss.item())
epoch_loss.append(loss.item())
pbar.update(1)
pbar.set_description(f"Epoch: {epoch:04d}, Global Step: {global_step:07d}, Loss: {loss.item():.6f}")
# Log loss values:
if global_step % cfg.train.log_every == 0:
# Gather values from all processes
avg_loss = accelerator.gather(torch.tensor(step_loss, device=device).unsqueeze(0)).mean().item()
step_loss.clear()
if accelerator.is_local_main_process:
writer.add_scalar("train/loss_step", avg_loss, global_step)
# Save checkpoint:
if global_step % cfg.train.ckpt_every == 0:
if accelerator.is_local_main_process:
checkpoint = pure_swinir.state_dict()
ckpt_path = f"{ckpt_dir}/{global_step:07d}.pt"
torch.save(checkpoint, ckpt_path)
if global_step % cfg.train.image_every == 0 or global_step == 1:
swinir.eval()
N = 12
log_gt, log_lq = gt[:N], lq[:N]
with torch.no_grad():
log_pred = swinir(log_lq)
if accelerator.is_local_main_process:
for tag, image in [
("image/pred", log_pred),
("image/gt", log_gt),
("image/lq", log_lq),
]:
writer.add_image(tag, make_grid(image, nrow=4), global_step)
swinir.train()
# Evaluate model:
if global_step % cfg.train.val_every == 0:
swinir.eval()
val_loss = []
val_lpips = []
val_psnr = []
val_pbar = tqdm(iterable=None, disable=not accelerator.is_local_main_process, unit="batch",
total=len(val_loader), leave=False, desc="Validation")
# TODO: use accelerator.gather_for_metrics for more precise metric calculation?
for val_gt, val_lq, _ in val_loader:
val_gt = rearrange((val_gt + 1) / 2, "b h w c -> b c h w").contiguous().float().to(device)
val_lq = rearrange(val_lq, "b h w c -> b c h w").contiguous().float().to(device)
with torch.no_grad():
# forward
val_pred = swinir(val_lq)
# compute metrics (loss, lpips, psnr)
val_loss.append(F.mse_loss(input=val_pred, target=val_gt, reduction="sum").item())
val_lpips.append(lpips_model(val_pred, val_gt, normalize=True).mean().item())
val_psnr.append(calculate_psnr_pt(val_pred, val_gt, crop_border=0).mean().item())
val_pbar.update(1)
val_pbar.close()
avg_val_loss = accelerator.gather(torch.tensor(val_loss, device=device).unsqueeze(0)).mean().item()
avg_val_lpips = accelerator.gather(torch.tensor(val_lpips, device=device).unsqueeze(0)).mean().item()
avg_val_psnr = accelerator.gather(torch.tensor(val_psnr, device=device).unsqueeze(0)).mean().item()
if accelerator.is_local_main_process:
for tag, val in [
("val/loss", avg_val_loss),
("val/lpips", avg_val_lpips),
("val/psnr", avg_val_psnr)
]:
writer.add_scalar(tag, val, global_step)
swinir.train()
accelerator.wait_for_everyone()
if global_step == max_steps:
break
pbar.close()
epoch += 1
avg_epoch_loss = accelerator.gather(torch.tensor(epoch_loss, device=device).unsqueeze(0)).mean().item()
epoch_loss.clear()
if accelerator.is_local_main_process:
writer.add_scalar("train/loss_epoch", avg_epoch_loss, global_step)
if accelerator.is_local_main_process:
print("done!")
writer.close()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--config", type=str, required=True)
args = parser.parse_args()
main(args)