File size: 1,097 Bytes
7a682f7
 
 
 
 
1c6f4cf
 
 
 
 
 
 
 
 
 
 
 
 
 
b588ad9
 
 
 
 
 
1c6f4cf
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
---
library_name: transformers
tags: []
---

## Inference
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import time
import torch
import re

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = AutoModelForSequenceClassification.from_pretrained("Mr-Vicky-01/TP-FP").to(device)
tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/TP-FP")


start = time.time()

vuln = 'String password = "password123";'
vuln_desc = " Hardcoded credentials were found. This could allow an attacker to access sensitive resources. Replace hardcoded passwords with environment variables or a secure vault."
scanner = "docker"

question = f"""Vulnerability: {vuln} , Vulnerability_Description {vuln_desc} , Scanner: {scanner}"""
question = re.sub(r"[,?.'\"']", '', question)
inputs = tokenizer(question, return_tensors="pt").to(device)
with torch.no_grad():
    logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
predicted_class = model.config.id2label[predicted_class_id]

print(predicted_class)
print(time.time() - start)
```