|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
from langchain.llms import HuggingFacePipeline |
|
from langchain import PromptTemplate, LLMChain |
|
|
|
template = """{char_name}'s Persona: {char_persona} |
|
<START> |
|
{chat_history} |
|
{char_name}: {char_greeting} |
|
<END> |
|
{user_name}: {user_input} |
|
{char_name}: """ |
|
|
|
class EndpointHandler(): |
|
|
|
def __init__(self, path=""): |
|
tokenizer = AutoTokenizer.from_pretrained(path) |
|
model = AutoModelForCausalLM.from_pretrained(path, load_in_8bit = True, device_map = "auto") |
|
local_llm = HuggingFacePipeline( |
|
pipeline = pipeline( |
|
"text-generation", |
|
model = model, |
|
tokenizer = tokenizer, |
|
max_length = 2048, |
|
temperature = 0.5, |
|
top_p = 0.9, |
|
top_k = 0, |
|
repetition_penalty = 1.1, |
|
pad_token_id = 50256, |
|
num_return_sequences = 1 |
|
) |
|
) |
|
prompt_template = PromptTemplate( |
|
template = template, |
|
input_variables = [ |
|
"user_input", |
|
"user_name", |
|
"char_name", |
|
"char_persona", |
|
"char_greeting", |
|
"chat_history" |
|
], |
|
validate_template = True |
|
) |
|
self.llm_engine = LLMChain( |
|
llm = local_llm, |
|
prompt = prompt_template |
|
) |
|
|
|
def __call__(self, data): |
|
inputs = data.pop("inputs", data) |
|
try: |
|
response = self.llm_engine.predict( |
|
user_input = inputs["user_input"], |
|
user_name = inputs["user_name"], |
|
char_name = inputs["char_name"], |
|
char_persona = inputs["char_persona"], |
|
char_greeting = inputs["char_greeting"], |
|
chat_history = inputs["chat_history"] |
|
).split("\n",1)[0] |
|
return { |
|
"inputs": inputs, |
|
"text": response |
|
} |
|
except Exception as e: |
|
return { |
|
"inputs": inputs, |
|
"error": str(e) |
|
} |