DiffBIR / inference.py
MultiMatrix's picture
Upload inference.py
e46ed6e verified
from argparse import ArgumentParser, Namespace
import torch
from accelerate.utils import set_seed
from utils.inference import (
V1InferenceLoop,
BSRInferenceLoop, BFRInferenceLoop, BIDInferenceLoop, UnAlignedBFRInferenceLoop
)
def check_device(device: str) -> str:
if device == "cuda":
if not torch.cuda.is_available():
print("CUDA not available because the current PyTorch install was not "
"built with CUDA enabled.")
device = "cpu"
else:
if device == "mps":
if not torch.backends.mps.is_available():
if not torch.backends.mps.is_built():
print("MPS not available because the current PyTorch install was not "
"built with MPS enabled.")
device = "cpu"
else:
print("MPS not available because the current MacOS version is not 12.3+ "
"and/or you do not have an MPS-enabled device on this machine.")
device = "cpu"
print(f"using device {device}")
return device
def parse_args() -> Namespace:
parser = ArgumentParser()
### model parameters
parser.add_argument("--task", type=str, required=True, choices=["sr", "dn", "fr", "fr_bg"])
parser.add_argument("--upscale", type=float, required=True)
parser.add_argument("--version", type=str, default="v2", choices=["v1", "v2"])
### sampling parameters
parser.add_argument("--steps", type=int, default=50)
parser.add_argument("--better_start", action="store_true")
parser.add_argument("--tiled", action="store_true")
parser.add_argument("--tile_size", type=int, default=512)
parser.add_argument("--tile_stride", type=int, default=256)
parser.add_argument("--pos_prompt", type=str, default="")
parser.add_argument("--neg_prompt", type=str, default="low quality, blurry, low-resolution, noisy, unsharp, weird textures")
parser.add_argument("--cfg_scale", type=float, default=4.0)
### input parameters
parser.add_argument("--input", type=str, required=True)
parser.add_argument("--n_samples", type=int, default=1)
### guidance parameters
parser.add_argument("--guidance", action="store_true")
parser.add_argument("--g_loss", type=str, default="w_mse", choices=["mse", "w_mse"])
parser.add_argument("--g_scale", type=float, default=0.0)
parser.add_argument("--g_start", type=int, default=1001)
parser.add_argument("--g_stop", type=int, default=-1)
parser.add_argument("--g_space", type=str, default="latent")
parser.add_argument("--g_repeat", type=int, default=1)
### output parameters
parser.add_argument("--output", type=str, required=True)
### common parameters
parser.add_argument("--seed", type=int, default=231)
parser.add_argument("--device", type=str, default="cuda", choices=["cpu", "cuda", "mps"])
return parser.parse_args()
def main():
args = parse_args()
args.device = check_device(args.device)
set_seed(args.seed)
if args.version == "v1":
V1InferenceLoop(args).run()
else:
supported_tasks = {
"sr": BSRInferenceLoop,
"dn": BIDInferenceLoop,
"fr": BFRInferenceLoop,
"fr_bg": UnAlignedBFRInferenceLoop
}
supported_tasks[args.task](args).run()
print("done!")
if __name__ == "__main__":
main()