--- library_name: transformers tags: [] --- ## Inference ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import time import torch import re device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = AutoModelForSequenceClassification.from_pretrained("Mr-Vicky-01/TP-FP").to(device) tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/TP-FP") start = time.time() vuln = 'String password = "password123";' vuln_desc = " Hardcoded credentials were found. This could allow an attacker to access sensitive resources. Replace hardcoded passwords with environment variables or a secure vault." scanner = "docker" question = f"""Vulnerability: {vuln} , Vulnerability_Description {vuln_desc} , Scanner: {scanner}""" question = re.sub(r"[,?.'\"']", '', question) inputs = tokenizer(question, return_tensors="pt").to(device) with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax().item() predicted_class = model.config.id2label[predicted_class_id] print(predicted_class) print(time.time() - start) ```